JPH04248427A - Strain detector - Google Patents

Strain detector

Info

Publication number
JPH04248427A
JPH04248427A JP3132291A JP3132291A JPH04248427A JP H04248427 A JPH04248427 A JP H04248427A JP 3132291 A JP3132291 A JP 3132291A JP 3132291 A JP3132291 A JP 3132291A JP H04248427 A JPH04248427 A JP H04248427A
Authority
JP
Japan
Prior art keywords
magnetic
winding
magnetic field
core
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3132291A
Other languages
Japanese (ja)
Other versions
JP2759303B2 (en
Inventor
Hiroyuki Wakiwaka
弘之 脇若
Shuichi Uchiyama
修一 内山
Eisuke Shoda
正田 英介
Hajime Yamada
一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP3132291A priority Critical patent/JP2759303B2/en
Publication of JPH04248427A publication Critical patent/JPH04248427A/en
Application granted granted Critical
Publication of JP2759303B2 publication Critical patent/JP2759303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To exclude the effect of a disturbance magnetic field by one sensor by taking out an external magnetic field component to feed back the same and cancelling the external magnetic field component. CONSTITUTION:An exciting core and a detection core arranged so as to cross each other at a fight angle have two magnetic legs 2,3 parallel to each other and, with respect to a magnetic anisotropic sensor wherein windings 7a,2b and windings 3a,3b are wound around the respective magnetic legs in cumulative connection, winding 3c being third winding is wound around the Hall element 6 provided to the leading end surface of one magnetic leg 3 and the detection core and the output signal of the Hall element 6 is used as a feedback signal and the winding 3c is excited by an error amplifier 5 so as to cancel an external magnetic field component.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鉄鋼材料などに対する
応力を非破壊検査するための応力検出器に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stress detector for non-destructively testing stress on steel materials and the like.

【0002】0002

【従来の技術】鉄鋼材料の状態の監視、或いは劣化の検
出の内でも、応力の検出には極めて強いニーズがある。 この応力の検出に最適なセンサとして、例えば、磁気異
方性センサ(Magnetic  Anisotrop
y  Sensor:以下、MASという)がある。こ
のセンサは、例えば、特公昭61−31828号に記載
されているが、測定対象の磁気異方性(材料の方向によ
り磁化の難易度が異なる)の分布、変化を測定すること
によって、対象内の応力、欠陥などを非接触で検出でき
るところに特徴がある。
2. Description of the Related Art There is a strong need for stress detection in monitoring the condition of steel materials or detecting deterioration. As a sensor most suitable for detecting this stress, for example, a magnetic anisotropy sensor (Magnetic Anisotropy sensor) is used.
y Sensor (hereinafter referred to as MAS). This sensor is described in, for example, Japanese Patent Publication No. 61-31828, and measures the distribution and changes in the magnetic anisotropy (the difficulty of magnetization varies depending on the direction of the material) of the object to be measured. Its unique feature is that it can detect stress, defects, etc. in a non-contact manner.

【0003】図2は磁気異方性センサの原理的構成を示
す模式的斜視図である。MASは2つの馬蹄型の磁脚2
、3を直交させて配設し、励振コアE1 、E2 を形
成する磁脚2の各脚には巻線2a,2bが巻回され、両
者は直列接続されている。同様に、検出コアD1 、D
2 を形成する磁脚3には巻線3a,3bが巻回され、
両者は直列接続されている。この場合、両者の脚間隔は
等しく設定されている。
FIG. 2 is a schematic perspective view showing the basic structure of a magnetic anisotropy sensor. MAS has two horseshoe-shaped magnetic legs 2
, 3 are disposed perpendicularly to each other, and windings 2a and 2b are wound around each leg of the magnetic legs 2 forming the excitation cores E1 and E2, and both are connected in series. Similarly, detection cores D1, D
Winding wires 3a and 3b are wound around the magnetic leg 3 forming 2.
Both are connected in series. In this case, the distance between both legs is set equal.

