JPH04249067A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPH04249067A
JPH04249067A JP3098340A JP9834091A JPH04249067A JP H04249067 A JPH04249067 A JP H04249067A JP 3098340 A JP3098340 A JP 3098340A JP 9834091 A JP9834091 A JP 9834091A JP H04249067 A JPH04249067 A JP H04249067A
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
dry plate
slurry
pressurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3098340A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3098340A priority Critical patent/JPH04249067A/en
Publication of JPH04249067A publication Critical patent/JPH04249067A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the absorptivity for hydrogen gas by mixing an electroconductivity agent and resin binder with a powder of hydrogen storage alloy, coating a porous sheet with slurry to which a water solution of consistency increasing agent is added and kneaded, drying the resultant and impregnating with a solution containing dispersed fibrous plastics, and subjecting it to pressurizing and baking process. CONSTITUTION:A water solution of consistency increasing agent is added to a mixture consisting of a powder of hydrogen storage alloy or its H compound, a powder of electroconductivity agent, and a resin binder and the resultant is kneaded to ed turned into slurry. The slurry is applied to a porous sheet and dried, and a dry plate obtained is directly pressurized or subjected to preliminary pressurization. and is impregnated with a solution containing dispersed fibrous plastics, followed by drying process, The dry plate as resultant is subjected to one run or more of pressurization to give it a certain specified thickness, which is followed by baking process. This allows good performance including the resin having trend to be turned fibrous, and the resin is turned fibrous by pressurization so as to increase the hydrophobic property and H gas absorptivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水素吸蔵電極の製造法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hydrogen storage electrode.

【0002】0002

【従来の技術】従来、水素吸蔵電極の製造には、水素吸
蔵合金粉又はその水素化物粉に、導電剤粉とポリフルオ
ロビニリデンやポリエチレンから成る樹脂結着剤粉との
混合物に、CMC等の増粘剤水溶液を加えて混練してス
ラリー化し、このスラリー状物を金網、多孔板などの多
孔シートに塗布、乾燥した後、加圧、焼成する方法が採
用されていた。こゝに使用された樹脂結着剤粉は、その
焼成により溶融させ、合金粉又はその水素化物粉の導電
剤粉との接合並に多孔シートとの接合のために使用され
る。上記の樹脂結着剤は、溶融粘度が低く接合性に優れ
、又耐アルカリ性もあるため、水素吸蔵合金電極の製造
には適している。
[Prior Art] Conventionally, in the production of hydrogen storage electrodes, a hydrogen storage alloy powder or its hydride powder, a mixture of a conductive agent powder and a resin binder powder made of polyfluorovinylidene or polyethylene, and a mixture of CMC, etc. The method used was to add an aqueous thickener solution, knead to form a slurry, apply this slurry to a porous sheet such as a wire mesh or perforated plate, dry it, pressurize it, and fire it. The resin binder powder used here is melted by firing and used for bonding the alloy powder or its hydride powder to the conductive agent powder and to the porous sheet. The above-described resin binder has a low melt viscosity, excellent bonding properties, and alkali resistance, so it is suitable for manufacturing hydrogen storage alloy electrodes.

【0003】このように製造した電極を負極とし、これ
に正極として例えば酸化ニッケル電極と組み合わせて密
閉型ニッケル・水素電池を構成するが、電池内圧の上昇
を防ぐ目的で、充電末期に正極から発生する酸素ガスを
負極で消費させ、且つ負極からの水素ガス発生を防ぐた
めに該負極の容量を正極よりも大きくしたノイマン方式
が採用されている。
The electrode produced in this way is used as a negative electrode, and this is combined with, for example, a nickel oxide electrode as a positive electrode to form a sealed nickel-metal hydride battery. The Neumann method is adopted in which the capacity of the negative electrode is larger than that of the positive electrode in order to consume oxygen gas at the negative electrode and prevent generation of hydrogen gas from the negative electrode.

