JPH11271408A - Method for detecting degradation of secondary battery and charger equipped with degradation detecting function - Google Patents

Method for detecting degradation of secondary battery and charger equipped with degradation detecting function

Info

Publication number
JPH11271408A
JPH11271408A JP10073810A JP7381098A JPH11271408A JP H11271408 A JPH11271408 A JP H11271408A JP 10073810 A JP10073810 A JP 10073810A JP 7381098 A JP7381098 A JP 7381098A JP H11271408 A JPH11271408 A JP H11271408A
Authority
JP
Japan
Prior art keywords
charging
battery
secondary battery
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10073810A
Other languages
Japanese (ja)
Other versions
JP3460567B2 (en
Inventor
Masaya Ugaji
正弥 宇賀治
Hajime Seri
肇 世利
Taketoshi Nakao
武寿 中尾
Yoshinori Yamada
義則 山田
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP07381098A priority Critical patent/JP3460567B2/en
Publication of JPH11271408A publication Critical patent/JPH11271408A/en
Application granted granted Critical
Publication of JP3460567B2 publication Critical patent/JP3460567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect with precision degree of ordinary battery's degradation caused by battery's degradation mode, or by high-temperature storage and charging discharging cycle. SOLUTION: Related to a secondary battery wherein charging is performed with a constant current and a constant voltage, a charged capacity at constant current is obtained and based on relationship between the charged capacity and a buttery capacity, degradation degree of a secondary battery is assumed. In addition, after charging is started, a current drop amount directly after charging is switched to a constant voltage mode is measured, and based on the relationship between the current drop and the buttery capacity, degradation degree of the secondary battery is assumed. Further, after charging is started, degradation degree of the secondary battery is assumed based on current-change ratio or a current value after switching from the constant current charging mode to the constant voltage mode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池などの二次電池の劣化の度合いを検出する方法
と、このような劣化検出機能を具備した充電器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the degree of deterioration of a secondary battery such as a lithium ion secondary battery, and a charger having such a function of detecting deterioration.

【0002】[0002]

【従来の技術】現在、ノート型パソコン、ビデオカメラ
等の電子機器の電源として高容量二次電池が急速に普及
しつつある。しかしながら、これらの二次電池は極端な
高温環境下で保存したり、過度な充放電サイクルを繰り
返すと、電池特性の劣化が起こる場合がある。このよう
な劣化を起こした電池では、例え所定の方法で充電を行
っても、初期の電池容量まで回復しないことが多い。
2. Description of the Related Art At present, high-capacity secondary batteries are rapidly spreading as power supplies for electronic devices such as notebook personal computers and video cameras. However, when these secondary batteries are stored in an extremely high-temperature environment or repeated charge / discharge cycles, battery characteristics may be deteriorated. In many cases, such a deteriorated battery does not recover to the initial battery capacity even if it is charged by a predetermined method.

【0003】このような電池特性の劣化は、高温環境下
での保存時間や充放電サイクル数に大きく依存してお
り、保存時間や充放電サイクル数の増加と伴に、徐々に
電池の劣化度合いは増していく。このため、電池の劣化
度合いを正確に測定し、満充電の電池容量の補正を行う
ことは実用上不可欠である。
[0003] Such deterioration of battery characteristics greatly depends on the storage time and the number of charge / discharge cycles in a high-temperature environment, and the degree of deterioration of the battery gradually increases as the storage time and the number of charge / discharge cycles increase. Will increase. For this reason, it is practically indispensable to accurately measure the degree of deterioration of the battery and correct the battery capacity when fully charged.

【0004】しかし、現在のところ、劣化度合いを充分
に検知している例はなく、多くの場合、電池特性の劣化
を大まかに検知し推定しているに過ぎない。これまで提
案された二次電池の劣化検出方法は、以下に記載した方
法に大別できる。 (1)電池の内部インピーダンスを計測する方法:特開
昭53−42327、特開昭61−170678、特開
平1−253175、特開平4−141966、特開平
8−254573、特開平8−273705。 (2)電池の内部インピーダンスを周波数の異なる信号
で測定し、その値を演算式に従って処理する方法:特開
平8−43506,特開平8−250159。 (3)電池の構成要素である活物質の電気抵抗を測定す
る方法:特開昭56−103875。 (4)所定の電流を通電したときの電圧を測定し、それ
を予め定めた基準値と比較する方法:特開昭59−48
661、特開平3−95872、特開平8−25457
3、特開平8−55642、特開平9−33620。 (5)充放電のサイクル数をカウントする方法:特開平
5−74501、特開平6−20724。
[0004] However, at present, there is no example in which the degree of deterioration is sufficiently detected, and in many cases, only deterioration of battery characteristics is roughly detected and estimated. The secondary battery deterioration detection methods proposed so far can be broadly classified into the following methods. (1) Methods for measuring the internal impedance of a battery: JP-A-53-42327, JP-A-61-170678, JP-A-1-253175, JP-A-4-141966, JP-A-8-254573, and JP-A-8-273705. (2) A method of measuring the internal impedance of a battery with signals having different frequencies and processing the value according to an arithmetic expression: JP-A-8-43506, JP-A-8-250159. (3) A method for measuring the electric resistance of an active material which is a component of a battery: JP-A-56-103875. (4) A method of measuring a voltage when a predetermined current is applied and comparing the voltage with a predetermined reference value:
661, JP-A-3-95872, JP-A-8-25457
3, JP-A-8-55642 and JP-A-9-33620. (5) Method for counting the number of charge / discharge cycles: JP-A-5-74501 and JP-A-6-20724.

【0005】[0005]

【発明が解決しようとする課題】上述の(1)から
(4)に記載した劣化検出方法では、電池特性の劣化
は、当然その使用方法、使用環境などにより大きく依存
しており、これらをまとめて普遍的に把握することが難
しいという課題がある。また、以上の劣化検出方法を用
いると、機器使用中または充電作業中での測定が困難で
あり、電池の充放電を一時中止し、別途特定の操作を行
い、劣化度合いの検出を行う必要がある。
In the deterioration detection methods described in (1) to (4) above, the deterioration of the battery characteristics naturally depends greatly on the use method, use environment, and the like. Is difficult to grasp universally. In addition, when the above deterioration detection method is used, it is difficult to perform measurement during use of the device or during charging work, and it is necessary to temporarily stop charging and discharging of the battery and perform a specific operation separately to detect the degree of deterioration. is there.

【0006】また、上述の(5)に記載した検出方法で
は、充放電のサイクル数を単純にカウントしても、浅い
充放電の繰り返しと完全放電に近い深い充放電の繰り返
しとでは、同じ充放電サイクルを経た電池であってもそ
の性能が異なり、正確に劣化度合いを推定することは当
然困難である。
Further, in the detection method described in (5) above, even if the number of charge / discharge cycles is simply counted, the same charge / discharge cycle is repeated when the charge / discharge cycle is shallow and when the charge / discharge cycle is close to complete discharge. Even a battery that has undergone a discharge cycle has a different performance, and it is naturally difficult to accurately estimate the degree of deterioration.

【0007】[0007]

【課題を解決するための手段】懸かる課題に鑑み、本発
明の二次電池の劣化検出方法では、被検二次電池を規定
電流値で定電流充電し、前記充電により前記二次電池の
閉路電圧が規定値に到達した後、連続して前記電池の閉
路電圧を前記規定電圧値に維持する定電流定電圧充電行
程において、前記定電流充電時の充電容量を測定し、前
記充電容量と前記電池の定格容量の相関関係から前記電
池の劣化の度合いを推定する。
In view of the problem to be solved, in the method for detecting deterioration of a secondary battery according to the present invention, a test secondary battery is charged at a constant current with a specified current value, and the secondary battery is closed by the charging. After the voltage reaches the specified value, in a constant current constant voltage charging step of continuously maintaining the closed circuit voltage of the battery at the specified voltage value, the charging capacity during the constant current charging is measured, and the charging capacity and the charging capacity are measured. The degree of deterioration of the battery is estimated from the correlation between the rated capacities of the batteries.