【0004】以上の構成において、測定に際しては、磁
脚2及び磁脚3を測定対象の被測定物(この例では鋼板
)4上に配設する(実際には、磁脚2及び磁脚3の先端
面と被測定物4の表面との間には、空隙が形成されるよ
うになっている)。この状態で、巻線2a、2b間に交
流電圧(例えば、400Hz)Ve を印加する。励振
コアの磁脚E1 からE2 への磁束は、測定対象内を
通過するが、測定対象に応力が加わっていない時には測
定対象内の磁束分布はE1 −E2 軸に対象で、検出
コアの磁脚D1 、D2 の点は同ポテンシャルレベル
になる。しかし、測定対象に応力が加わると、磁歪の逆
効果で磁気異方性が発生し、磁脚D1 、D2 の磁気
ポテンシャルに差ができ、巻線3a、3bに電圧が誘起
される。この検出出力電圧Vd を同期整流してX−Y
レコーダへ出力することにより、被測定物4のトルクや
応力に比例した電圧を得ることができる。なお、MAS
で測定対象の応力を測定するとき、応力方向と励振コア
のE1 −E2 方向の間の角度がθ=45°のときに
最も感度が高くなる。
In the above configuration, during measurement, the magnetic legs 2 and 3 are placed on the object to be measured (a steel plate in this example) 4 (in reality, the magnetic legs 2 and 3 are A gap is formed between the tip end surface of the test object 4 and the surface of the object to be measured 4). In this state, an alternating current voltage (for example, 400 Hz) Ve is applied between the windings 2a and 2b. The magnetic flux from the magnetic legs E1 to E2 of the excitation core passes through the measurement object, but when no stress is applied to the measurement object, the magnetic flux distribution within the measurement object is symmetrical about the E1 - E2 axis, and the magnetic flux of the detection core passes through the measurement object. Points D1 and D2 are at the same potential level. However, when stress is applied to the object to be measured, magnetic anisotropy occurs due to the opposite effect of magnetostriction, a difference is created between the magnetic potentials of the magnetic legs D1 and D2, and a voltage is induced in the windings 3a and 3b. This detected output voltage Vd is synchronously rectified and
By outputting to the recorder, a voltage proportional to the torque or stress of the object to be measured 4 can be obtained. In addition, MAS
When measuring the stress of the object to be measured, the sensitivity is highest when the angle between the stress direction and the E1-E2 direction of the excitation core is θ=45°.

【0005】ところで、上記したMASにあっては、検
出コアの磁路がオープンであるため、外部磁場によって
影響を受ける。MASで応力を測定する場合、磁界が加
わる代表的な2つのケース、すなわち、ダイナモなどの
シャフトに流れる軸電流と鉄道線路のレールに流れる動
力用或いは通信用の軸電流を考えると、磁界の影響は少
し異なったものになる。まず、ダイナモなどのシャフト
のトルク測定の場合には、シャフト表面に加わる応力は
軸方向に対して45°の方向になり、軸電流が流れた場
合、電流による磁界方向と検出コアの方向は90°にな
る。次に、鉄道線路のレール軸力測定の場合、軸電流に
よる磁界方向と検出コアの間の角度は45°となり、ト
ルク測定の場合よりも影響されやすい。外部磁界が重畳
されたとき、MASは検出コアの動作点が変化する。検
出コアに誘起される電圧の振幅と位相は、検出コアの非
直線性とヒステリシスの大きさにより決まる。したがっ
て、外部磁界の影響を低減するための手段を講じる必要
がある。
By the way, in the above-mentioned MAS, since the magnetic path of the detection core is open, it is affected by an external magnetic field. When measuring stress with MAS, we consider the two typical cases where a magnetic field is applied: the shaft current flowing in the shaft of a dynamo, etc., and the power or communication shaft current flowing in the rails of a railway track. will be a little different. First, when measuring the torque of a shaft such as a dynamo, the stress applied to the shaft surface is in the direction of 45 degrees with respect to the axial direction, and when a shaft current flows, the direction of the magnetic field due to the current and the direction of the detection core are 90 degrees. It becomes °. Next, in the case of measuring the rail axial force of a railway track, the angle between the direction of the magnetic field due to the axial current and the detection core is 45°, which is more susceptible than in the case of torque measurement. When an external magnetic field is superimposed, the operating point of the MAS's detection core changes. The amplitude and phase of the voltage induced in the sensing core are determined by the nonlinearity and hysteresis of the sensing core. Therefore, it is necessary to take measures to reduce the effects of external magnetic fields.

