JPH0424903B2 - - Google Patents

Info

Publication number
JPH0424903B2
JPH0424903B2 JP57207020A JP20702082A JPH0424903B2 JP H0424903 B2 JPH0424903 B2 JP H0424903B2 JP 57207020 A JP57207020 A JP 57207020A JP 20702082 A JP20702082 A JP 20702082A JP H0424903 B2 JPH0424903 B2 JP H0424903B2
Authority
JP
Japan
Prior art keywords
phase
output
obtains
circuit
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57207020A
Other languages
Japanese (ja)
Other versions
JPS5997259A (en
Inventor
Junji Namiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57207020A priority Critical patent/JPS5997259A/en
Publication of JPS5997259A publication Critical patent/JPS5997259A/en
Publication of JPH0424903B2 publication Critical patent/JPH0424903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2275Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 本発明は位相変調信号等の復調器に関る。位相
変調信号の復調には特性の優れた同期検波が専ら
用いられているが、検波の際、送信搬送波と同一
の参照搬送波が必要である。この為、同参照搬送
波が受信側で再生される様に情報を送信する前に
送信側から送信搬送波だけを一定期間送信するの
が普通である。そして、その後、受信側で参照搬
送波が準備された後、はじめて位相変調信号が送
信されることになる。送信側が送信搬送波を送出
する時間は全く情報伝送から見れば、無駄時間で
あるので、これは短かい程良いということにな
る。そこで受信側の参照搬送波発生器(搬送波再
生回路)は、かなり広い帯域の同期系を用意し比
較的短いアクジシヨン時間で、搬送波同期を完了
させることになり、帯域の広さは情報受信時には
入力雑音の影響を強く受ける結果を招き、サイク
ル・スリツプの多発に見まわれることになる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a demodulator for phase modulated signals and the like. Although synchronous detection with excellent characteristics is exclusively used for demodulating phase modulated signals, a reference carrier wave that is the same as the transmission carrier wave is required during detection. For this reason, it is common for the transmitting side to transmit only the transmission carrier wave for a certain period of time before transmitting information so that the same reference carrier wave can be reproduced on the receiving side. Then, after a reference carrier wave is prepared on the receiving side, the phase modulation signal is transmitted for the first time. The time it takes for the transmitting side to send out a transmission carrier wave is completely wasted time from the perspective of information transmission, so the shorter it is, the better. Therefore, the reference carrier generator (carrier regeneration circuit) on the receiving side prepares a synchronization system with a fairly wide band and completes carrier synchronization in a relatively short acquisition time. The result is that the engine is strongly affected by this, resulting in frequent cycle slips.

本発明の目的は、無駄情報と言うべき送信側か
らの搬送波信号を受けることなしに、しかも入力
雑音の影響も受けにくい狭帯域の位相同期系を用
いて、主に位相変調信号を復調しようとするもの
である。
The purpose of the present invention is to mainly demodulate phase modulated signals using a narrowband phase synchronization system that is not susceptible to input noise and without receiving a carrier wave signal from the transmitting side, which can be called useless information. It is something to do.

この発明は準同期検波後のk相位相変調波をシ
ンボルレートでサンプルし、X1からXNまでN個
のサンプル値を時間t1からtNまでの間で得るサン
プル回路と、exp{−j(ωoti+θo)}を出力しωo
とθoとが可変の参照信号発振器と、該参照信号
発振器出力と前記サンプル回路出力との位相差の
k倍値を得る誤差検出器と、前記誤差検出器出力
Aiとi=1〜Nまでの累積値Aを得る加算器と
前記Aiと前記tiとの積のi=1〜Nまでの和Bを
得る積和回路と、前記サンプル値Xiの前記参照
信号発振器出力に対する初期位相誤差推定値θ〜o
と位相回転速度推定値Δ〜ωとを前記A及びBの定
数係数の線形結合により算出する位相差推定回路
と、前記参照信号発振器の前記ωoとθoとを各々
ωo+Δ〜ωとθo+θ〜oとに変更し、該発振器出力
の複素共役値を前記サンプル値Xiに掛ける掛算
器とを備え、該掛算器出力より搬送波位相同期の
とれた復調信号を得ることを特徴とする位相変調
復調器である。
This invention includes a sampling circuit that samples a k-phase phase modulated wave after quasi-synchronous detection at a symbol rate and obtains N sample values from X 1 to X N from time t 1 to t N ; j(ωoti+θo)} and output ωo
and θo are variable, an error detector that obtains a value k times the phase difference between the output of the reference signal oscillator and the output of the sample circuit, and an output of the error detector.
Ai and an adder for obtaining a cumulative value A from i=1 to N; a product-sum circuit for obtaining a sum B from the product of A i and t i for i=1 to N; Initial phase error estimate θ~o for reference signal oscillator output
and a phase difference estimating circuit that calculates the phase rotation speed estimated value Δ~ω by a linear combination of the constant coefficients of A and B, and the ωo and θo of the reference signal oscillator are calculated as ωo+Δ~ω and θo+θ~o, respectively. and a multiplier that multiplies the sample value Xi by the complex conjugate value of the oscillator output, and obtains a demodulated signal with carrier phase synchronization from the multiplier output. .