【0004】然し乍ら、このノイマン方式の上記密閉型
電池の内圧を測定すると、その内圧は、ニッケル・カド
ミウム電池の場合に比べて高く、その内圧ガス成分の分
析によれば酸素と同程度の量の水素が存在することが判
った。これは、水素吸蔵電極の充電反応が起こる電位が
水の電解電位に近くなるために生ずるものである。水素
ガスの発生を減少させるため、負極の容量を更に大きく
すればある程度緩和できるが、電池のエネルギー密度が
それだけ小さくなり好ましくない。
However, when the internal pressure of the Neumann type sealed battery is measured, it is found to be higher than that of a nickel-cadmium battery, and an analysis of the internal pressure gas components reveals that the same amount of oxygen is present. It turns out that hydrogen exists. This occurs because the potential at which the charging reaction of the hydrogen storage electrode occurs is close to the electrolytic potential of water. In order to reduce the generation of hydrogen gas, the problem can be alleviated to some extent by increasing the capacity of the negative electrode, but the energy density of the battery decreases accordingly, which is not preferable.

【0005】一度発生した水素ガスは、負極の表面の疎
水性部分から再吸収されるが、上記の樹脂結着剤で形成
される疎水性部分では、その吸収性能は充分でない。そ
の吸収性部分の形成については、十分繊維化されたポリ
テトラフルオロエチレンの存在は非常に効果があること
が知られているが、これを上記の増粘剤水溶液に混ぜた
ものを上記の混合物と混練してスラリー化し、このスラ
リー状物を多孔シートに塗布することが考えられるが、
そのスラリー状物とした場合の粘度が極めて高くなり、
その塗布が極めて困難となるので、これを塗布、乾燥し
、焼結して水素吸蔵電極を製造することは極めて困難で
ある。
[0005] Hydrogen gas once generated is reabsorbed from the hydrophobic portion on the surface of the negative electrode, but the hydrophobic portion formed from the resin binder described above does not have sufficient absorption performance. Regarding the formation of the absorbent part, it is known that the presence of sufficiently fibrous polytetrafluoroethylene is very effective. It is conceivable to knead it into a slurry and apply this slurry to a porous sheet.
When made into a slurry, the viscosity becomes extremely high,
Since it is extremely difficult to apply it, it is extremely difficult to manufacture a hydrogen storage electrode by applying it, drying it, and sintering it.

【発明が解決しようとする課題】[Problem to be solved by the invention]

【0006】従って、従来製造が困難であったかゝる繊
維化樹脂を容易に混在し得られ、水素ガスの吸収性を向
上した水素吸蔵電極の製造を可能にすることが望ましい
Therefore, it is desirable to be able to easily incorporate such a fibrous resin, which has been difficult to manufacture in the past, and to make it possible to manufacture a hydrogen storage electrode with improved hydrogen gas absorption.

【課題を解決するための手段】[Means to solve the problem]

【0007】本発明は、上記の要望を満足した水素吸蔵
電極の製造法を提供するもので、その構成は、水素吸蔵
合金粉又はその水素化物粉と、導電剤粉と樹脂結着剤粉
との混合物に増粘剤水溶液を添加混練してスラリー化し
、得られたスラリー状物を多孔シートに塗布、乾燥した
後、得られた乾燥板に、直ちに或いは予備加圧後、繊維
化性合成樹脂分散液を含浸し、次でこれを乾燥し、得ら
れた乾燥板に少なくとも1回の加圧を行い、該乾燥板を
所定の厚さとし、次でこれを焼成することを特徴とする
The present invention provides a method for manufacturing a hydrogen storage electrode that satisfies the above-mentioned requirements, and is composed of a hydrogen storage alloy powder or its hydride powder, a conductive agent powder, and a resin binder powder. A thickener aqueous solution is added to the mixture and kneaded to form a slurry, and the resulting slurry is applied to a porous sheet and dried, and then the fibrous synthetic resin is applied to the resulting dry plate immediately or after pre-pressing. It is characterized in that it is impregnated with a dispersion liquid, then dried, the obtained dry plate is pressurized at least once to give the dry plate a predetermined thickness, and then it is fired.

【0008】[0008]