【0008】また、被検二次電池を規定電流値で定電流
放電し、前記定電流放電により前記二次電池の閉路電圧
が規定電圧値に到達した後、前記二次電池を規定電流値
で充電する操作を施した時、前記定電流充電の開始時か
ら前記二次電池の閉路電圧が規定電圧値に到達するまで
の充電容量を測定し、前記充電容量と前記電池の定格容
量の相関関係から前記電池の劣化の度合いを推定する。
Further, the test secondary battery is discharged at a constant current at a specified current value, and after the closed circuit voltage of the secondary battery reaches a specified voltage value by the constant current discharge, the secondary battery is discharged at a specified current value. When the charging operation is performed, the charging capacity from the start of the constant current charging to the closing voltage of the secondary battery reaching a specified voltage value is measured, and the correlation between the charging capacity and the rated capacity of the battery is measured. From the above, the degree of deterioration of the battery is estimated.

【0009】また、被検二次電池を規定電流値で定電流
充電し、前記二次電池の閉路電圧が規定値に到達した
後、連続して前記電池の閉路電圧を前記規定値に維持す
る定電圧充電において、前記定電流充電により前記二次
電池の閉路電圧が規定値に到達し、充電方法が前記定電
圧充電に切り替わった後の前記電池に流れる電流降下量
を測定し、前記電流降下量と前記電池の定格容量との相
関関係から二次電池の劣化度合いを推定する。
Further, the test secondary battery is charged at a constant current with a specified current value, and after the closed circuit voltage of the secondary battery reaches a specified value, the closed circuit voltage of the battery is continuously maintained at the specified value. In the constant voltage charging, the closed circuit voltage of the secondary battery reaches the specified value by the constant current charging, and the amount of current drop flowing through the battery after the charging method is switched to the constant voltage charging is measured. The degree of deterioration of the secondary battery is estimated from the correlation between the amount and the rated capacity of the battery.

【0010】また、被検二次電池を規定電流値で定電流
充電し、前記二次電池の閉路電圧が規定値に到達した
後、連続して前記電池の閉路電圧を前記規定値に維持す
る定電圧充電において、前記定電流充電により前記二次
電池の閉路電圧が規定値に到達し、充電方法が前記定電
圧充電に切り替わった後の前記電池に流れる電流変化率
から前記電池の劣化度合いを推定する。
In addition, the test secondary battery is charged at a constant current at a specified current value, and after the closed circuit voltage of the secondary battery reaches a specified value, the closed circuit voltage of the battery is continuously maintained at the specified value. In the constant-voltage charging, the closed-circuit voltage of the secondary battery reaches a specified value by the constant-current charging, and the degree of deterioration of the battery is determined from the rate of change in current flowing through the battery after the charging method is switched to the constant-voltage charging. presume.

【0011】また、被検二次電池を所定の電流値で充電
し、前記二次電池の電圧が所定値に到達した後、連続し
て前記電池の電圧を前記所定の電圧値に維持する充電を
行う定電流定電圧充電において、充電開始後、定電流充
電から定電圧充電に切り替わった後の前記電池に流れる
電流値を測定し、前記電流値と二次電池の電池容量との
相関関係から二次電池の劣化度合いを推定する。
[0011] In addition, after the voltage of the secondary battery reaches a predetermined value, the voltage of the battery is continuously maintained at the predetermined voltage value. In the constant current constant voltage charging to perform, after the start of charging, measure the current value flowing to the battery after switching from the constant current charging to the constant voltage charging, from the correlation between the current value and the battery capacity of the secondary battery Estimate the degree of deterioration of the secondary battery.

【0012】さらに、以上の劣化検出機能を充電器に具
備することにより、効果的に充電を行うことが出来る。
Further, by providing the above-described deterioration detecting function in the charger, charging can be performed effectively.

【0013】[0013]

【発明の実施の形態】現在、電子機器の高性能化、小型
化に伴い、それらの電源機器の電源として小型で高容量
なリチウムイオン二次電池が使用されている。ところ
が、現在のリチウムイオン二次電池は、極端な高温環境
下で保存したり、過大な充放電サイクルを繰り返した場
合、電池特性の劣化を引き起し、その後、例え所定の充
電を行ったとしても、最初の電池容量まで回復しないと
いう現象が生じる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As electronic devices have become higher in performance and smaller in size, small and high-capacity lithium ion secondary batteries have been used as power supplies for these power devices. However, current lithium-ion secondary batteries are stored under extremely high-temperature environments, or when repeated charge / discharge cycles are repeated, cause deterioration of battery characteristics, and then, for example, if a predetermined charge is performed. However, a phenomenon occurs in which the battery capacity does not recover to the initial battery capacity.

【0014】このような劣化の原因は、電池内活物質の
劣化や電解液の分解などが原因と考えられる。劣化現象
は、電池内での電極反応と密接に絡み合っているため、
劣化が起こると二次電池の充放電挙動は大きく影響を受
ける。
The cause of such deterioration is considered to be the deterioration of the active material in the battery or the decomposition of the electrolyte solution. Since the degradation phenomenon is closely entangled with the electrode reaction in the battery,
When the deterioration occurs, the charge / discharge behavior of the secondary battery is greatly affected.

【0015】現在市販されてるリチウム二次電池の充電
方法は、電池電圧が設定値に達するまで定電流で充電
し、その後、この設定電圧に電池電圧を維持し、所定時
間または充電電流が所定値にまで減少したとき、充電完
了とするいわゆる定電流定電圧充電方法が採用されてい
る。上記充電方法では、通常の定電圧時の設定電圧は、
4.1V〜4.2Vが採用されている。
[0015] The method of charging a lithium secondary battery currently on the market is to charge the battery with a constant current until the battery voltage reaches a set value, and then maintain the battery voltage at this set voltage for a predetermined time or when the charging current is reduced to a predetermined value. A so-called constant current / constant voltage charging method is adopted in which the charging is completed when the charging is reduced to the following. In the above charging method, the set voltage at the time of normal constant voltage is
4.1V to 4.2V is adopted.

【0016】リチウムイオン電池を、極端な高温環境下
で放置したり、過大な充放電サイクルを繰り返すと、容
量劣化が起こる。この時、上述の充電方法により充電す
ると、定電流充電時の電圧は、容量劣化を起こす前のも
のに比べ、電圧の増加率が大きくなり、より早く所定電
圧に到達する。これは、前述に示したように、電池内活
物質の劣化や、電解液の分解などにより電池内の電気化
学的な分極電圧が増加したことに対応しており、この現
象を利用すると、定電流充電時の充電容量から電池の劣
化度合いが推定できる。
If the lithium ion battery is left in an extremely high temperature environment or if an excessive charge / discharge cycle is repeated, capacity deterioration occurs. At this time, when charging is performed by the above-described charging method, the voltage at the time of constant current charging has a larger rate of increase in voltage than that before the capacity deterioration occurs, and reaches the predetermined voltage more quickly. This corresponds to the increase in the electrochemical polarization voltage in the battery due to the deterioration of the active material in the battery and the decomposition of the electrolytic solution, as described above. The degree of deterioration of the battery can be estimated from the charging capacity during current charging.

【0017】通常、定電流定電圧充電方式を採用する
と、充電を行い、定電流充電から定電圧充電に切り替わ
った後は、実際に流れる電流は徐々に減少し、所定の電
流値にまで減少したとき、充電行程は完了する。この定
電圧充電時の電流挙動、特に電流変化率は、前述のよう
に電池の劣化度合いに対応している。従って、劣化度合
いが増加すれば電流変化率は大きく変わるため、逆に、
定電圧充電時の電流変化率から電池の劣化度合いを推定
することができる。
Normally, when a constant current / constant voltage charging method is adopted, charging is performed, and after switching from constant current charging to constant voltage charging, the current actually flowing gradually decreases to a predetermined current value. At that time, the charging process is completed. The current behavior during constant voltage charging, particularly the current change rate, corresponds to the degree of battery deterioration as described above. Therefore, if the degree of deterioration increases, the current change rate changes greatly.
The degree of battery deterioration can be estimated from the current change rate during constant voltage charging.