【0006】この1つの方法として、例えば、「非破壊
検査」第35巻第12号(1986年12月)、861
〜867頁「磁気異方性センサの出力信号に及ぼす外乱
磁界の影響とその減少法」に示すように、デュアル形磁
気異方性センサが提案されている。このデュアル形磁気
異方性センサは、同一仕様の2個の磁気異方性センサを
用いて構成され、各一対の磁脚からなる2つのセンサの
励振コアの巻線同士を並列接続すると共に、検出コアの
巻線同士を差動接続する。そして、一方のセンサの出力
に信号と外乱の和の電圧を作り出し、他方のセンサ出力
に逆位相信号と外乱の和の電圧を作り出し、前者から後
者を減算することによって外乱ノイズを相殺し、外乱磁
界の影響を低減するものである。
As one of these methods, for example, "Non-destructive Testing" Vol. 35 No. 12 (December 1986), 861
As shown in "Influence of disturbance magnetic field on output signal of magnetic anisotropy sensor and method for reducing the same" on pages 867 to 867, a dual type magnetic anisotropy sensor has been proposed. This dual type magnetic anisotropy sensor is constructed using two magnetic anisotropy sensors with the same specifications, and the windings of the excitation cores of the two sensors each consisting of a pair of magnetic legs are connected in parallel. The windings of the detection core are connected differentially. Then, a voltage that is the sum of the signal and the disturbance is created at the output of one sensor, a voltage that is the sum of the antiphase signal and the disturbance is created at the output of the other sensor, and the disturbance noise is canceled out by subtracting the latter from the former. This reduces the influence of magnetic fields.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記したデュ
アル形磁気異方性センサは、理論的には増幅器の入力段
階で既に外乱磁界の影響が低減されるので、測定系とし
ては優れているが、同一仕様のセンサを2個必要とする
ため、センサが大型化、大重量化及びコストアップを招
くという不具合がある。本発明は、上記した従来技術の
実情に鑑みてなされたものであり、1個のセンサによっ
て外乱磁界の影響を排除できるようにした応力検出器を
提供することにある。
[Problems to be Solved by the Invention] However, although the dual type magnetic anisotropy sensor described above is excellent as a measurement system because theoretically the influence of the disturbance magnetic field is already reduced at the input stage of the amplifier, , since two sensors with the same specifications are required, there is a problem that the sensor becomes larger, heavier, and costs increase. The present invention has been made in view of the above-mentioned actual state of the prior art, and it is an object of the present invention to provide a stress detector that can eliminate the influence of a disturbance magnetic field using a single sensor.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、互いに直交するように配設される励振コ
ア及び検出コアが共に平行する2つの磁脚を有し、その
磁脚の各々にコイルが和動接続に巻装された磁気異方性
センサによる応力検出器であって、前記検出コアの先端
面に装着されるホール素子と、前記検出コアに巻回され
る第3の巻線と、前記ホール素子の出力信号をフィード
バック信号として用い前記第3の巻線を励振する誤差増
幅器とを設けるようにしている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an excitation core and a detection core that are arranged orthogonally to each other and have two parallel magnetic legs. A stress detector using a magnetic anisotropic sensor in which a coil is wound around each of the coils in a harmonic connection, the Hall element being attached to the tip end surface of the detection core, and the third coil being wound around the detection core. and an error amplifier that excites the third winding using the output signal of the Hall element as a feedback signal.

【0009】[0009]

【作用】上記した手段によれば、ホール素子によって外
部磁界成分を検出し、これをフィードバック信号として
用い、外部磁界成分をキャンセルするように検出コアの
第3の巻線を励振することにより、応力測定値に誤差を
含まないようにすることができる。したがって、センサ
の大型化を招くことなく、簡単な構成により外部磁界の
影響を排除することができる。
[Operation] According to the above means, the external magnetic field component is detected by the Hall element, and this is used as a feedback signal to excite the third winding of the detection core so as to cancel the external magnetic field component, thereby reducing stress. Measured values can be made free of errors. Therefore, the influence of external magnetic fields can be eliminated with a simple configuration without increasing the size of the sensor.

【0010】0010

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。図1は本発明による応力検出器の一実
施例を示す模式的斜視図である。なお、本実施例におい
ては、図2と同一であるものには同一引用数字を用いた
ので、以下においては構成及び動作についての重複する
説明を省略する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic perspective view showing an embodiment of a stress detector according to the present invention. Note that in this embodiment, the same reference numerals are used for the same parts as in FIG. 2, and therefore, redundant explanations of the configuration and operation will be omitted below.