【作用】上記のスラリー状物を多孔シートに塗布、乾燥
して得られた乾燥板に、繊維化性樹脂分散液を含浸、乾
燥して得られた乾燥板に少なくとも一回の加圧を行うこ
とにより、該乾燥板中に繊維化性樹脂は繊維化して混在
されることになる。従って、その所定の厚さに加圧され
、焼成されて得た水素吸蔵電極は該繊維化樹脂により疎
水性が増大し、水素ガスの吸収性が向上する。この場合
の予備加圧は、当初の乾燥板の厚さの約90〜50%の
範囲とすることにより、該乾燥板へ繊維化性樹脂分散液
を円滑、且つ良好に含浸せしめることができる。
[Operation] Apply the above slurry to a porous sheet, dry it, impregnate the resulting dry board with a fibrous resin dispersion, and dry it. Pressurize the dry board at least once. As a result, the fibrous resin becomes fibrous and mixed in the dry plate. Therefore, the hydrophobicity of the hydrogen storage electrode obtained by pressurizing to a predetermined thickness and firing is increased by the fibrous resin, and the absorbability of hydrogen gas is improved. In this case, by setting the pre-pressurization to a range of about 90 to 50% of the original thickness of the dry plate, the dry plate can be smoothly and satisfactorily impregnated with the fibrous resin dispersion.

【0009】[0009]

【実施例】本発明の水素吸蔵電極の製造法の実施の1例
を次に詳述する。市販のLa、Ni、Co、Alを一定
の組成比になるように秤量して混合し、アーク溶解法に
より加熱溶解させた。かくして、1例として、合金組成
がLaNi4.0Co0.7Al0.3になるように選
択し、負極用の水素吸蔵合金を製造した。その合金組成
の固塊を250メッシュ以下の粉末に粉砕し、この水素
吸蔵合金粉に、樹脂結着剤として3wt.%ポリフルオ
ロビニリデン粉と、導電剤として15wt.%のカーボ
ニルニッケルパウダーを添加し十分に混合した。この混
合物に、1wt.%の濃度のカルボキシメチルセルロー
ス水溶液から成る増粘剤水溶液を添加混練しスラリー状
物とした。多孔基板として、焼結式ニッケル・カドミウ
ム電池に用いられると同様の、表面にニッケルメッキが
施された厚さ0.1mmの多孔シートを用い、この多孔
シートに、前記のスラリー状物を塗布し、乾燥した。こ
の乾燥塗布層の厚みは0.9mmであった。次に該乾燥
板を加圧ロールに通すなどにより加圧し所定の厚さに至
らない程度に加圧し、例えば厚さ0.7mmに加圧し、
次で該乾燥板を繊維化性合成樹脂分散液、例えば、10
wt.%の濃度のポリテトラフルオロエチレン分散液に
浸漬して、該乾燥板に該分散液を含浸せしめ、次で乾燥
して得られた乾燥板を加圧ロールに通すなどにより加圧
して所定の厚さの、この例では、0.5mmの厚さの繊
維化ポリテトラフルオロエチレンが均一に混在した乾燥
板が得られ、次でこれを真空中170℃で焼成すること
により、本発明の水素吸蔵合金の電極を得た。
EXAMPLE An example of the method for manufacturing a hydrogen storage electrode of the present invention will be described in detail below. Commercially available La, Ni, Co, and Al were weighed and mixed at a constant composition ratio, and heated and melted using an arc melting method. Thus, as an example, the alloy composition was selected to be LaNi4.0Co0.7Al0.3, and a hydrogen storage alloy for a negative electrode was manufactured. The solid mass of the alloy composition is pulverized into a powder of 250 mesh or less, and 3 wt. % polyfluorovinylidene powder and 15 wt.% as a conductive agent. % of carbonyl nickel powder was added and mixed thoroughly. To this mixture, 1 wt. A thickener aqueous solution consisting of a carboxymethylcellulose aqueous solution having a concentration of 1.5% was added and kneaded to form a slurry. A 0.1 mm thick porous sheet with a nickel plated surface, similar to that used in sintered nickel-cadmium batteries, was used as the porous substrate, and the slurry-like material described above was applied to this porous sheet. , dried. The thickness of this dry coating layer was 0.9 mm. Next, the dry plate is pressed by passing it through a pressure roll, etc., to an extent that does not reach a predetermined thickness, for example, to a thickness of 0.7 mm,
Next, the dry plate is treated with a fiber-forming synthetic resin dispersion, for example, 10%
wt. The dry plate is impregnated with the dispersion by dipping it in a polytetrafluoroethylene dispersion with a concentration of In this example, a dried plate with a uniform mixture of fiberized polytetrafluoroethylene with a thickness of 0.5 mm is obtained, and then this is baked at 170°C in a vacuum to form the hydrogen absorbing material of the present invention. An alloy electrode was obtained.