次に本発明に付いて図面を参照して詳細に説明
する。第1図はO−π位相の2相変調波を送信搬
送波とΔωrad/s異る受信側参照搬送波で乗積
検波を行つた時の復調信号を示している。同参照
搬送波は送信搬送波とθoなる位相差が存在する
ものとする。この2相変調波を正しく復調する為
にはΔωとθoとを正確に推定し、図に示された復
調信号に対し、−(Δωt+θo)なる位相補正を行う
必要がある。第1図の1から6はシンボル送信周
期T(秒)間隔で復調信号をサンプルしたもので
あるので第1図1と2との位相差θDが、そのまま
ΔωTとなつている。従つてΔωはθD/Tとして求
められる。2と3との位相差もO−π変調が掛つ
ていない場合には、θDと等しくなる所であるが、
この場合には(θD+π)となつている。同様に3
と4,4と5,5と6も変調による位相変化が重
畳されている。各サンプル間の変調による位相変
化は、必ず正確に±πである。そこで連続するサ
ンプル間の位相変化の内、±πの変化は変調によ
るものとして減じて考えることにより、本来の
ΔωTが観測できる。別の考え方としてk位相変
調信号に対しては変調による位相変化は2π/k
ラジアンであるので、同信号と受信側参照キヤリ
ア信号の両方をk乗して位相比較する方法があ
る。この場合位相誤差はk倍になるが、変調によ
る2π/kラジアン変化は2πの整数倍変化となり、
実質的に消滅する。この考えに従えば位相変調信
号をk乗した信号から受信側参照信号fi
ej(0t+0)と位相変調波との準同期検波後の位相変
調波yiとの間の周波数及び位相差Δωとθ0が推定
できる。これらの推定値を各々Δ〜ω,θ〜oと書
き、fiをfi=ej{ωo+Δ〜ω)t+(θo+θ〜o)}
と変
更し、このΔωとθ0を先のΔωとθ0とに等しくする
ことによつて入力信号搬送波が再生できる。
Next, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows a demodulated signal when product detection is performed on a two-phase modulated wave with an O-π phase using a receiving side reference carrier wave different from the transmitting carrier wave by Δω rad/s. It is assumed that the reference carrier wave has a phase difference of θo from the transmission carrier wave. In order to correctly demodulate this two-phase modulated wave, it is necessary to accurately estimate Δω and θo, and perform a phase correction of −(Δωt+θo) on the demodulated signal shown in the figure. Since 1 to 6 in FIG. 1 are demodulated signals sampled at symbol transmission intervals T (seconds), the phase difference θ D between 1 and 2 in FIG. 1 is directly ΔωT. Therefore, Δω is obtained as θ D /T. If the O-π modulation is not applied, the phase difference between 2 and 3 would be equal to θ D , but
In this case, it is (θ D +π). Similarly 3
and 4, 4 and 5, and 5 and 6 are also superimposed with phase changes due to modulation. The phase change due to modulation between each sample is always exactly ±π. Therefore, by subtracting the ±π change among the phase changes between successive samples as being due to modulation, the original ΔωT can be observed. Another way of thinking is that for a k-phase modulated signal, the phase change due to modulation is 2π/k
Since the signal is in radians, there is a method of raising both the same signal and the receiving side reference carrier signal to the k power and comparing the phases. In this case, the phase error will be k times, but the 2π/k radian change due to modulation will be an integer multiple of 2π,
Virtually disappear. According to this idea, the receiving side reference signal f i =
The frequency and phase differences Δω and θ 0 between e j(0t+0) and the phase modulated wave y i after quasi-synchronous detection with the phase modulated wave can be estimated. These estimated values are written as Δ~ω and θ~o, respectively, and fi is f i =ej {ωo+Δ~ω)t+(θo+θ~o)}
The input signal carrier wave can be reproduced by changing Δω and θ 0 to be equal to the previous Δω and θ 0 .