【0011】本実施例においては、磁脚2、3の配置関
係は図2に示したとおりであるが、磁脚3(検出コア)
には巻線3a、3bに加えて、第3の巻線である巻線3
cがコア基部に巻回されている。この巻線3cには、誤
差増幅器5の出力が印加されている。磁脚D1 の先端
面にはホール素子6が装着され、このホール素子6には
ローパスフィルタ7が接続されている。ローパスフィル
タ7の出力は減算器8に接続され、その出力が誤差増幅
器(DCアンプ)5の入力に印加される。なお、ローパ
スフィルタ(LPF)7に代えて、励振電圧Ve の周
波数以外の成分を取り出すバンドエリミネーティングフ
ィルタであってもよい。
In this embodiment, the arrangement relationship between the magnetic legs 2 and 3 is as shown in FIG.
In addition to windings 3a and 3b, there is a third winding, winding 3.
c is wound around the core base. The output of the error amplifier 5 is applied to this winding 3c. A Hall element 6 is attached to the tip end surface of the magnetic leg D1, and a low-pass filter 7 is connected to this Hall element 6. The output of the low-pass filter 7 is connected to a subtracter 8, and its output is applied to the input of an error amplifier (DC amplifier) 5. Note that the low-pass filter (LPF) 7 may be replaced with a band-eliminating filter that extracts components other than the frequency of the excitation voltage Ve.

【0012】MASの出力に及ぼす影響は、検出コアに
入り込む磁束によって検出コアのB−H特性の動作点が
バイアスされてしまうことに原因がある。MASは、巻
線3a、3b(検出コイル)に誘起される電圧を同期検
波してノイズなどの外乱要因の影響を小さくしている。 しかし、検出コアの磁気的動作点がバイアスされること
によって検出電圧の振幅、位相が僅かに変化する。振幅
は、コアの非直線性に依存し、位相はヒステリシスの膨
らみに依存する。
The influence on the MAS output is caused by the fact that the operating point of the B-H characteristic of the detection core is biased by the magnetic flux that enters the detection core. The MAS synchronously detects voltages induced in the windings 3a and 3b (detection coils) to reduce the influence of disturbance factors such as noise. However, as the magnetic operating point of the detection core is biased, the amplitude and phase of the detection voltage change slightly. The amplitude depends on the core nonlinearity and the phase depends on the hysteresis bulge.

【0013】そこで、本発明では外部磁界の影響を低減
する手段として、ホール素子6を設け、検出コアに入り
込む励振周波数以外の周波数の磁界成分を検出し、これ
が0になるようにフィードバックを行っている。すなわ
ち、ホール素子6の出力信号中の不要分をローパスフィ
ルタ7によって除去して得た信号を誤差増幅器5の負入
力側に入力し、目標値0Vとの差の成分を誤差増幅器5
で増幅し、巻線3cを励振する。このようにして、検出
コア中の励振周波数以外の磁界成分を0にすることがで
きる。このような方法により、前記したデュアル形に比
べセンサが1個で済むので、外部磁界の偏りにも対処す
ることが可能になる。そして、外部磁界の影響を排除で
きる結果、フィールドでの応力測定やトルク測定に用い
ることができるようになった。
Therefore, in the present invention, as a means for reducing the influence of the external magnetic field, a Hall element 6 is provided to detect the magnetic field component of a frequency other than the excitation frequency that enters the detection core, and performs feedback so that this becomes zero. There is. That is, the signal obtained by removing unnecessary parts in the output signal of the Hall element 6 by the low-pass filter 7 is input to the negative input side of the error amplifier 5, and the difference component from the target value 0V is input to the error amplifier 5.
, and excites the winding 3c. In this way, magnetic field components other than the excitation frequency in the detection core can be reduced to zero. With this method, only one sensor is required compared to the above-mentioned dual type, so it is possible to deal with the bias of the external magnetic field. As a result of being able to eliminate the influence of external magnetic fields, it has become possible to use it for stress and torque measurements in the field.

【0014】[0014]

【発明の効果】以上より明らかなごとく、本発明によれ
ば、互いに直交するように配設される励振コア及び検出
コアが共に平行する2つの磁脚を有し、その磁脚の各々
にコイルが和動接続に巻装された磁気異方性センサによ
る応力検出器であって、前記検出コアの先端面に装着さ
れるホール素子と、前記検出コアに巻回される第3の巻
線と、前記ホール素子の出力信号をフィールドバック信
号として用い前記第3の巻線を励振する誤差増幅器とを
設けるようにしたので、センサを2つ用いることなく、
簡単な構成により外部磁界の影響を排除することができ
る。
As is clear from the above, according to the present invention, the excitation core and the detection core, which are arranged orthogonally to each other, both have two parallel magnetic legs, and each of the magnetic legs has a coil. is a stress detector using a magnetic anisotropy sensor wound in a harmonic connection, comprising: a Hall element attached to the tip end surface of the detection core; a third winding wound around the detection core; , and an error amplifier that excites the third winding using the output signal of the Hall element as a feedback signal, thereby eliminating the need to use two sensors.
A simple configuration can eliminate the influence of external magnetic fields.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による応力検出器の一実施例を示す模式
的斜視図である。
FIG. 1 is a schematic perspective view showing an embodiment of a stress detector according to the present invention.