【0010】この水素吸蔵電極を負極とし、正極に公知
のペースト式ニッケル極を用い、電解液として7N  
KOH水溶液を用いて正極容量規制の単3サイズ300
mAhの密閉型電池を製造した。
This hydrogen storage electrode was used as a negative electrode, a known paste type nickel electrode was used as a positive electrode, and 7N was used as an electrolyte.
AA size 300 with positive electrode capacity regulation using KOH aqueous solution
A mAh sealed battery was manufactured.

【0011】比較のため、前記スラリー状物を0.1m
m厚さの同材の多孔シートに塗布、乾燥して成る乾燥板
を、前記のポリテトラフルオロエチレン分散液の含浸処
理を行わないで、直ちに加圧ロールで0.5mmの厚さ
に加圧し、次で同様に焼成して従来の水素吸蔵電極を製
造し、これを負極とし、上記と同様にして従来の密閉電
池を製造した。
[0011] For comparison, the slurry was
A dry plate obtained by coating and drying a porous sheet of the same material with a thickness of Next, a conventional hydrogen storage electrode was manufactured by firing in the same manner, and this was used as a negative electrode, and a conventional sealed battery was manufactured in the same manner as above.

【0012】これらの電池に、圧力センサーを取り付け
た後、過充電試験を行い、内圧とガス組成を比較した。 過充電試験の条件は、1.0Cの電流で5時間(500
%)充電を行った。この試験の結果、上記の本発明の電
極を組み込んだ電池の内圧は約5Kgf/cm2で、こ
の95%以上が酸素ガスであった。これに対し、上記の
比較電極を組み込んだ電池では、その内圧は約10Kg
f/cm2であり、この約50%が水素ガスであった。 これから明らかなように、本発明の電極は、電池内に発
生した水素ガスを良好に吸収でき、その内圧を著しく低
下できる効果をもたらす。
After a pressure sensor was attached to these batteries, an overcharge test was conducted to compare the internal pressure and gas composition. The conditions for the overcharge test were 1.0C current for 5 hours (500
%) Charged. As a result of this test, the internal pressure of the battery incorporating the electrode of the present invention was approximately 5 Kgf/cm2, and more than 95% of this was oxygen gas. On the other hand, in a battery incorporating the above reference electrode, the internal pressure is approximately 10 kg.
f/cm2, and about 50% of this was hydrogen gas. As is clear from this, the electrode of the present invention can satisfactorily absorb the hydrogen gas generated within the battery, and has the effect of significantly reducing the internal pressure.

【0013】尚、上記のように、該乾燥板に該分散液を
浸漬して含浸処理を行うに当たり、予め加圧を行う理由
は、該乾燥板を該分散液に浸漬したとき、該乾燥板のス
ラリー塗層の一部が流出することを防止するためである
が、浸漬による含浸処理に代え、吹き付けによる含浸処
埋を行う場合は、該乾燥板を前記のように予め加圧する
必要はなく、直ちに、該乾燥板に吹き付けにより含浸処
埋を行うことができ、該乾燥板に良好な含浸処理が遂行
できる。従って、前記の予備加圧は必ずしも必要がない
。該予備加圧の加圧度は、検討の結果、浸漬含浸の際の
スラリー流失防止には、乾燥板の厚さの約90%の厚さ
に(即ち、圧縮度約10%)加圧することを要する一方
、厚さの約50%を越えた厚さに加圧するときは、乾燥
板の気孔率が低下し、該分散液の含浸が良好に行うこと
ができなくなることが判った。従って、その加圧度は、
乾燥板の厚さの約90〜50%程度の範囲にとゞめるこ
とが好ましい。
[0013] As mentioned above, the reason why pressure is applied in advance when the dry plate is immersed in the dispersion for impregnation treatment is that when the dry plate is immersed in the dispersion, the dry plate This is to prevent part of the slurry coating layer from flowing out, but if impregnation treatment is performed by spraying instead of impregnation treatment by dipping, it is not necessary to pressurize the dry plate in advance as described above. Immediately, the dry plate can be impregnated by spraying, and the dry plate can be impregnated with good quality. Therefore, the pre-pressurization described above is not necessarily necessary. As a result of the study, the degree of pre-pressurization was determined to be approximately 90% of the thickness of the dry plate (that is, the degree of compression is approximately 10%) in order to prevent the slurry from flowing out during immersion impregnation. On the other hand, it has been found that when pressure is applied to a thickness exceeding about 50% of the thickness, the porosity of the dry plate decreases and impregnation with the dispersion liquid cannot be performed satisfactorily. Therefore, the degree of pressurization is
It is preferable to limit the thickness to approximately 90 to 50% of the thickness of the dry plate.