N個のyiサンプル系列から(Δω−Δ〜ω)と
(θo−θ〜o)を零にする方法の一つとして最小2
乗推定法がある。この方法は入力雑音によつて外
乱を受けたyi時系列とfiとの各時刻tiでの誤差の
2乗和を最少にする様にΔω、θoを決定するもの
である。各時刻ti(i=1〜N)で観測される位
相差をAi(i=1〜N)とする。N個の観測値を
Pn(t)なる関数で近似する問題を考える。例え
ば、N個の観測値Ai=(i=1〜N)のプロツト
に対し2乗誤差が最少となる直線θ(t)=Δ〜ωt
+θ〜pが推定できれば、このθ(t)が2乗誤差の
意味で最適な再生キヤリア信号と言うことにな
る。そこで、このような直線(直線でなくても良
い)の推定を考える。
One way to make (Δω-Δ~ω) and (θo-θ~o) zero from N yi sample series is to
There is a multiplicative estimation method. This method determines Δω and θo so as to minimize the sum of squares of errors at each time ti between the yi time series and fi that are disturbed by input noise. Let A i (i=1 to N) be the phase difference observed at each time t i (i=1 to N). N observed values
Consider a problem that is approximated by a function P n (t). For example, for a plot of N observed values A i = (i = 1 to N), the straight line θ(t) = Δ to ωt that minimizes the squared error
If +θ~ p can be estimated, this θ(t) can be said to be the optimal reproduced carrier signal in terms of squared error. Therefore, we will consider estimating such a straight line (which does not have to be a straight line).

一般化して、N個の観測値をPn(t)なる関数
で近似できるとする。
Generalizing, suppose that N observed values can be approximated by a function P n (t).

Pm(t)=a0・t0+a1・t1+a2・t2+……+an・tm
(1) ここで、最少2乗推定法の原則から、Ni=1 ρi2Ni=1 [pn(ti)−Ai2(ρi:期待値に対する誤差)を
最小にするような、a0,a1,……anを見出せばよ
い。すなわち、 ρ1δ〓1/δas+ρ2δ〓2/δas+……ρoδ〓2/δas
=0 (S=0,1,2,……m)(2) なるm+1個の条件を満足するa0,a1,……an
見出せばよい。(1)式の近似式は、観測値Aiに対し
て誤差ρiを含み以下のように表わせる。
Pm(t)=a 0・t 0 +a 1・t 1 +a 2・t 2 +……+a n・t m
(1) Here, from the principle of least squares estimation, Ni=1 ρi 2 = Ni=1 [p n (t i )−A i ] 2 (ρi: error with respect to expected value) is minimized. All you have to do is find a 0 , a 1 , ...an such that . That is, ρ 1 δ〓 1 / δa s + ρ 2 δ〓 2 / δa s +……ρ o δ〓 2 / δa s
=0 (S=0,1,2,...m) (2) It is sufficient to find a 0 , a 1 , ... an that satisfy m+1 conditions. The approximate expression (1) includes an error ρi for the observed value A i and can be expressed as follows.

a0・t0+a1・t1 i+a2・t2 i+……+an・tm i=Ai-i

=1〜N) (3) これより −δ〓i/δa0=t0 i,−δ〓i/δa1=t1 i,……,−
δ〓i/δan=tm i ゆえに(2)式の条件をS=0,1,2……mにつ
いてたてればNi=1 ρit0 i=0 Ni=1 ρit1 i=0,……,Ni=1 ρitm i=0 (4) を得る。(3)式、(4)式より を得る。通常の復調ではΔωとθ0さえ求めれば良
いので(1)式のa0,a1の各々θ0とΔωの推定値θ〜0
Δ〜ωと考えると(5)式は以下の様な連立方程式とな
る。
a 0・t 0 +a 1・t 1 i +a 2・t 2 i +……+a n・t m i =A i-i (
i
=1~N) (3) From this, −δ〓 i /δa 0 =t 0 i , −δ〓 i /δa 1 =t 1 i ,……, −
δ〓 i / δa n =t m i Therefore, if we set the condition of equation (2) for S=0, 1, 2...m, we get Ni=1 ρit 0 i =0 Ni=1 ρit 1 i = 0,..., Ni=1 ρit m i =0 (4) is obtained. From equations (3) and (4), get. In normal demodulation, it is only necessary to find Δω and θ 0 , so the estimated values of θ 0 and Δω of a 0 and a 1 in equation (1) are θ~ 0 ,
Considering Δ~ω, equation (5) becomes the following simultaneous equations.

上式Aiは送受間の搬送波の位相差を表わしてお
り、受信側参照信号をfiとし、位相変調波とfi
の準同期検波後の位相変調波をyiとすると、 Ai=In(fi・yi*)となる。
The above formula A i represents the phase difference between the carrier waves between transmitting and receiving, and if the receiving side reference signal is f i and the phase modulated wave after quasi-synchronous detection of the phase modulated wave and f i is y i , then A i =I n (f i・yi * ).

ここで、前記したように、位相変調波をk乗し
た信号から、K倍された位相誤差を求めているた
め、(6)は次のようになる。
Here, as described above, since the phase error multiplied by K is obtained from the signal obtained by raising the phase modulated wave to the k power, (6) becomes as follows.

ただし、fikとyi*k(yiの複素共役)は、元の信
号を各々k乗してあるので、δθoとδΔωともに本
来の値のk倍の値となつている。
However, since fi k and yi *k (complex conjugate of yi) are the original signals raised to the k power, both δθo and δΔω have values k times their original values.

そこで、新しいθoとΔωとは、各々以下のよう
にして考えられる。
Therefore, new θo and Δω can be considered as follows.

なお、ここで上(1)式右辺のIm(fik・yi*k)は、
fikとyikとの位相差の一次近似を示しており、こ
の表現の他にtan-1(fik・yi*k)であつてもよい。
Note that Im (fi k・yi *k ) on the right side of equation (1) above is
It shows a first-order approximation of the phase difference between fi k and yi k , and in addition to this expression, tan -1 (fi k · yi *k ) may be used.

一般的にはfiとyiとの位相差を示す項であれば
よい。
Generally, any term that indicates the phase difference between fi and yi is sufficient.

上(1)式右辺、左側の行列は毎回同一周期で入力
信号をサンプルするとすると定数行列となる。よ
つて、δθo、δΔωを求めるのに必要な量は、右辺
右側の行列のみとなる。
The matrices on the right and left sides of equation (1) above will be constant matrices if the input signal is sampled at the same period every time. Therefore, the quantity required to find δθo and δΔω is only the matrix on the right side of the right side.

これは入力信号の複素共役のk乗信号yi*kと受
信参照搬送波信号のk乗信号fikとの積和とtiと
yi*kfikとの積和である。
This is the product sum of the complex conjugate of the input signal k-th power signal yi *k and the k-th power signal fi k of the received reference carrier signal, and ti.
It is the sum of products with yi *k fi k .

(7)(8)式より正しいθ〜0とΔ〜ωとが求まれば、各
サンプル値Xiは、 Xi・ej(−θ〜0−Δ〜ω(ti−t1)) とすることによつて、正しい位相で復調されるこ
とになる。
If the correct θ~ 0 and Δ~ω are found from equations (7) and (8), each sample value X i is set as X i・ej (−θ~0−Δ~ω(ti−t1)) This results in demodulation with the correct phase.

第2図は以上の原理を4相位相変調信号を対象
に具体化したものである。
FIG. 2 embodies the above principle for a four-phase phase modulation signal.

入力端子100に入る信号はk位相変調された
信号を、理想的にはその搬送波と等しい周波数、
位相を有する受信側の参照信号で剰積検波して得
られる複素数信号である。実際には上記周波数、
位相は送信側搬送波のそれとは異なるので、上記
剰積検波した信号は送受間の周波数差、位相の違
いにより複素平面上を回転する。この様な状況を
示したのが第1図である。この様な検波方法を準
同期検波方式と呼んでいる。
The signal entering the input terminal 100 is a k-phase modulated signal, ideally with a frequency equal to that of its carrier.
This is a complex signal obtained by performing remainder product detection using a reference signal on the receiving side that has a phase. Actually, the above frequency,
Since the phase is different from that of the carrier wave on the transmitting side, the signal subjected to the residual product detection rotates on the complex plane due to the difference in frequency and phase between the transmitting and receiving signals. Figure 1 shows this situation. This type of detection method is called a quasi-synchronous detection method.

第2図中1は、入力端子100からのk位相変
調波をそのデータのアイ(目)が最も良く開いた
タイミングで、シンボル・ルートサンプリングを
行い、X1からXNまでのサンプル値を時間t1から
tNまでの間で得、記憶するサンプル回路、2は受
信側参照波発振器でfi=ej(ot+o)を出力し、ωoと
θoが可変である。3はサンプル回路出力の虚数
部の極性を反転する複素共役回路30と、その出
力を4乗する4重回路31、同じく受信側参照波
発振器出力を4乗する4乗回路32、これら2つ
の4乗回路出力の積をとり、その虚数部のみを出
力する乗算回路33とから成る誤差検出器で、
fi4・yi*4を出力する。4はNi=1 fi4・yi*4を得る加算
器、5はNi=1 ti・fi4・yi*4を得る為に掛算器50と
加算器51とから成る積和回路。6は先の(7),(8)
式を計算してΔωとθoとの推定値Δ〜ω,θ〜oを導
出する位相差推定回路。
1 in Fig. 2 is the symbol root sampling of the k-phase modulated wave from the input terminal 100 at the timing when the data eye is most open, and the sample values from X 1 to X N are sampled over time. from t 1
A sample circuit 2 is a reference wave oscillator on the receiving side that obtains and stores data up to t N , and outputs fi=e j(ot+o) , and ωo and θo are variable. 3 is a complex conjugate circuit 30 that inverts the polarity of the imaginary part of the sample circuit output, a quadruple circuit 31 that raises the output to the 4th power, and a 4th power circuit 32 that also raises the output of the receiving side reference wave oscillator to the 4th power; An error detector consisting of a multiplication circuit 33 that takes the product of the multiplication circuit outputs and outputs only the imaginary part thereof.
Output fi 4・yi *4 . 4 is an adder to obtain Ni=1 fi 4・yi *4 , and 5 is a product-sum circuit consisting of a multiplier 50 and an adder 51 to obtain Ni=1 ti・fi 4・yi *4 . . 6 is the previous (7), (8)
A phase difference estimating circuit that calculates equations and derives estimated values Δ~ω and θ~o of Δω and θo.

7は前記サンプル値Xiに先のtiの複素共役値
fi*2を掛ける為の複素共役回路70と、4相位相
変調波の信号点を±π/4,±3/4πに移動させる為
の π/4位相回転を付与する乗算器71、サンプル
値Xiにfi*・ej/4を掛けて復調信号を得る為の
乗算器72とから成る掛算器である。復調出力は
出力端子101より出力される。
7 is the complex conjugate value of ti prior to the sample value X i
A complex conjugate circuit 70 for multiplying by fi *2 , a multiplier 71 for imparting π/4 phase rotation for moving the signal point of the four-phase modulated wave to ±π/4, ±3/4π, and a sample value. This multiplier includes a multiplier 72 for multiplying Xi by fi * ·e j/4 to obtain a demodulated signal. The demodulated output is output from the output terminal 101.

本実施例に於いては、Nデータが単独に受信さ
れた場合に付いて説明した。音声通信等の場合、
データは連続的に受信される。この様な場合には
サンプル回路1が別に2つ必要である。すなわち
最初のNデータを受信し、処理している間に受信
される次のNデータを記憶しておく為のものであ
る。3番目のNデータは、最初のNデータを受信
処理したサンプル回路が使用済みになつているの
で、再びこれを利用することができる。以下同様
に連続データは2つのサンプル回路があれば、次
次に処理できる。
In this embodiment, the case where N data is received individually has been described. In the case of voice communication, etc.
Data is received continuously. In such a case, two additional sample circuits 1 are required. That is, it is for storing the next N data received while the first N data are being received and processed. The third N data can be used again because the sample circuit that received and processed the first N data is already used. Similarly, continuous data can be processed one after another as long as there are two sample circuits.

この時、新しいNデータに対する参照信号発振
器のωoとθoは、前回のNデータより得られた既
修正値(ωo+Δ〜ω),(θo+θ〜o)を用いること
により次のΔ〜ω,θ〜oの推進がより正確なものに
なる。
At this time, ωo and θo of the reference signal oscillator for the new N data can be determined by using the corrected values (ωo+Δ~ω) and (θo+θ~o) obtained from the previous N data, so that the next Δ~ω, θ~ The promotion of o becomes more accurate.

なお、本実施例ではθoとΔωの推定だけを行つ
たが、Nが大きくなるに従つて2乗の項、すなわ
ちej〓〓o2の項も同期精度に影響してくる。この場
合には第2図の実施例の2の積和回路の他に
(Σt2 i・fk i・y*k i)を求める。
In this embodiment, only θo and Δω were estimated, but as N becomes larger, the square term, that is, the term e j 〓〓 o2 also influences the synchronization accuracy. In this case, in addition to the product-sum circuit 2 in the embodiment shown in FIG. 2, (Σt 2 i ·f k i ·y *k i ) is calculated.

第3の積和回路を追加することにより、 よりΔωaが求められる。この場合も右辺、左行
列は定数行列である。
By adding the third product-sum circuit, From this, Δωa can be found. In this case as well, the right-hand side and left matrix are constant matrices.

以上の様に本発明によれば同期用の前置信号を
含まないバースト状のデイジタル信号を受けて搬
送波位相同期のとれた変調信号を供給する復調器
が提供できる。また、同復調器は入力信号の雑高
レベルが比較的高い場合においても安定した動作
をすることも特徴の一つである。
As described above, according to the present invention, it is possible to provide a demodulator that receives a burst digital signal that does not include a synchronizing pre-signal and supplies a modulated signal that is synchronized with the carrier phase. Another feature of the demodulator is that it operates stably even when the noise level of the input signal is relatively high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2相PSKの送信搬送波の周波数ずれ
による位相回転の様子を説明する為の図。第2図
は、本発明の一実施例のブロツク図を示す図。 図中、1……サンプル回路、2……参照信号発
振器、3……誤差検出器、4……加算器、5……
積和回路、6……位相差推定回路、7……掛算
器、を各々示す。
FIG. 1 is a diagram for explaining the state of phase rotation due to a frequency shift of a transmission carrier wave in two-phase PSK. FIG. 2 is a diagram showing a block diagram of an embodiment of the present invention. In the figure, 1... sample circuit, 2... reference signal oscillator, 3... error detector, 4... adder, 5...
A product-sum circuit, 6...a phase difference estimation circuit, and 7...a multiplier are shown, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 準同期検波後のk位相変調波をシンボルレー
トでサンプルし、X1からXNまでN個のサンプル
値を時間t1からtNまでの間で得るサンプル回路と
exp(j(ω0ti+θ0)を出力し、該ω0とθ0とが可変
の参照信号発振器と、該参照信号発振器出力と前
記サンプル回路出力の位相差のk倍値を得る誤差
検出器と前記誤差検出器出力Aiのi=1〜Nまで
の累積値Aを得る加算器と前記Aiと前記tiとの積
のi=1〜Nまでの和Bを得る積和回路と前記サ
ンプル値Xiの前記参照信号発振器出力に対する初
期位相誤差推定値θ〜0と位相回転速度推定値Δ〜ω
とを前記A及びBの定数係数の線形結合により算
出する位相差推定回路と前記参照信号発振器の前
記ω0とθ0とを各々ω0+Δ〜ωとθ0+θ〜0とに変更

該発振器出力の複素共役値を前記サンプルXiに掛
ける掛算器とを備え、該掛算器出力より搬送波位
相同期のとれた復調信号を得ることを特徴とする
位相変調復調器。
1 A sampling circuit that samples the k-phase modulated wave after quasi-synchronous detection at the symbol rate and obtains N sample values from X 1 to X N between time t 1 and t N.
a reference signal oscillator that outputs exp(j(ω 0 ti + θ 0 ) and whose ω 0 and θ 0 are variable; and an error detector that obtains a value k times the phase difference between the output of the reference signal oscillator and the output of the sample circuit. an adder that obtains a cumulative value A of the error detector output A i from i=1 to N; and a product-sum circuit that obtains a sum B of the product of the A i and the t i from i=1 to N. The initial phase error estimate θ~ 0 and the phase rotation speed estimate Δ~ω of the sample value X i with respect to the reference signal oscillator output
and a phase difference estimating circuit that calculates the above by a linear combination of the constant coefficients of A and B, and the ω 0 and θ 0 of the reference signal oscillator are changed to ω 0 +Δ~ω and θ 0 +θ~ 0 , respectively. A phase modulation demodulator comprising: a multiplier that multiplies the sample X i by a complex conjugate value of an oscillator output, and obtains a demodulated signal in carrier phase synchronization from the multiplier output.
JP57207020A 1982-11-26 1982-11-26 Phase modulator and demodulator Granted JPS5997259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207020A JPS5997259A (en) 1982-11-26 1982-11-26 Phase modulator and demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207020A JPS5997259A (en) 1982-11-26 1982-11-26 Phase modulator and demodulator

Publications (2)

Publication Number Publication Date
JPS5997259A JPS5997259A (en) 1984-06-05
JPH0424903B2 true JPH0424903B2 (en) 1992-04-28

Family

ID=16532868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207020A Granted JPS5997259A (en) 1982-11-26 1982-11-26 Phase modulator and demodulator

Country Status (1)

Country Link
JP (1) JPS5997259A (en)

Also Published As

Publication number Publication date
JPS5997259A (en) 1984-06-05

Similar Documents

Publication Publication Date Title
JP2526931B2 (en) PSK signal demodulator
JP3074103B2 (en) OFDM synchronous demodulation circuit
JPH04227348A (en) Method and apparatus for correcting offset of clock and carrier frequency and phase jitters in multicarrier modem
US4518922A (en) Decision-directed, automatic frequency control technique for non-coherently demodulated M-ARY frequency shift keying
US5062123A (en) Kalman predictor for providing a relatively noise free indication of the phase of a carrier laden with noise
JPH0131821B2 (en)
JP3973933B2 (en) Phase-locked loop initialization by curve fitting
US6947504B1 (en) Frequency synchronizer
US5862191A (en) Digital communications receiver that includes a timing recovery device
AU678950B2 (en) Digital demodulator
US4227252A (en) Method and device for acquiring the initial phase of the clock in a synchronous data receiver
JP2773562B2 (en) Signal sequence detection method
US7970071B2 (en) Method and device for synchronizing the carrier frequency of an offset quadrature phase-modulated signal
JPH0424903B2 (en)
JP2540931B2 (en) PSK signal demodulation method
JPH09214574A (en) Phase detector for data synchronization device and its operating method
EP1111866B1 (en) Carrier reproducing circuit
KR20020086161A (en) Training symbol determining method and apparatus and method for estimating frequency offset in OFDM system
JPH07202964A (en) Batch storage demodulator for k phase psk modulated signal
JPH09246917A (en) Frequency error estimation device
JP3086144B2 (en) Burst demodulator
JPH0363263B2 (en)
US6925136B1 (en) Simultaneous frequency and phase synchronizer
JP2963431B1 (en) OFDM signal synchronizer
JPH05244210A (en) High speed synchronization demodulator