【図2】従来の応力検出器の一例を示す模式的斜視図で
ある。
FIG. 2 is a schematic perspective view showing an example of a conventional stress detector.

【符号の説明】[Explanation of symbols]

2    磁脚 2a、2b    巻線 3    磁脚 3a、3b、3c、3d    巻線 4    被測定物 5    誤差増幅器 6    ホール素子 7    ローパスフィルタ 8    減算器 2 Magnetic legs 2a, 2b Winding wire 3 Magnetic legs 3a, 3b, 3c, 3d Winding 4 Object to be measured 5 Error amplifier 6 Hall element 7 Low pass filter 8 Subtractor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  互いに直交するように配設される励振
コア及び検出コアが共に平行する2つの磁脚を有し、そ
の磁脚の各々にコイルが和動接続に巻装された磁気異方
性センサによる応力検出器であって、前記検出コアの先
端面に装着されるホール素子と、前記検出コアに巻回さ
れる第3の巻線と、前記ホール素子の出力信号をフィー
ドバック信号として用い前記第3の巻線を励振する誤差
増幅器とを具備することを特徴とする応力検出器。
Claim 1: A magnetic anisotropic device in which an excitation core and a detection core arranged orthogonally to each other both have two parallel magnetic legs, and a coil is wound around each of the magnetic legs in a harmonic connection. A stress detector using a stress sensor, which uses a Hall element attached to the tip end surface of the detection core, a third winding wound around the detection core, and an output signal of the Hall element as a feedback signal. and an error amplifier that excites the third winding.
JP3132291A 1991-02-01 1991-02-01 Stress detector Expired - Fee Related JP2759303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3132291A JP2759303B2 (en) 1991-02-01 1991-02-01 Stress detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132291A JP2759303B2 (en) 1991-02-01 1991-02-01 Stress detector

Publications (2)

Publication Number Publication Date
JPH04248427A true JPH04248427A (en) 1992-09-03
JP2759303B2 JP2759303B2 (en) 1998-05-28

Family

ID=12328032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132291A Expired - Fee Related JP2759303B2 (en) 1991-02-01 1991-02-01 Stress detector

Country Status (1)

Country Link
JP (1) JP2759303B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064040A (en) * 2011-10-21 2013-04-24 无锡强力环保科技有限公司 Intrinsic safety type magnetism stress nondestructive testing (NDT) system
CN103713040A (en) * 2012-10-09 2014-04-09 无锡强力环保科技有限公司 Two-pin magnetic probe detection sensor for residual austenite content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064040A (en) * 2011-10-21 2013-04-24 无锡强力环保科技有限公司 Intrinsic safety type magnetism stress nondestructive testing (NDT) system
CN103713040A (en) * 2012-10-09 2014-04-09 无锡强力环保科技有限公司 Two-pin magnetic probe detection sensor for residual austenite content

Also Published As

Publication number Publication date
JP2759303B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
JP2020523588A (en) Load measuring method, load measuring device, and load measuring mechanism
JP3445362B2 (en) AC current sensor
EP2871485B1 (en) Current detection device
WO2013088766A1 (en) Current sensor
JPH03218475A (en) Method and device for measuring current
JPH08273952A (en) Plane current detector
JP2816175B2 (en) DC current measuring device
JP4716030B2 (en) Current sensor
JP2000055998A (en) Magnetic sensor device and current sensor device
JP3962784B2 (en) Current probe
JP2759303B2 (en) Stress detector
JPH11281678A (en) Current sensor
JPH04210B2 (en)
US3940688A (en) Device for testing the magnetic properties of a magnetic material
JP3651268B2 (en) Magnetic measurement method and apparatus
JP2000056000A (en) Magnetic sensor device and current sensor device
JP7256529B2 (en) Gradient magnetic field sensor
US5831424A (en) Isolated current sensor
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JP2617570B2 (en) Magnetic measuring device
JPH0815229A (en) High resolution eddy current flaw detector
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP2020165716A (en) Gradient magnetic field sensor
JPH073345Y2 (en) DC current detector
JP2663767B2 (en) Transformation rate measuring method and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees