JPH04248334A - Charge/discharge control circuit for ni-cd battery - Google Patents

Charge/discharge control circuit for ni-cd battery

Info

Publication number
JPH04248334A
JPH04248334A JP3007114A JP711491A JPH04248334A JP H04248334 A JPH04248334 A JP H04248334A JP 3007114 A JP3007114 A JP 3007114A JP 711491 A JP711491 A JP 711491A JP H04248334 A JPH04248334 A JP H04248334A
Authority
JP
Japan
Prior art keywords
battery
charging
control circuit
discharge control
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3007114A
Other languages
Japanese (ja)
Other versions
JP2641328B2 (en
Inventor
Junji Hiraide
順二 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3007114A priority Critical patent/JP2641328B2/en
Publication of JPH04248334A publication Critical patent/JPH04248334A/en
Application granted granted Critical
Publication of JP2641328B2 publication Critical patent/JP2641328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To realize maximum recovery of Ni-Cd battery by repeating charge/ discharge operation through temperature control. CONSTITUTION:Temperature control is carried out by receiving an output from a temperature sensor 2 and driving a Peltier element 3 through a switching means 12 so that the surface temperature of an Ni-Cd battery 1 is maintained in the range of 20-30 deg.C. - V is monitored every unit time based on an output from an A/D converter and when the magnitude thereof drops below a contant value K1, a decision is made that the end of charging operation has reached and the charging operation is stopped. The charging time is stored in a memory and then discharging operation is carried out. According to the invention, even an Ni-Cd battery preserved for a long term can be recovered to the maximum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、小型の電子機器などに
使用されるNi−Cd電池の充放電制御回路に関し、特
に長期間保存されたNi−Cd電池に対する充放電制御
回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge/discharge control circuit for Ni--Cd batteries used in small electronic devices, and more particularly to a charge-discharge control circuit for Ni--Cd batteries that have been stored for a long period of time.

【0002】0002

【従来の技術】図3は従来のNi−Cd電池充放電制御
回路の概念図を示している。Ni−Cd電池に対する充
電制御方法には、−ΔV制御が一般的によく使用されて
いる。
2. Description of the Related Art FIG. 3 shows a conceptual diagram of a conventional Ni--Cd battery charge/discharge control circuit. -ΔV control is commonly used as a charging control method for Ni--Cd batteries.

【0003】Ni−Cd電池は充電に従い端子電圧が上
昇し、充電完了後さらに充電を続けると逆に電圧が下が
る。−ΔV制御はこの電圧降下を検出して充電を制御す
る方法である。
[0003] As the Ni--Cd battery is charged, the terminal voltage increases, and when charging is continued after charging is complete, the voltage decreases. -ΔV control is a method of detecting this voltage drop and controlling charging.

【0004】0004

【発明が解決しようとする課題】一般に、Ni−Cd電
池は自己放電が大きく、充電後の長期間の保存により多
くが放電される。例えば、45℃にて一ヵ月間の保存に
より容量保存率は100%から約30%に減衰し、20
℃においても五ヵ月間で約半分となることが知られてい
る。Ni−Cd電池は、このように長期間保存された後
においては数回の充放電を繰り返さなければ元の容量ま
で回復しない場合がある。例えば、20℃にて13年間
保存後1回の充電で約70%の容量までしか充電されな
いが、放電、充電を繰り返し行い、7回充電で略100
%近くまで回復する。しかしこの場合でも温度が高けれ
ば充電される容量は減少する。例えば、42℃では約8
0%の容量比率としかならない。また、長期間保存され
たNi−Cd電池に対して浅い充放電を繰り返すと、そ
の後に重い負荷による深い放電を行った時にメモリ効果
減少と呼ばれる症状が発生することがある。つまり、通
常のNi−Cd電池では使用期間中比較的安定した電圧
を維持し、残容量がなくなりかけると電圧が降下すると
いう特性を示すが、このメモリ効果現象では、残容量が
充分にあるうちに一度電圧が降下し、さらに残容量が無
くなりかけると今一度電圧が降下してしまう。多くのN
i−Cd電池を用いた電子機器では電圧監視をしている
ために、このメモリ効果現象があると残容量が充分にあ
るにも係わらず容量がないと判断しアラームの発生や動
作の停止などの処理をしてしまう問題がある。
Generally, Ni--Cd batteries have a large self-discharge rate, and a large amount of the battery is discharged during long-term storage after charging. For example, after one month of storage at 45°C, the capacity storage rate decreases from 100% to approximately 30%, and 20%
It is known that the temperature decreases by about half in five months at ℃. After a Ni-Cd battery has been stored for such a long period of time, it may not recover to its original capacity unless it is charged and discharged several times. For example, after being stored at 20℃ for 13 years, a single charge will only reach about 70% of the capacity, but after repeated discharging and charging, the capacity will reach about 100% after 7 charges.
Recovers to nearly %. However, even in this case, if the temperature is high, the capacity to be charged will decrease. For example, at 42℃, about 8
The capacity ratio is only 0%. Furthermore, if a Ni--Cd battery that has been stored for a long period of time is repeatedly subjected to shallow charging and discharging, a phenomenon called memory effect reduction may occur when deep discharging is subsequently performed under a heavy load. In other words, a normal Ni-Cd battery maintains a relatively stable voltage during the period of use, and the voltage drops when the remaining capacity is exhausted, but this memory effect phenomenon occurs when the remaining capacity is sufficient. The voltage drops once, and when the remaining capacity is about to run out, the voltage drops again. many N
Electronic equipment using i-Cd batteries monitors voltage, so if this memory effect phenomenon occurs, it will be determined that there is no capacity even though there is sufficient remaining capacity, causing an alarm or stopping operation. There is a problem with processing.

【0005】すなわち、充電中にNi−Cd電池の周囲
の温度が高かったり、または充放電を繰り返している間
にNi−Cd電池の温度が高いと充分な容量回復を行う
ことができず、さらにはメモリ効果現象を引き起こすと
いう問題があった。
That is, if the temperature around the Ni-Cd battery is high during charging, or if the temperature of the Ni-Cd battery is high during repeated charging and discharging, sufficient capacity recovery cannot be achieved. had the problem of causing a memory effect phenomenon.

【0006】本発明の目的は、温度制御によって充放電
を繰り返すことにより上記の問題を解決し、Ni−Cd
電池の持つ容量を最大限に回復させることのできる充放
電制御回路を提供することにある。
The purpose of the present invention is to solve the above problems by repeating charging and discharging through temperature control, and to
It is an object of the present invention to provide a charge/discharge control circuit that can recover the capacity of a battery to the maximum extent.

【0007】[0007]

【課題を解決するための手段】この発明は、Ni−Cd
電池に対する定電流充電回路および放電制御回路と、N
i−Cd電池の表面に近接して設けられる冷却素子と、
Ni−Cd電池の表面に近接して設けられる温度センサ
と、Ni−Cd電池への充放電を繰り返す手段と、Ni
−Cd電池への充電中前記温度センサ出力が略一定とな
るように前記冷却素子を制御する手段と、備えてなるこ
とを特徴とする。
[Means for Solving the Problems] This invention provides Ni-Cd
A constant current charging circuit and a discharge control circuit for a battery, and
a cooling element provided close to the surface of the i-Cd battery;
A temperature sensor provided close to the surface of the Ni-Cd battery, a means for repeatedly charging and discharging the Ni-Cd battery, and a temperature sensor provided close to the surface of the Ni-Cd battery;
- Means for controlling the cooling element so that the output of the temperature sensor becomes substantially constant during charging of the Cd battery.

【0008】[0008]

【作用】Ni−Cd電池の充電サイクルに入るとその表
面温度が検出されるとともに所定の温度になるよう冷却
素子が駆動される。これによって、充電に最適な温度で
充放電を繰り返し行うことができる。
[Operation] When the Ni--Cd battery enters a charging cycle, its surface temperature is detected and the cooling element is driven to maintain a predetermined temperature. Thereby, charging and discharging can be repeatedly performed at the optimum temperature for charging.

【0009】[0009]

【実施例】図1は、本発明の実施例のNi−Cd電池充
放電制御回路のブロック図である。
Embodiment FIG. 1 is a block diagram of a Ni-Cd battery charge/discharge control circuit according to an embodiment of the present invention.

【0010】Ni−Cd電池1は図外の電池収納部にセ
ットされる。この電池収納部の周囲にはセットされたN
i−Cd電池の表面に接触するように温度センサ2と冷
却素子であるペルチエ素子3が設けられている。Ni−
Cd電池1には定電流充電制御回路4と放電制御回路5
と電池出力をディジタル化するA/Dコンバータ6とが
接続されている。定電流充電制御回路4,放電制御回路
5はCPU7によって制御され、A/Dコンバータ6の
出力はCPU7に入力する。前記温度センサ2の出力は
アンプ8で所定のレベルに増幅され、その出力信号はA
/Dコンバータ9でディジタル化されてCPU7に入力
する。またCPU7には、充電後に計算された容量を表
示する表示部10およびNi−Cd電池の規定電圧や規
定容量を入力するための入力装置11が接続されている
[0010] The Ni-Cd battery 1 is set in a battery storage section (not shown). There is a set N around this battery compartment.
A temperature sensor 2 and a Peltier element 3, which is a cooling element, are provided so as to be in contact with the surface of the i-Cd battery. Ni-
The Cd battery 1 has a constant current charging control circuit 4 and a discharge control circuit 5.
and an A/D converter 6 that digitizes the battery output. The constant current charge control circuit 4 and the discharge control circuit 5 are controlled by the CPU 7, and the output of the A/D converter 6 is input to the CPU 7. The output of the temperature sensor 2 is amplified to a predetermined level by an amplifier 8, and the output signal is A.
The signal is digitized by the /D converter 9 and input to the CPU 7. Also connected to the CPU 7 are a display section 10 that displays the capacity calculated after charging, and an input device 11 for inputting the specified voltage and capacity of the Ni-Cd battery.

【0011】なお、前記放電制御回路5は放電電流を切
り替える複数のスイッチ素子(トランジスタ)を備え、
CPU7によって何れかのスイッチを選択する。
Note that the discharge control circuit 5 includes a plurality of switch elements (transistors) for switching the discharge current,
One of the switches is selected by the CPU 7.

【0012】次に上記の制御回路の動作を図2のフロー
チャートを参照して説明する。
Next, the operation of the above control circuit will be explained with reference to the flowchart of FIG.

【0013】図2は、CPU7の概略の動作を示してい
る。
FIG. 2 schematically shows the operation of the CPU 7.

【0014】電池収納部に、長期間保存されたNi−C
d電池1が収納されると、動作が開始される。先ず、オ
ペレータによって入力装置11からNi−Cd電池の規
定電圧および規定容量が入力される。CPU7は、入力
されたデータをメモリに記憶し、さらに、入力された規
定容量まで充電するに必要な充電時間まで割り出す。
[0014] Ni-C stored in the battery compartment for a long time
When the battery 1 is stored, operation starts. First, the operator inputs the specified voltage and capacity of the Ni-Cd battery from the input device 11. The CPU 7 stores the input data in the memory, and further calculates the charging time required to charge the battery to the specified input capacity.

【0015】Ni−Cd電池1は容量の能力が初期状態
において不明であるために、まず放電を行う(n2)。 このときのスイッチの選択はn1で入力されたデータか
ら判定される。
Since the capacity of the Ni--Cd battery 1 is unknown in its initial state, it is first discharged (n2). The selection of the switch at this time is determined from the data input at n1.

【0016】続いて、n3で温度制御を開始する。温度
制御の方法は、温度センサ2からの出力を受けて、Ni
−Cd電池1の表面温度が20〜30℃程度に保たれる
ようにスイッチング手段12を介してペルチエ素子3を
駆動する。
Subsequently, temperature control is started at n3. The temperature control method is based on the output from the temperature sensor 2.
- The Peltier element 3 is driven via the switching means 12 so that the surface temperature of the -Cd battery 1 is maintained at about 20 to 30°C.

【0017】n4で充放電中の充電回数をカウントする
カウンタNを0にセットし、充電を開始する(n5)。 充電は−ΔV制御によって行われる。つまり、A/Dコ
ンバータ6の出力から−ΔVを単位時間毎に監視し、そ
の大きさが一定値K1以下になったときに充電終了点と
判定しn7に抜けて充電を停止する。そして、そのとき
の充電時間をtN としてメモリに記憶する。その後放
電を行う(n9)。
At n4, a counter N for counting the number of times of charging during charging and discharging is set to 0, and charging is started (n5). Charging is performed by -ΔV control. That is, -ΔV from the output of the A/D converter 6 is monitored every unit time, and when the magnitude becomes less than a certain value K1, it is determined that the charging end point is reached, and the charging is stopped at step n7. Then, the charging time at that time is stored in the memory as tN. After that, discharge is performed (n9).

【0018】次にn10において前回の充電時間と今回
の充電時間の差が一定値K2以下かどうかの判定を行う
。規定容量を得るための充電時間は、予めn1で規定容
量が入力されたときに計算されているために、充電時間
がその計算された充電時間にごく近くなったときに充分
な容量回復が行われたと判断することができる。ここで
は、その判断を充電時間の差を監視することによって行
うようにしている。つまり、充電時間の差が一定値以下
になったときにn11に抜け、そのときの容量を計算し
て表示部10に表示して終了する。一方、n10で充電
時間の差が一定値より大きければn5に戻って再び充放
電サイクルを実行する。このようにして温度制御を行い
ながら充放電サイクルを一定回数繰り返していく。
Next, at n10, it is determined whether the difference between the previous charging time and the current charging time is less than or equal to a certain value K2. Since the charging time to obtain the specified capacity is calculated in advance when the specified capacity is input in n1, sufficient capacity recovery will occur when the charging time becomes very close to the calculated charging time. It can be determined that the Here, this determination is made by monitoring the difference in charging time. That is, when the difference in charging time becomes less than a certain value, the process goes to n11, calculates the capacity at that time, displays it on the display unit 10, and ends the process. On the other hand, if the difference in charging time is larger than a certain value at n10, the process returns to n5 and the charging/discharging cycle is executed again. In this way, charging and discharging cycles are repeated a certain number of times while controlling the temperature.

【0019】[0019]

【発明の効果】充放電中はNi−Cd電池の温度が略一
定値に保たれているために充分深い充放電サイクルを繰
り返すことができる。このため、長期間保存されたNi
−Cd電池であってもその本来持つ容量を最大限に回復
させることができる。
[Effects of the Invention] During charging and discharging, the temperature of the Ni--Cd battery is maintained at a substantially constant value, so that sufficiently deep charging and discharging cycles can be repeated. For this reason, Ni stored for a long time
Even a -Cd battery can recover its original capacity to its fullest extent.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例のNi−Cd電池充放電制御回
路のブロック図である。
FIG. 1 is a block diagram of a Ni-Cd battery charge/discharge control circuit according to an embodiment of the present invention.

【図2】同充放電制御回路内のCPUの動作を示すフロ
ーチャートである。
FIG. 2 is a flowchart showing the operation of a CPU in the charge/discharge control circuit.

【図3】従来のNi−Cd電池充放電制御回路の外観図
である。
FIG. 3 is an external view of a conventional Ni-Cd battery charge/discharge control circuit.

【符号の説明】[Explanation of symbols]

1−Ni−Cd電池 2−温度センサ 3−ペルチエ素子 4−定電流充電制御回路 5−放電制御回路 1-Ni-Cd battery 2-Temperature sensor 3-Peltier element 4- Constant current charging control circuit 5-Discharge control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Ni−Cd電池に対する定電流充電回
路および放電制御回路と、Ni−Cd電池の表面に近接
して設けられる冷却素子と、Ni−Cd電池の表面に近
接して設けられる温度センサと、Ni−Cd電池への充
放電を繰り返す手段と、Ni−Cd電池への充電中前記
温度センサ出力が略一定となるように前記冷却素子を制
御する手段とを、備えてなるNi−Cd電池充放電制御
回路
1. A constant current charging circuit and a discharge control circuit for a Ni-Cd battery, a cooling element provided close to the surface of the Ni-Cd battery, and a temperature sensor provided close to the surface of the Ni-Cd battery. an Ni-Cd battery comprising: means for repeating charging and discharging of the Ni-Cd battery; and means for controlling the cooling element so that the temperature sensor output remains approximately constant during charging of the Ni-Cd battery. Battery charge/discharge control circuit
JP3007114A 1991-01-24 1991-01-24 Ni-Cd battery charge / discharge control circuit Expired - Lifetime JP2641328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007114A JP2641328B2 (en) 1991-01-24 1991-01-24 Ni-Cd battery charge / discharge control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007114A JP2641328B2 (en) 1991-01-24 1991-01-24 Ni-Cd battery charge / discharge control circuit

Publications (2)

Publication Number Publication Date
JPH04248334A true JPH04248334A (en) 1992-09-03
JP2641328B2 JP2641328B2 (en) 1997-08-13

Family

ID=11657062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007114A Expired - Lifetime JP2641328B2 (en) 1991-01-24 1991-01-24 Ni-Cd battery charge / discharge control circuit

Country Status (1)

Country Link
JP (1) JP2641328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624003A (en) * 1992-12-10 1997-04-29 Toyota Jidosha Kabushiki Kaisha Battery temperature-raising device for electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624003A (en) * 1992-12-10 1997-04-29 Toyota Jidosha Kabushiki Kaisha Battery temperature-raising device for electric vehicle
US5730237A (en) * 1992-12-10 1998-03-24 Toyota Jidosha Kabushiki Kaisha Battery temperature-raising device for electric vehicle

Also Published As

Publication number Publication date
JP2641328B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
US10310024B2 (en) Methods and apparatus for measuring battery characteristics
US5640150A (en) Resettable state-of-charge indicator for rechargeable batteries
US6377028B1 (en) System for charging monitoring batteries for a microprocessor based method
JP4499966B2 (en) Secondary battery charging circuit
KR20140041936A (en) Battery charge indication methods, battery charge monitoring devices, rechargeable batteries, and articles of manufacture
JPH0627207A (en) Method of monitoring state of discharge of battery
JP2003274570A (en) Constant-current constant-voltage charging method, and charger
JP3911038B2 (en) Rechargeable battery remaining capacity detection method
CN107769295B (en) Battery charging method and battery charging apparatus using the same
JPH11191934A (en) Quick charging method and quick charging device for secondary battery
US6759830B2 (en) Method of precisely estimating effective full-charge capacity of secondary battery
JPH11271408A (en) Method for detecting degradation of secondary battery and charger equipped with degradation detecting function
JPH04248334A (en) Charge/discharge control circuit for ni-cd battery
US20240133972A1 (en) Battery Diagnosis Apparatus, Battery Pack, Electric Vehicle, And Battery Diagnosis Method
JPH03203523A (en) Battery activating method and device
JP2002238172A (en) Secondary battery protecting circuit
US6034509A (en) Battery-powered electrical device with improved calculation of discharge termination
JP2001110457A (en) Method for determining abnormal condition of battery, apparatus for determining abnormal condition of battery, and secondary battery pack
JP2002063944A (en) Charged battery, charged battery pack and calculation method of remaining capacity
JPH05122857A (en) Nickel-hydrogen storage battery charge/discharge control circuit
JPH05297081A (en) Battery voltage monitor
JP2003232839A (en) Residual capacity operation method of secondary battery
JPH11136871A (en) Charging device
KR0152367B1 (en) Rapid charger without imperfect charging
JPH06258410A (en) Remaining capacity of battery display device