【0014】又、本発明の製造法において、該分散液を
含浸処理した後、乾燥して得た乾燥板を上記の例では1
度の加圧で所定の厚さまで加圧したが、数回に分けて加
圧するようにしてもよい。例えば、前記のように、予備
加圧された厚さ0.7mmの該分散液を含浸、乾燥して
成る乾燥板を厚さ0.6mmに加圧し、次でこれを所定
の厚さ0.5mmに加圧するように、2回に分けて加圧
する。かゝる段階的に加圧することにより、乾燥板中に
混入したポリテトラフルオロエチレンの更に良好な繊維
化と繊維の分散化を行うことができる。尚、水素吸蔵合
金粉を原料とする代りに、その水素化物粉を使用するこ
とができることは言うまでもない。
In the production method of the present invention, in the above example, the dried plate obtained by impregnating the dispersion and drying the dispersion is
Although the pressure was applied once to a predetermined thickness, the pressure may be applied several times. For example, as described above, a dry plate obtained by impregnating and drying the pre-pressurized dispersion to a thickness of 0.7 mm is pressurized to a thickness of 0.6 mm, and then this is heated to a predetermined thickness of 0.7 mm. Apply pressure in two batches so that the pressure reaches 5 mm. By applying pressure in stages, the polytetrafluoroethylene mixed in the drying plate can be more effectively fiberized and the fibers can be dispersed. It goes without saying that instead of using hydrogen storage alloy powder as a raw material, its hydride powder can be used.

【0015】[0015]

【発明の効果】このように本発明によるときは、水素吸
蔵合金粉又は水素化物粉と導電剤粉と樹脂結着剤粉との
混合物に増粘剤水溶液を添加混練して調製したスラリー
状物を、多孔シートに塗布、乾燥して得た乾燥板に、直
ちに、或いはこれに加圧処理を施した後、繊維化性合成
樹脂分散液を含浸せしめたので、繊維化性樹脂を良好に
混入することができ、次にその乾燥板を少なくとも1回
加圧するようにしたので、該加圧により該乾燥板中に混
在の繊維化性樹脂を繊維化することができ、次で焼成処
理により得られた水素吸蔵合金電極は、該疎水性繊維が
混在しているので、その疎水性と水素ガス吸収性が増大
し、これを負極として組み込んだ密閉蓄電池内の水素ガ
スの吸収を増大してガス圧の減少をもたらす等の効果を
有する。又、予備加圧を行う場合は、その加圧度を約4
0〜50%の範囲にとゞめることにより、該分散液の浸
漬含浸によるスラリーの流失がなく、又含浸を行うこと
ができる効果を有する。
Effects of the Invention As described above, according to the present invention, a slurry-like product prepared by adding and kneading a thickener aqueous solution to a mixture of hydrogen storage alloy powder or hydride powder, conductive agent powder, and resin binder powder was applied to a porous sheet and dried, and the resulting dry plate was impregnated with the fiber-forming synthetic resin dispersion immediately or after being subjected to pressure treatment, so that the fiber-forming resin was well mixed in. Then, the drying plate is pressurized at least once, so that the fibrous resin mixed in the drying plate can be turned into fibers by the pressurization, and then the fiber-forming resin mixed in the drying plate can be fiberized. Since the hydrogen storage alloy electrode is mixed with the hydrophobic fibers, its hydrophobicity and hydrogen gas absorption properties are increased, which increases the absorption of hydrogen gas in a sealed storage battery that incorporates this as a negative electrode. It has effects such as reducing pressure. In addition, when performing preliminary pressurization, the degree of pressurization should be approximately 4
By keeping the amount in the range of 0 to 50%, there is an effect that the slurry is not washed away when the dispersion is immersed and impregnated, and the impregnation can be carried out.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  水素吸蔵合金粉又はその水素化物粉と
、導電剤粉と樹脂結着剤粉との混合物に増粘剤水溶液を
添加混練してスラリー化し、得られたスラリー状物を多
孔シートに塗布、乾燥した後、得られた乾燥板に、直ち
に或いは予備加圧後、繊維化性合成樹脂分散液を含浸し
、次でこれを乾燥し、得られた乾燥板に少なくとも1回
の加圧を行い、該乾燥板を所定の厚さとし、次でこれを
焼成することを特徴とする水素吸蔵電極の製造法。
Claim 1: A thickener aqueous solution is added to a mixture of a hydrogen storage alloy powder or its hydride powder, a conductive agent powder, and a resin binder powder, and the mixture is kneaded to form a slurry, and the resulting slurry is used as a porous sheet. Immediately or after pre-pressurization, the obtained dry plate is impregnated with a fiber-forming synthetic resin dispersion, which is then dried, and the obtained dry plate is applied at least once. 1. A method for manufacturing a hydrogen storage electrode, which comprises applying pressure to make the dry plate a predetermined thickness, and then firing it.
【請求項2】  該予備加圧は、当初の乾燥板の厚さの
約90%〜50%の範囲である請求項1の水素吸蔵電極
の製造法。
2. The method of manufacturing a hydrogen storage electrode according to claim 1, wherein the pre-pressurization ranges from about 90% to 50% of the thickness of the original dry plate.
JP3098340A 1991-01-31 1991-01-31 Manufacture of hydrogen storage electrode Pending JPH04249067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098340A JPH04249067A (en) 1991-01-31 1991-01-31 Manufacture of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098340A JPH04249067A (en) 1991-01-31 1991-01-31 Manufacture of hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH04249067A true JPH04249067A (en) 1992-09-04

Family

ID=14217176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098340A Pending JPH04249067A (en) 1991-01-31 1991-01-31 Manufacture of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH04249067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044577A1 (en) * 1997-04-02 1998-10-08 Sanyo Electric Co., Ltd. Sintered hydrogen storage alloy electrode and nickel-hydrogen storage battery
JPH1131512A (en) * 1997-07-08 1999-02-02 Sanyo Electric Co Ltd Fluororesin dispersed solution, manufacture thereof and manufacture of hydrogen storage alloy electrode using the dispersed solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044577A1 (en) * 1997-04-02 1998-10-08 Sanyo Electric Co., Ltd. Sintered hydrogen storage alloy electrode and nickel-hydrogen storage battery
US6287725B1 (en) 1997-04-02 2001-09-11 Sanyo Electric Co., Ltd. Sintered hydrogen storage alloy electrode and nickel-hydrogen storage battery
JPH1131512A (en) * 1997-07-08 1999-02-02 Sanyo Electric Co Ltd Fluororesin dispersed solution, manufacture thereof and manufacture of hydrogen storage alloy electrode using the dispersed solution

Similar Documents

Publication Publication Date Title
US5968685A (en) Battery electrode substrate and process for producing the same
US4216045A (en) Process for preparation of electrode for alkaline battery
KR19980069813A (en) Non-Sintered Nickel Electrode for Alkaline Storage Battery
JPS638584B2 (en)
US5244758A (en) Positive nickel electrode
EP0986121B1 (en) Electrode for non-aqueous electrolyte battery
JPH04249067A (en) Manufacture of hydrogen storage electrode
CN107634183B (en) Method for preparing sulfur battery anode by using protein
US4648902A (en) Reinforced metal substrate
EP0032291A1 (en) Improvements in method of manufacture of sintered nickel plaque electrode material
KR102298424B1 (en) Electric double layer capacitor
RU2229185C1 (en) Method for manufacturing alkali battery plate
Johnson et al. High surface area, low-weight composite nickel fiber electrodes
JP2942637B2 (en) Method for producing paste-type nickel electrode
JPS5832745B2 (en) Manufacturing method of cadmium negative electrode plate for alkaline storage batteries
JPH02236957A (en) Manufacture of hydrogen storage electrode
JPS6134861A (en) Manufacture of sintered substrate for alkaline storage battery
JP2983066B2 (en) Method for producing paste-type nickel electrode
JPH04262367A (en) Hydrogen storage electrode
JPS60151967A (en) Nonsintered nickel electrode
JP2918559B2 (en) Manufacturing method of hydrogen storage electrode
CN109786694A (en) A kind of preparation method of lithium battery hard charcoal negative electrode material
JP2001307734A (en) Powder of raw material for production of positive electrode of alkaline secondary battery
JPH0282455A (en) Impalpable powder member-porous member for gas diffusion electrode construction and water repellent treatment therefor
JPS60211766A (en) Paste type negative electrode plate for alkaline storage battery