【0018】また、劣化度合いが更に増した場合、充電
を開始するとごく短時間に設定上限電圧に達し、定電圧
充電に切り替わる。この時、流れる電流値は、劣化度合
いに対応しおり、定電流充電から定電圧充電に切り替わ
った際、電池の分極電圧に相当する分の、いわゆる電流
値のドロップ(電流降下)が現れる。この現象は電池の
劣化に起因し、例えば、活物質量の減少、電池内のリチ
ウムイオンの拡散が速やかに行われていないことなどに
よるもので、この電流値のドロップも劣化度合いに依存
して変化する。したがって、定電流充電時の充電容量が
求められない場合でも定電圧充電時のドロップ、又はド
ロップ後の電流値から、電池の劣化度合いが推定でき
る。
Further, when the degree of deterioration further increases, when charging is started, the voltage reaches the set upper limit voltage in a very short time, and is switched to constant voltage charging. At this time, the flowing current value corresponds to the degree of deterioration, and when switching from constant current charging to constant voltage charging, a so-called current value drop (current drop) corresponding to the polarization voltage of the battery appears. This phenomenon is caused by the deterioration of the battery, for example, due to a decrease in the amount of active material, diffusion of lithium ions in the battery is not performed quickly, and the drop of this current value also depends on the degree of deterioration. Change. Therefore, even when the charging capacity at the time of constant current charging is not obtained, the degree of deterioration of the battery can be estimated from the drop at the time of constant voltage charging or the current value after the drop.

【0019】上記のようにいずれの場合でも、充電時に
測定を行えるので、測定条件が統一されるため、測定値
の比較が容易になる。
As described above, in any case, since the measurement can be performed during charging, measurement conditions are unified, and comparison of measured values becomes easy.

【0020】以下の実施例に於いて本発明の劣化検出方
法を具体的に記述する。 (実施例1)被検電池の劣化を促進させるため、85℃
の雰囲気中で、0時間、1週間、2週間、3週間の合計
4種類の高温保存を行った。これらの電池に対し、本発
明による二次電池の劣化検出測定を行い、本発明の検出
方法の有効性を検証した。評価方法を以下に示す。
The following embodiments will specifically describe the deterioration detection method of the present invention. (Example 1) In order to accelerate the deterioration of the test battery, 85 ° C
, A total of four types of high-temperature storage were performed for 0 hour, 1 week, 2 weeks, and 3 weeks. For these batteries, the deterioration detection measurement of the secondary battery according to the present invention was performed, and the effectiveness of the detection method of the present invention was verified. The evaluation method is described below.

【0021】被検電池は、公称放電容量720mAh、
公称電圧3.6Vのリチウムイオン電池を用いた。充電
条件は本電池の推奨充電方法である定電流−定電圧充電
法に従い、定電流500mAを通電し、定電圧4.1V
に達したところで定電圧4.1Vに維持するという方法
で合計2時間で充電終了とし、この状態を電池残存容量
100%とした。
The test battery has a nominal discharge capacity of 720 mAh,
A lithium ion battery having a nominal voltage of 3.6 V was used. The charging conditions are as follows: a constant current-constant voltage charging method, which is a recommended charging method for the present battery, and a constant current of 500 mA and a constant voltage of 4.1 V
Was reached, charging was completed in a total of 2 hours by a method of maintaining a constant voltage of 4.1 V, and this state was defined as a battery remaining capacity of 100%.

【0022】高温保存は、電池残存容量100%の状態
で85℃で保存し、保存時間は0時間、1週間、2週
間、3週間の計4種類の時間で行った。
The high-temperature storage was performed at 85 ° C. with 100% of the remaining battery capacity, and the storage time was 0 hours, 1 week, 2 weeks, and 3 weeks, for a total of four times.

【0023】次に、上述の保存終了後、各電池に対して
放電試験を行った。試験方法は、上述の保存を経た各電
池に対して、144mAの定電流で放電を行い、3.0
Vの放電停止電圧までの容量を測定した。以上の放電試
験は20℃の恒温槽内で行った。
Next, after the above-mentioned storage was completed, a discharge test was performed on each battery. The test method was as follows: each battery that had undergone the above storage was discharged at a constant current of 144 mA,
The capacity up to the discharge stop voltage of V was measured. The discharge test described above was performed in a thermostat at 20 ° C.

【0024】図1に前記放電試験の結果を示した。図1
において、縦軸は電圧を、また横軸は720mAhを1
00%として放電容量を示した。図1より、85℃での
保存時間が、1週間、2週間、3週間と増加するのに伴
い、電池容量が徐々に減少し劣化が進んでいることが示
された。
FIG. 1 shows the results of the discharge test. FIG.
, The vertical axis represents voltage, and the horizontal axis represents 720 mAh.
The discharge capacity was shown as 00%. FIG. 1 shows that as the storage time at 85 ° C. increases to one week, two weeks, and three weeks, the battery capacity gradually decreases and deterioration progresses.

【0025】次に、これらの電池に対して、充電を行っ
た。充電方法は前述の通り、定電流−定電圧充電法に従
い、定電流500mAを通電し、定電圧4.1Vに達し
たところで定電圧4.1Vに維持するという方法で合計
2時間で充電終了とした。その結果を図2に示した。図
2では、前記充電行程における、定電流充電時の電池電
圧の変化を示した。図2において、縦軸は電圧を、また
横軸は720mAhを100%として充電容量を示し
た。
Next, these batteries were charged. As described above, according to the constant current-constant voltage charging method, a constant current of 500 mA is applied, and when the constant voltage reaches 4.1 V, the voltage is maintained at 4.1 V. did. The result is shown in FIG. FIG. 2 shows a change in the battery voltage during the constant current charging in the charging process. In FIG. 2, the vertical axis represents the voltage, and the horizontal axis represents the charging capacity with 720 mAh as 100%.

【0026】図2より、保存時間が1週間、2週間、3
週間と増加していくに伴い、定電流充電時の電圧の立ち
上がりが大きくなることが判明した。この結果により、
前述の高温保存を経た電池を充電すると、定電流充電か
ら定電圧充電に切り替わる時間が短くなり、定電流充電
時の充電容量が徐々に減少することを見出した。
FIG. 2 shows that the storage time was one week, two weeks,
It was found that as the number of weeks increased, the voltage rise during constant current charging increased. With this result,
It has been found that when a battery that has undergone the above-described high-temperature storage is charged, the time required for switching from constant-current charging to constant-voltage charging is shortened, and the charging capacity during constant-current charging is gradually reduced.

【0027】この結果と、図1に示した結果を合わせて
考慮すると、高温保存により電池の放電容量は劣化し、
この様子は懸かる電池を定電流で充電すると、充電時間
に対する電池電圧の増加率で、逆に検知できるものであ
った。
When this result and the result shown in FIG. 1 are considered together, the discharge capacity of the battery deteriorates due to high-temperature storage.
In this case, when the suspended battery is charged with a constant current, the rate of increase of the battery voltage with respect to the charging time can be detected in reverse.

【0028】つぎに、上述の充電において、定電流充電
行程の後の、低電圧充電時の充電容量を測定し、表1に
記載した。表1には、高温保存時間、放電容量、定電流
充電時の充電容量、定電圧充電時の充電容量、及び劣化
度合いを併せて記載した。ここで用いた劣化度合いは、
720mAhを100%の放電容量として。劣化度合い
(%)=100−保存後の放電容量とした。
Next, in the above-mentioned charging, the charging capacity at the time of low-voltage charging after the constant current charging step was measured, and is shown in Table 1. Table 1 also shows the high-temperature storage time, discharge capacity, charge capacity at constant current charge, charge capacity at constant voltage charge, and the degree of deterioration. The degree of deterioration used here is
720 mAh as 100% discharge capacity. Deterioration degree (%) = 100−discharge capacity after storage.

【0029】[0029]

【表1】 [Table 1]

【0030】表1において、前記高温保存時間の増加に
伴ない、電池の放電容量と、定電流充電時の充電容量は
直線的に減少することがわかる。これより、定電流充電
時の充電容量から二次電池の劣化度合いを推定できるこ
とを見出した。
It can be seen from Table 1 that the discharge capacity of the battery and the charge capacity during constant current charging decrease linearly with an increase in the high-temperature storage time. From this, it has been found that the degree of deterioration of the secondary battery can be estimated from the charging capacity during constant current charging.

【0031】また、本実施例では、電池容量と定電流充
電時の充電容量との対応表から二次電池の劣化度合いを
推定したが、逆に、前記電池容量と前記定電流充電容量
との関係式を求め、この関係式から劣化度合いを推定す
ることもできる。
In this embodiment, the degree of deterioration of the secondary battery is estimated from the correspondence table between the battery capacity and the charging capacity at the time of constant current charging. A relational expression may be obtained, and the degree of deterioration may be estimated from the relational expression.

【0032】更に、定電流充電時の充電容量以外に、定
電流時の所定電圧に到達するまでの充電時間からも二次
電池の劣化度合いを推定できることは言うまでもない。
Further, it goes without saying that the degree of deterioration of the secondary battery can be estimated from the charging time required to reach a predetermined voltage at the time of constant current, in addition to the charge capacity at the time of constant current charging.

【0033】(実施例2)前述の実施例1では、85℃
で3週間までの保存試験を行ったが、本実施例では更に
2ヶ月までの保存試験を行い、本発明の検知方法の評価
を行った。
(Embodiment 2) In Embodiment 1 described above, the temperature was 85 ° C.
In this example, a storage test was performed for up to three weeks. In this example, a storage test was performed for up to two months, and the detection method of the present invention was evaluated.

【0034】本実施例で使用した被検電池は前記実施例
1で使用したものと同じ型式のものを使用し、また試験
方法は、85℃での保存時間の設定以外は、実施例1と
同一とした。
The test battery used in this example was of the same type as that used in Example 1, and the test method was the same as in Example 1 except that the storage time at 85 ° C. was set. Identical.

【0035】85℃での保存を経た試験電池の、放電試
験の結果を図3に示した。図3において、縦軸は電圧、
横軸は放電容量である。図3より、保存時間が1ヶ月、
2ヶ月では非常に劣化が進み、電池容量が公称電池容量
の半分近くになることを確認した。
FIG. 3 shows the results of a discharge test of the test battery that had been stored at 85 ° C. In FIG. 3, the vertical axis is voltage,
The horizontal axis is the discharge capacity. According to FIG. 3, the storage time is one month,
It was confirmed that the battery deteriorated extremely in two months, and the battery capacity was nearly half of the nominal battery capacity.

【0036】また、前記実施例1での評価と同じく、定
電流定電圧充電における定電圧充電時の電流と充電時間
の関係を図4に記載した。充電モードは、まず500m
Aの定電流で充電を行い、電池電圧が4.1Vに到達し
たところで定電圧モードに切り替えた。この切り替えた
時を時間0として、4.1Vの電圧印加中に電池に流れ
る電流を測定した。図4では、この電流値を縦軸に、ま
たその時間を横軸に示した。
FIG. 4 shows the relationship between the current and the charging time during the constant voltage charging in the constant current constant voltage charging, as in the evaluation in the first embodiment. Charge mode is 500m first
The battery was charged with the constant current of A and switched to the constant voltage mode when the battery voltage reached 4.1 V. The time when this switching was performed was set to time 0, and the current flowing through the battery during application of a voltage of 4.1 V was measured. In FIG. 4, this current value is shown on the vertical axis, and the time is shown on the horizontal axis.

【0037】図4において、充電行程において、定電流
充電から定電圧充電モードに切り替えた直後に、電流の
急激なドロップが現れ、これが試験電池の高温保存時間
に対応していることが判明した。
In FIG. 4, immediately after switching from the constant-current charging to the constant-voltage charging mode in the charging process, a sharp drop in the current appears, which corresponds to the high-temperature storage time of the test battery.

【0038】表2に二次電池の劣化度合い、電池容量及
び電圧降下量の関係を記載した。ここで用いた劣化度合
いは、劣化度合い(%)=100−電池容量、として計
算したものである。
Table 2 shows the relationship between the degree of deterioration of the secondary battery, the battery capacity, and the amount of voltage drop. The degree of deterioration used here is calculated as follows: degree of deterioration (%) = 100−battery capacity.

【0039】[0039]

【表2】 [Table 2]

【0040】表2より、保存時間の増加と伴に、電池の
放電容量が低下し、この時、上述の通り、充電時の定電
流から定電圧充電に切り替わった直後の電流降下量が増
加することを見出した。この現象を利用すると、定電圧
充電時の電流降下量から二次電池の劣化度合いが推定で
きる。
According to Table 2, the discharge capacity of the battery decreases as the storage time increases. At this time, as described above, the amount of current drop immediately after switching from constant current during charging to constant voltage charging increases. I found that. Using this phenomenon, the degree of deterioration of the secondary battery can be estimated from the amount of current drop during constant voltage charging.

【0041】また、本実施例では、電池容量と定電圧充
電時の電流降下量との対応表から二次電池の劣化度合い
を推定したが、前記電池容量と前記定電圧充電時の電流
降下量との関係式を求め、この関係式から二次電池の劣
化度合いを推定することも可能である。
In this embodiment, the degree of deterioration of the secondary battery is estimated from the correspondence table between the battery capacity and the current drop amount at the time of constant voltage charging. It is also possible to obtain a relational expression with respect to and estimate the degree of deterioration of the secondary battery from this relational expression.

【0042】(実施例3)被検電池の劣化を促進させる
ため、85℃の雰囲気中で、0時間、1週間、2週間、
3週間の合計4種類の高温保存を行った。これらの電池
に対し、本発明による二次電池の劣化検出測定を行い、
本発明の検出方法の有効性を検証した。評価方法を以下
に示す。
Example 3 In order to accelerate the deterioration of the test battery, the test was conducted at 85 ° C. for 0 hour, 1 week, 2 weeks,
A total of four types of high-temperature storage were performed for three weeks. For these batteries, the deterioration detection measurement of the secondary battery according to the present invention is performed,
The effectiveness of the detection method of the present invention was verified. The evaluation method is described below.

【0043】被検電池は前記実施例1及び2において使
用したものと同一のものを用いた。充電条件は本電池の
推奨充電方法である定電流−定電圧充電法に従い、定電
流500mAを通電し、定電圧4.1Vに達したところ
で定電圧4.1Vに維持するという方法で合計2時間で
充電終了とし、この状態を電池残存容量100%とし
た。高温保存は、電池残存容量100%の状態で85℃
で保存し、保存時間は0時間、1週間、2週間、3週間
の計4種類の時間で行った。
The test battery used was the same as that used in Examples 1 and 2. The charging condition is a constant current-constant voltage charging method, which is a recommended charging method of the present battery, and a constant current of 500 mA is applied. When the constant voltage reaches 4.1 V, the constant voltage is maintained at 4.1 V for a total of 2 hours. At the end of charging, and this state was defined as a battery remaining capacity of 100%. High temperature storage is 85 ° C with 100% remaining battery capacity
And the storage time was 0 hours, 1 week, 2 weeks, and 3 weeks, for a total of four times.

【0044】次に、上述の保存終了後、各電池に対して
放電を行った。放電方法は、上述の保存を経た各電池に
対して、144mAの定電流で放電を行い、3.0Vの
放電停止電圧までの容量を測定した。以上の放電試験は
20℃の恒温槽内で行った。
Next, after the above-mentioned storage was completed, each battery was discharged. The battery was discharged at a constant current of 144 mA for each of the batteries that had undergone the above-mentioned storage, and the capacity up to a discharge stop voltage of 3.0 V was measured. The discharge test described above was performed in a thermostat at 20 ° C.

【0045】以上の行程を経た被検電池に対して、定電
流定電圧充電を行った。この充電行程における定電圧充
電時の電流変化を図5に記載した。図5の横軸には充電
時間を、縦軸には電流を示した。
The test battery having undergone the above steps was charged at a constant current and a constant voltage. FIG. 5 shows the current change during constant voltage charging in this charging process. The horizontal axis of FIG. 5 shows the charging time, and the vertical axis shows the current.

【0046】図5に示したように、定電圧充電時の電流
値は定電圧充電時間に伴い減少していくが、電流挙動は
電池の高温保存時間つまり、劣化度合いに対応している
ことが分かる。定電圧充電時に被検電池に流れる電流の
時間変化率をΔIとし、これと劣化度合いの関係を表3
に示した。前記ΔIは、ΔI=(I1−I2)/(t1
2)、により求めた。ここで、I1及びI2はそれぞれ
定電圧充電時間t1及びt2後の電流値である。
As shown in FIG. 5, the current value during constant voltage charging decreases with the constant voltage charging time, but the current behavior corresponds to the high temperature storage time of the battery, that is, the degree of deterioration. I understand. The time change rate of the current flowing through the test battery during constant voltage charging is defined as ΔI, and the relationship between this and the degree of deterioration is shown in Table 3.
It was shown to. The ΔI is ΔI = (I 1 −I 2 ) / (t 1
t 2 ). Here, I 1 and I 2 are current values after the constant voltage charging times t 1 and t 2 , respectively.

【0047】[0047]

【表3】 [Table 3]

【0048】表3において、保存期間の増加に伴い電流
変化率ΔIは減少していき、劣化度合いは電流変化率Δ
Iに比例して増加することが判明した。この結果によ
り、定電流定電圧充電行程において、定電流充電後の定
電圧充電時の電流の時間変化率ΔIから二次電池の劣化
度合いを検知することが出来る。
In Table 3, as the storage period increases, the current change rate ΔI decreases, and the degree of deterioration is determined by the current change rate Δ
It was found to increase in proportion to I. As a result, in the constant current / constant voltage charging process, the degree of deterioration of the secondary battery can be detected from the time change rate ΔI of the current during constant voltage charging after constant current charging.

【0049】また、本実施例では、電池容量と定電圧充
電時の電流変化率との関係式から二次電池の劣化度合い
を推定したが、前記電池容量と前記定電圧充電時の電流
変化率との対応表を求め、この関係式から二次電池の劣
化度合いを推定できる。
In this embodiment, the degree of deterioration of the secondary battery is estimated from the relational expression between the battery capacity and the current change rate during constant voltage charging. However, the battery capacity and the current change rate during constant voltage charging are estimated. And a degree of deterioration of the secondary battery can be estimated from this relational expression.

【0050】(実施例4)以上の実施例では、被検電池
を高温雰囲気に長時間置くことにより、電池の劣化を加
速させ、これに対して本発明の検知方法が有効であるこ
とを示した。
(Embodiment 4) The above embodiment shows that the battery is accelerated by putting the test battery in a high-temperature atmosphere for a long time, and that the detection method of the present invention is effective for this. Was.

【0051】次に、本実施例では、充放電サイクルによ
る電池の劣化に対する本発明の検知方法の有用性を示
す。
Next, this embodiment shows the usefulness of the detection method of the present invention with respect to battery deterioration due to charge / discharge cycles.

【0052】劣化を促進させるため以下の方法で充放電
サイクル試験を実施し、1サイクル、200サイクル、
1200サイクルの合計3種類の充放電サイクルを経過
した被検電池に対し、本願による二次電池の劣化検出測
定を行い、その妥当性を検証した。測定方法を以下に示
す。
A charge / discharge cycle test was performed by the following method to promote deterioration, and one cycle, 200 cycles,
For the test battery after a total of three kinds of charge / discharge cycles of 1200 cycles, the deterioration detection measurement of the secondary battery according to the present application was performed, and its validity was verified. The measuring method is described below.

【0053】被検電池は前記実施例1及び2において使
用したものと同一のものを用いた。充電条件は本電池の
推奨充電方法である定電流−定電圧充電法に従い、定電
流500mAを通電し、定電圧4.1Vに達したところ
で定電圧4.1Vに維持するという方法で合計2時間で
充電終了とし、この状態を電池残存容量100%とし
た。本実施例での電池試験は全て20℃の恒温槽で行っ
た。
The test batteries used were the same as those used in Examples 1 and 2. The charging condition is a constant current-constant voltage charging method, which is a recommended charging method of the present battery, and a constant current of 500 mA is applied. When the constant voltage reaches 4.1 V, the constant voltage is maintained at 4.1 V for a total of 2 hours. At the end of charging, and this state was defined as a battery remaining capacity of 100%. All the battery tests in this example were performed in a thermostat at 20 ° C.

【0054】上述の充放電サイクルにおける、1サイク
ル目、200サイクル目、1200サイクル目の放電試
験の結果を図6に示した。図6において、縦軸は電圧、
横軸は放電容量である。図6より、充放電のサイクルが
進むにつれて、電池の放電容量が徐々に減少することが
示された。
FIG. 6 shows the results of the discharge test at the first cycle, the 200th cycle, and the 1200th cycle in the above charge / discharge cycle. In FIG. 6, the vertical axis is voltage,
The horizontal axis is the discharge capacity. FIG. 6 shows that as the charge / discharge cycle progresses, the discharge capacity of the battery gradually decreases.

【0055】次に、1サイクル目、200サイクル目、
1200サイクル目の充電試験の結果を図7に示した。
図7において、縦軸は電圧、横軸は定電流充電時の充電
容量を720mAhを100%として%で示した。図7
より、サイクル数が増加していくに伴い、定電流充電時
の電圧の立ち上がりが大きくなり、より早期に定電流か
ら定電圧充電に切り替わることが判明した。この結果に
より、充放電サイクルを経た電池に、上述の定電流定電
圧充電を行うと、定電流充電時の充電時間つまり充電容
量が徐々に減少することが確認された。
Next, the first cycle, the 200th cycle,
FIG. 7 shows the results of the charge test at the 1200th cycle.
In FIG. 7, the vertical axis represents the voltage, and the horizontal axis represents the charging capacity at the time of constant current charging as 720% with 720 mAh as 100%. FIG.
Thus, it was found that as the number of cycles increases, the rise of the voltage at the time of constant current charging increases, and the constant current charging switches to constant voltage charging earlier. From this result, it was confirmed that when the above-described constant current and constant voltage charging was performed on a battery that had undergone a charge / discharge cycle, the charging time during constant current charging, that is, the charging capacity gradually decreased.

【0056】充放電のサイクル数、放電容量と劣化の度
合い、及び、定電流定電圧充電における定電流充電時の
充電容量と定電圧充電時の充電容量を表4に記載した。
ここで用いた劣化度合いは、劣化度合い(%)=100
−電池容量、として計算したものである。
Table 4 shows the number of charge / discharge cycles, the discharge capacity and the degree of deterioration, and the charge capacity at constant current charge and the charge capacity at constant voltage charge in constant current constant voltage charge.
The degree of deterioration used here is the degree of deterioration (%) = 100
-Battery capacity.

【0057】[0057]

【表4】 [Table 4]

【0058】表4において、充放電のサイクルが多くな
るにつれて、放電容量と定電流充電時の充電容量が減少
することが判る。この結果により、本発明の検知方法で
ある、定電流充電時の充電容量から二次電池の劣化度合
いを検知することの妥当性を示すことが出来た。
Table 4 shows that the discharge capacity and the charge capacity at the time of constant current charging decrease as the number of charge / discharge cycles increases. From these results, it was possible to show the validity of detecting the degree of deterioration of the secondary battery from the charging capacity during constant current charging, which is the detection method of the present invention.

【0059】(実施例5)本実施例では、請求項5記載
の検出方法の妥当性を検証した。試験電池はリチウムイ
オン電池(上限電圧4.1V、下限電圧3.0V、電池
容量720mAh)を用い、被検電池の劣化を促進させ
るため、85℃の雰囲気中で保存した。電池の保存は、
残存容量100%の状態で、85℃の環境温度で1ヶ月
及び2ヶ月間放置した。
(Embodiment 5) In this embodiment, the validity of the detection method according to claim 5 was verified. As a test battery, a lithium ion battery (upper limit voltage: 4.1 V, lower limit voltage: 3.0 V, battery capacity: 720 mAh) was used and stored in an atmosphere at 85 ° C. in order to accelerate deterioration of the test battery. Battery storage is
It was left for 1 month and 2 months at an environmental temperature of 85 ° C. with 100% of the remaining capacity.

【0060】以上の保存が終了した後、電池の充放電試
験を行い、容量劣化の度合いを確認した。充電条件は本
電池の充電方法である定電流定電圧充電法に従った。定
電流充電後の定電圧充電は、電池の閉路電圧を4.1V
で維持し、定電流および定電圧充電併せて、合計2時間
の充電で充電終了とした。放電条件は144mAの定電
流モードで行い、放電停止電圧はすべて共通の3.0V
とした。以上の充放電試験は20℃の恒温槽で行った。
After the above storage was completed, a charge / discharge test of the battery was performed to confirm the degree of capacity deterioration. The charging conditions were in accordance with the constant current and constant voltage charging method for charging the battery. The constant voltage charging after the constant current charging is performed by setting the closed circuit voltage of the battery to 4.1 V.
, And the charging was completed after charging for a total of 2 hours in combination with constant current and constant voltage charging. The discharge was performed in a constant current mode of 144 mA, and the discharge stop voltage was 3.0 V, which is a common value.
And The above charge / discharge test was performed in a thermostat at 20 ° C.

【0061】放電試験の結果を図3に示した。第3図に
おいて、縦軸は電圧、横軸は放電容量である。第3図よ
り、保存時間が長くなるのに伴い劣化が進むことが確認
された。
FIG. 3 shows the results of the discharge test. In FIG. 3, the vertical axis represents voltage, and the horizontal axis represents discharge capacity. From FIG. 3, it was confirmed that the deterioration progressed as the storage time became longer.

【0062】以上記載の高温保存を行った電池を用い、
以下のプロセスに従い、請求項5記載の電池の劣化の度
合いの検出方法を評価した。まず、上記の方法で1ヶ月
および2ヶ月間の高温保存を行った被検電池を、500
mAの定電流で充電し、被検電池の閉路電圧が4.1V
となったところで、4.1Vの定電圧充電モードに切り
替えた。定電圧充電の開始後、100秒経たとき、被検
電池に流れている電流値Iv(100秒)を測定し、そ
の値を表5に記載した。表5では、被検電池の保存期
間、保存後の電池容量、劣化度合いを併せて記載した。
ここで用いた劣化度合いは、劣化度合い(%)=100
−電池容量(%)として計算したものである。
Using the battery stored at the high temperature described above,
According to the following process, the method for detecting the degree of deterioration of the battery according to claim 5 was evaluated. First, a test battery that had been stored at a high temperature for one month and two months by the above-described method was used for 500 hours.
The battery is charged at a constant current of mA and the closed circuit voltage of the test battery is 4.1 V
Then, the mode was switched to the 4.1 V constant voltage charging mode. 100 seconds after the start of the constant voltage charging, the current value Iv (100 seconds) flowing in the test battery was measured, and the value is shown in Table 5. Table 5 also shows the storage period of the test battery, the battery capacity after storage, and the degree of deterioration.
The degree of deterioration used here is the degree of deterioration (%) = 100
-Calculated as battery capacity (%).

【0063】[0063]

【表5】 [Table 5]

【0064】表5より、被検電池は、高温保存の期間と
共に劣化が進み、同時にIv(100秒)が減少するこ
とが判明した。つまり、このIv(100秒)を測定す
ることにより、被検電池の劣化度合いを検出することが
可能であることを見出した。劣化の度合いを定量化する
ためには、例えば、実際にIvを測定し、これを予め定
めたIv−劣化度対応表と照合することで行うことが出
来る。
From Table 5, it was found that the test battery deteriorated with the high-temperature storage period, and at the same time, the Iv (100 seconds) decreased. That is, it has been found that the degree of deterioration of the test battery can be detected by measuring the Iv (100 seconds). In order to quantify the degree of deterioration, for example, it is possible to actually measure Iv and compare it with a predetermined Iv-deterioration degree correspondence table.

【0065】以上のプロセスでは、定電流定電圧充電の
際の定電流モードを500mAで行ったが、同じプロセ
スを1500mAで行い、定電圧充電モードに切り替わ
った後の、被検電池に流れる電流値を測定した。その結
果を図8に記載した。この測定で使用した被検電池は、
上述の高温保存を2か月行ったものである。第8図にお
いて、定電流充電から定電圧充電に切り替えた後、電流
ドロップが現れるが、その後の電流値は、定電流充電の
電流値の差によらず一定値を示した。この結果により、
本測定で得られる劣化度合いの値は、定電流充電の通電
電流の値による影響が無いものであることを確認した。
In the above process, the constant current mode at the time of constant current and constant voltage charging was performed at 500 mA. However, the same process was performed at 1500 mA, and the current value flowing through the test battery after switching to the constant voltage charging mode was performed. Was measured. The results are shown in FIG. The test battery used in this measurement was
The above-mentioned high-temperature storage was performed for two months. In FIG. 8, after switching from constant-current charging to constant-voltage charging, a current drop appears, but the current value after that showed a constant value irrespective of the difference in the current value of the constant-current charging. With this result,
It was confirmed that the value of the degree of deterioration obtained in this measurement was not affected by the value of the current supplied during constant-current charging.

【0066】また本実施例では、電池容量と定電圧充電
時の電流値との対応表から二次電池の劣化度合いを推定
したが、前記電池容量と前記定電圧充電時の電流値との
関係式を求め、この関係式から二次電池の劣化度合いを
推定できる。
Further, in this embodiment, the degree of deterioration of the secondary battery is estimated from the correspondence table between the battery capacity and the current value during constant voltage charging, but the relationship between the battery capacity and the current value during constant voltage charging is estimated. An expression is obtained, and the degree of deterioration of the secondary battery can be estimated from this relational expression.

【0067】本実施例では、高温保存による劣化につい
て示したが、充放電サイクルによる劣化についても同様
のことが言える。
In this embodiment, the deterioration due to high-temperature storage has been described, but the same can be said for the deterioration due to charge / discharge cycles.

【0068】以上の実施例では、本発明の検出方法につ
いて示したが、この検出手段を二次電池の充電器に内蔵
することにより、個々の電池の状態により充電方法の最
適制御を行うことが出来る。
In the above embodiments, the detection method of the present invention has been described. However, by incorporating this detection means in the charger of the secondary battery, it is possible to perform optimal control of the charging method according to the state of each battery. I can do it.

【0069】[0069]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、通常想定される電池の劣化モード、つまり
高温保存と充放電サイクルにより劣化を起こした電池の
劣化度合いを、高精度に検知することができる。
As is apparent from the above embodiments, according to the present invention, the degradation mode of a battery which is normally assumed, that is, the degree of degradation of a battery which has been degraded by high-temperature storage and charge / discharge cycles can be accurately determined. Can be detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の検知方法に関する第1の実施例の評価
に使用した、保存時間の異なる電池の放電曲線を示した
FIG. 1 is a diagram showing discharge curves of batteries having different storage times used for evaluation of a first embodiment of the detection method of the present invention.

【図2】本発明の検知方法に関する第1の実施例の評価
に使用した、保存時間の異なる電池の充電曲線を示した
FIG. 2 is a diagram showing charging curves of batteries having different storage times used for evaluating the first embodiment of the detection method of the present invention.

【図3】本発明の検知方法に関する第2の実施例の評価
に使用した、保存時間の異なる電池の放電曲線を示した
FIG. 3 is a diagram showing discharge curves of batteries having different storage times and used for evaluation of a second embodiment relating to the detection method of the present invention.

【図4】本発明の検知方法に関する第2の実施例の評価
に使用した、保存時間の異なる電池の定電圧充電時の電
流と充電時間との関係を示した図
FIG. 4 is a diagram showing the relationship between the current and the charging time during constant voltage charging of batteries having different storage times and used in the evaluation of the second embodiment relating to the detection method of the present invention.

【図5】本発明の検知方法に関する第3の実施例の評価
に使用した、保存時間の異なる電池の定電圧充電時の電
流と充電時間との関係を示した図
FIG. 5 is a diagram showing the relationship between the current and the charging time during constant voltage charging of batteries having different storage times and used for evaluation of the third embodiment of the detection method of the present invention.

【図6】本発明の検知方法に関する第4の実施例の評価
に使用した、充放電サイクル数の異なる電池の定電流放
電時の電圧と放電時間との関係を示した図
FIG. 6 is a diagram showing the relationship between the voltage and the discharge time at the time of constant current discharge of batteries having different numbers of charge / discharge cycles used in the evaluation of the fourth embodiment relating to the detection method of the present invention.

【図7】本発明の検知方法に関する第4の実施例の評価
に使用した、充放電サイクル数の異なる電池の定電流充
電時の電圧と充電時間との関係を示した図
FIG. 7 is a diagram showing the relationship between the voltage and the charging time at the time of constant current charging of batteries having different numbers of charge / discharge cycles used for evaluation of the fourth embodiment relating to the detection method of the present invention.

【図8】本発明の検知方法に関する第5の実施例の評価
に使用した、定電圧充電時の電流と充電時間との関係を
示した図
FIG. 8 is a diagram showing a relationship between a current at the time of constant voltage charging and a charging time, which was used for evaluation of a fifth embodiment relating to the detection method of the present invention.

フロントページの続き (72)発明者 山田 義則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued on the front page (72) Inventor Yoshinori Yamada 1006 Kadoma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. (72) Inventor Kenichi Takeyama 1006 Odakadoma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検二次電池を規定電流値で定電流充電
し、前記充電により前記二次電池の閉路電圧が規定値に
到達した後、連続して前記電池の閉路電圧を前記規定電
圧値に維持する定電流定電圧充電行程において、前記定
電流充電時の充電容量を測定し、前記充電容量と前記電
池の定格容量の相関関係から前記電池の劣化の度合いを
推定することを特徴とする二次電池の劣化検出方法。
1. A test secondary battery is charged at a constant current with a specified current value, and after the closed voltage of the secondary battery reaches a specified value by the charging, the closed circuit voltage of the battery is continuously reduced to the specified voltage. In the constant current / constant voltage charging step of maintaining the value, the charging capacity during the constant current charging is measured, and the degree of deterioration of the battery is estimated from the correlation between the charging capacity and the rated capacity of the battery. To detect the deterioration of the secondary battery.
【請求項2】 被検二次電池を規定電流値で定電流放電
し、前記定電流放電により前記二次電池の閉路電圧が規
定電圧値に到達した後、前記二次電池を規定電流値で充
電する操作を施した時、前記定電流充電の開始時から前
記二次電池の閉路電圧が規定電圧値に到達するまでの充
電容量を測定し、前記充電容量と前記電池の定格容量の
相関関係から前記電池の劣化の度合いを推定することを
特徴とする二次電池の劣化検出方法。
2. The test secondary battery is discharged at a constant current at a specified current value, and after the closed circuit voltage of the secondary battery reaches a specified voltage value by the constant current discharge, the secondary battery is discharged at a specified current value. When the charging operation is performed, the charging capacity from the start of the constant current charging to the closing voltage of the secondary battery reaching a specified voltage value is measured, and the correlation between the charging capacity and the rated capacity of the battery is measured. A method for detecting deterioration of a secondary battery, comprising estimating a degree of deterioration of the battery from the following.
【請求項3】 被検二次電池を規定電流値で定電流充電
し、前記二次電池の閉路電圧が規定値に到達した後、連
続して前記電池の閉路電圧を前記規定値に維持する定電
圧充電において、前記定電流充電により前記二次電池の
閉路電圧が規定値に到達し、充電方法が前記定電圧充電
に切り替わった後の前記電池に流れる電流降下量を測定
し、前記電流降下量と前記電池の定格容量との相関関係
から二次電池の劣化度合いを推定することを特徴とする
二次電池の劣化検出方法。
3. The test secondary battery is charged at a constant current with a specified current value, and after the closed circuit voltage of the secondary battery reaches a specified value, the closed circuit voltage of the battery is continuously maintained at the specified value. In the constant voltage charging, the closed circuit voltage of the secondary battery reaches the specified value by the constant current charging, and the amount of current drop flowing through the battery after the charging method is switched to the constant voltage charging is measured. A method for detecting deterioration of a secondary battery, comprising estimating a degree of deterioration of the secondary battery from a correlation between an amount and a rated capacity of the battery.
【請求項4】 被検二次電池を規定電流値で定電流充電
し、前記二次電池の閉路電圧が規定値に到達した後、連
続して前記電池の閉路電圧を前記規定値に維持する定電
圧充電において、前記定電流充電により前記二次電池の
閉路電圧が規定値に到達し、充電方法が前記定電圧充電
に切り替わった後の前記電池に流れる電流変化率から前
記電池の劣化度合いを推定することを特徴とする二次電
池の劣化検出方法。
4. The test secondary battery is charged at a constant current at a specified current value, and after the closed circuit voltage of the secondary battery reaches a specified value, the closed circuit voltage of the battery is continuously maintained at the specified value. In the constant-voltage charging, the closed-circuit voltage of the secondary battery reaches a specified value by the constant-current charging, and the degree of deterioration of the battery is determined from the rate of change in current flowing through the battery after the charging method is switched to the constant-voltage charging. A method for detecting deterioration of a secondary battery, comprising estimating the deterioration.
【請求項5】 被検二次電池を所定の電流値で充電し、
前記二次電池の電圧が所定値に到達した後、連続して前
記電池の電圧を前記所定の電圧値に維持する充電を行う
定電流定電圧充電において、充電開始後、定電流充電か
ら定電圧充電に切り替わった後の前記被検電池に流れる
電流値を測定し、前記電流値と二次電池の電池容量との
相関関係から二次電池の劣化度合いを推定することを特
徴とする二次電池の劣化検出方法。
5. A test secondary battery is charged at a predetermined current value,
After the voltage of the secondary battery reaches a predetermined value, in the constant-current constant-voltage charging in which charging is continuously performed to maintain the voltage of the battery at the predetermined voltage value, after the start of charging, the constant-current charging to the constant voltage. A secondary battery characterized by measuring a current value flowing through the test battery after switching to charging, and estimating a degree of deterioration of the secondary battery from a correlation between the current value and a battery capacity of the secondary battery. Deterioration detection method.
【請求項6】 請求項1、2、3、4、または5記載の
劣化検出機能を具備したことを特徴とする充電器。
6. A charger provided with the deterioration detection function according to claim 1, 2, 3, 4, or 5.
JP07381098A 1998-01-19 1998-03-23 Secondary battery deterioration detection method and charger equipped with deterioration detection function Expired - Fee Related JP3460567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07381098A JP3460567B2 (en) 1998-01-19 1998-03-23 Secondary battery deterioration detection method and charger equipped with deterioration detection function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-7288 1998-01-19
JP728898 1998-01-19
JP07381098A JP3460567B2 (en) 1998-01-19 1998-03-23 Secondary battery deterioration detection method and charger equipped with deterioration detection function

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002224574A Division JP3687636B2 (en) 1998-01-19 2002-08-01 Secondary battery degradation detection method and charger equipped with degradation detection function

Publications (2)

Publication Number Publication Date
JPH11271408A true JPH11271408A (en) 1999-10-08
JP3460567B2 JP3460567B2 (en) 2003-10-27

Family

ID=26341564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07381098A Expired - Fee Related JP3460567B2 (en) 1998-01-19 1998-03-23 Secondary battery deterioration detection method and charger equipped with deterioration detection function

Country Status (1)

Country Link
JP (1) JP3460567B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586940B2 (en) 2000-03-13 2003-07-01 Nippon Telegraph And Telephone Corporation Capacity estimation method, degradation estimation method and degradation estimation apparatus for lithium-ion cells, and lithium-ion batteries
US6683440B2 (en) 2001-05-29 2004-01-27 Canon Kabushiki Kaisha Detecting method for detecting internal information of a rechargeable battery, detecting apparatus for detecting internal information of a rechargeable battery, apparatus in which said detecting method is applied, apparatus including said detecting apparatus, and storage medium in which a software program of said detecting method is stored
DE10164770B4 (en) * 2000-03-13 2006-07-20 Nippon Telegraph And Telephone Corp. Lithium-ion cell capacity estimation for electronic devices, involves estimating capacity of cell based on elapsed time from time when charge voltage reaches specified value to time when charge condition is changed
JP2008072842A (en) * 2006-09-14 2008-03-27 Ntt Facilities Inc Rechargeable battery pack system and control method for charging of battery pack
JP2009280175A (en) * 2008-05-26 2009-12-03 Nippon Soken Inc Charge control device for secondary battery
JP2010073657A (en) * 2008-09-22 2010-04-02 Nissan Motor Co Ltd Method for controlling charge of lithium secondary battery, device for controlling charge, and vehicle
WO2010064392A1 (en) * 2008-12-05 2010-06-10 パナソニック株式会社 Battery pack
WO2011065009A1 (en) * 2009-11-27 2011-06-03 パナソニック株式会社 Method for charging lithium-ion secondary battery and battery pack
JP2016539320A (en) * 2013-10-01 2016-12-15 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method and apparatus for evaluating deterioration state of lithium battery
JP2016223964A (en) * 2015-06-02 2016-12-28 三菱電機株式会社 Method and device for diagnosing deterioration of power storage device
CN107942261A (en) * 2017-12-29 2018-04-20 上海电气集团股份有限公司 The method of estimation and system of battery charge state
WO2019037109A1 (en) * 2017-08-25 2019-02-28 深圳市云中飞网络科技有限公司 Terminal device, adapter, battery safety monitoring method and monitoring system
JP2021105557A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Inspection method of power storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315232A (en) * 1993-04-26 1994-11-08 Sanyo Electric Co Ltd Charger
JPH0819192A (en) * 1994-06-28 1996-01-19 Mitsuoka Denki Seisakusho:Kk Charging apparatus
JPH1152033A (en) * 1997-08-07 1999-02-26 Mitsubishi Motors Corp Degradation judging device of battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315232A (en) * 1993-04-26 1994-11-08 Sanyo Electric Co Ltd Charger
JPH0819192A (en) * 1994-06-28 1996-01-19 Mitsuoka Denki Seisakusho:Kk Charging apparatus
JPH1152033A (en) * 1997-08-07 1999-02-26 Mitsubishi Motors Corp Degradation judging device of battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586940B2 (en) 2000-03-13 2003-07-01 Nippon Telegraph And Telephone Corporation Capacity estimation method, degradation estimation method and degradation estimation apparatus for lithium-ion cells, and lithium-ion batteries
DE10164770B4 (en) * 2000-03-13 2006-07-20 Nippon Telegraph And Telephone Corp. Lithium-ion cell capacity estimation for electronic devices, involves estimating capacity of cell based on elapsed time from time when charge voltage reaches specified value to time when charge condition is changed
DE10164771B4 (en) * 2000-03-13 2006-07-20 Nippon Telegraph And Telephone Corp. Capacity estimation method and apparatus for lithium ion cells and lithium ion batteries
DE10164772B4 (en) * 2000-03-13 2006-09-07 Nippon Telegraph And Telephone Corp. Capacity estimation method, degradation estimation method, and degradation estimation apparatus for lithium ion cells and lithium ion batteries
US6683440B2 (en) 2001-05-29 2004-01-27 Canon Kabushiki Kaisha Detecting method for detecting internal information of a rechargeable battery, detecting apparatus for detecting internal information of a rechargeable battery, apparatus in which said detecting method is applied, apparatus including said detecting apparatus, and storage medium in which a software program of said detecting method is stored
JP2008072842A (en) * 2006-09-14 2008-03-27 Ntt Facilities Inc Rechargeable battery pack system and control method for charging of battery pack
JP2009280175A (en) * 2008-05-26 2009-12-03 Nippon Soken Inc Charge control device for secondary battery
JP2010073657A (en) * 2008-09-22 2010-04-02 Nissan Motor Co Ltd Method for controlling charge of lithium secondary battery, device for controlling charge, and vehicle
WO2010064392A1 (en) * 2008-12-05 2010-06-10 パナソニック株式会社 Battery pack
WO2011065009A1 (en) * 2009-11-27 2011-06-03 パナソニック株式会社 Method for charging lithium-ion secondary battery and battery pack
CN102318129A (en) * 2009-11-27 2012-01-11 松下电器产业株式会社 Method for charging lithium-ion secondary battery and battery pack
US8610408B2 (en) 2009-11-27 2013-12-17 Panasonic Corporation Lithium ion secondary battery charging method and battery pack
JP2016539320A (en) * 2013-10-01 2016-12-15 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method and apparatus for evaluating deterioration state of lithium battery
JP2016223964A (en) * 2015-06-02 2016-12-28 三菱電機株式会社 Method and device for diagnosing deterioration of power storage device
WO2019037109A1 (en) * 2017-08-25 2019-02-28 深圳市云中飞网络科技有限公司 Terminal device, adapter, battery safety monitoring method and monitoring system
US11768244B2 (en) 2017-08-25 2023-09-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for monitoring battery safety and terminal device
CN107942261A (en) * 2017-12-29 2018-04-20 上海电气集团股份有限公司 The method of estimation and system of battery charge state
JP2021105557A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Inspection method of power storage device

Also Published As

Publication number Publication date
JP3460567B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
US8179139B2 (en) Rechargeable battery abnormality detection apparatus and rechargeable battery apparatus
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
TWI633694B (en) Detection method of li plating, method and apparatus for charging secondary battery and secondary battery system using the same
CN110521051B (en) Battery management system and method for optimizing internal resistance of battery
CN111796187B (en) Device and method for obtaining precipitation of metal lithium of secondary battery
JP3687636B2 (en) Secondary battery degradation detection method and charger equipped with degradation detection function
CN105759213A (en) Method for measuring storage battery residual capacity SOC
KR20120123346A (en) Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
JP2002017045A (en) Secondary battery device
JP2002058171A (en) Charge control method for secondary battery
WO2019225032A1 (en) Method for ascertaining capacity of storage battery, and capacity-monitoring device
JP3460567B2 (en) Secondary battery deterioration detection method and charger equipped with deterioration detection function
JPH10145979A (en) Charging method for lithium ion battery
US20220413058A1 (en) Apparatus and method for determining degradation state of battery, battery pack and electric vehicle
KR20220034543A (en) Method for estimating state of charge of battery
JP4796784B2 (en) Rechargeable battery charging method
JP6529972B2 (en) In situ recalibration of a reference electrode incorporated into an electrochemical system
JP3174481B2 (en) How to fast charge secondary batteries
US20200006816A1 (en) System and Method for Operating Batteries Based on Electrode Crystal Structure Change
JP2020520624A (en) Battery management system and method for optimizing internal resistance of battery
JP2000278874A (en) Charging of storage battery
CN109991552B (en) Method for estimating residual capacity of battery
JP2002340997A (en) Deterioration judging method and deterioration judging device of lithium secondary battery
JP2004014462A (en) Remaining capacity measurement device of secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees