JPH04248314A - Protective relay for higher harmonics filter facility - Google Patents

Protective relay for higher harmonics filter facility

Info

Publication number
JPH04248314A
JPH04248314A JP3005385A JP538591A JPH04248314A JP H04248314 A JPH04248314 A JP H04248314A JP 3005385 A JP3005385 A JP 3005385A JP 538591 A JP538591 A JP 538591A JP H04248314 A JPH04248314 A JP H04248314A
Authority
JP
Japan
Prior art keywords
current
shunt
judgment
circuit
fundamental wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3005385A
Other languages
Japanese (ja)
Other versions
JP3132011B2 (en
Inventor
Tokuo Emura
徳男 江村
Toyoji Harada
原田 豊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP03005385A priority Critical patent/JP3132011B2/en
Publication of JPH04248314A publication Critical patent/JPH04248314A/en
Application granted granted Critical
Publication of JP3132011B2 publication Critical patent/JP3132011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To realize positive response to short circuit fault or ground fault by detecting current flowing into each higher harmonics shunt, extracting basic wave component and determining a differential current, and then detecting increase/decrease of current for each shunt. CONSTITUTION:Currents flowing through filter circuits 2a-2d comprising series circuits of capacitors, reactors, resistors and the like in respective higher harmonics shunts are detected through current transformers 3a-3d and fed to basic wave extracting circuits 1a-1d comprising higher harmonics damping filters 11a-11d, sampling circuits 12a-12d and effective value operating circuits 13a-13d. Increase/decrease of current in thus extracted basic wave component is decided according to a predetermined decision formula. The output is processed through a logic circuit 5 and a trip command signal is outputted according to a predetermined criterion. According to the invention, the protective relay responds accurately to any fault, including short circuit fault and disconnection, in capacitor elements and filter facilities.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高調波フィルタ設備を
保護するために設けられる高調波フィルタ設備保護リレ
ーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmonic filter equipment protection relay provided for protecting harmonic filter equipment.

【0002】0002

【従来の技術】周波数変換所に代表されるような多量の
高調波電流を発生する所においては、高調波電流を吸収
するために、大地と並列に高調波フィルタ設備が設置さ
れる。
2. Description of the Related Art In places where a large amount of harmonic current is generated, such as a frequency conversion station, harmonic filter equipment is installed in parallel with the ground in order to absorb the harmonic current.

【0003】高調波フィルタ設備は、単一の周波数を除
去するための専用フィルタと、複数の高調波を同時に除
去する兼用フィルタとを組み合わせたもので、例えば基
本波に対して第5次、第11次、第13次の高調波をそ
れぞれ専用フィルタで除去し、それより高次の高調波を
兼用フィルタで除去している。なお、第n(n=5,1
1,13)次高調波を流す分路を第n分路(この分路に
は専用フィルタが設けられている)、それより高い次数
の高調波をまとめて流す分路をHP分路(この分路には
兼用フィルタが設けられている)ということにする。
[0003] Harmonic filter equipment is a combination of a dedicated filter for removing a single frequency and a dual-purpose filter for removing multiple harmonics at the same time. The 11th and 13th harmonics are removed by dedicated filters, and the higher harmonics are removed by a dual purpose filter. Note that the nth (n=5, 1
The shunt that flows the 1st, 13th) order harmonics is called the n-th shunt (this shunt is equipped with a dedicated filter), and the shunt that flows all the higher-order harmonics is called the HP shunt (this shunt is equipped with a dedicated filter). A dual-purpose filter is provided in the shunt).

【0004】この高調波フィルタ設備における事故の1
つとして、高調波フィルタ設備を構成するコンデンサ素
子やリアクトル素子の故障がある。これらの故障を検出
する方法は、インピーダンスを検出する方式を含め、い
くつか考えられるが、各分路に定常的に流れている基本
波電流に注目した分路間の同一相基本波差電流を検出す
る方式が優れた方式として採用されている。ここに、同
一相を見ることとしている理由は、同一相ならば相電圧
の不平衡に左右されないからである。また、インピーダ
ンス方式では周波数変動の影響を受けるという欠点があ
るからである。
[0004] Accident 1 in this harmonic filter equipment
One of these is the failure of capacitor elements and reactor elements that make up the harmonic filter equipment. There are several ways to detect these faults, including a method to detect impedance. The detection method has been adopted as an excellent method. The reason why we are looking at the same phase here is that if it is the same phase, it will not be affected by unbalanced phase voltages. Another reason is that the impedance method has the disadvantage of being affected by frequency fluctuations.

【0005】上記同一相基本波差電流を検出する従来の
アナログ式保護リレーの回路図を図5に示す(日新電機
技報Vol.23.No.2(1978,4)参照)。 同図において、高周波分路として第5分路 5L、第1
1分路11L、第13分路13L、HP分路HPLの4
つが存在し、各分路間の差電流を監視する保護リレーが
図示されている。以下、第5分路 5Lと第11分路1
1Lとの間の差電流を監視する保護リレーについて説明
するが、他の分路間の差電流を監視する保護リレーの動
作も、この保護リレーの動作に類似しているので説明は
省略する。
FIG. 5 shows a circuit diagram of a conventional analog protection relay for detecting the same-phase fundamental wave difference current (see Nissin Electric Technical Report Vol. 23. No. 2 (1978, 4)). In the figure, the fifth branch 5L and the first branch are high frequency branches.
1st branch 11L, 13th branch 13L, HP branch HPL 4
A protection relay is shown that monitors the differential current between each shunt. Below, 5th branch 5L and 11th branch 1
The protective relay that monitors the differential current between the shunt and the shunt 1L will be described, but the operation of the protective relay that monitors the differential current between the other shunts is also similar to that of this protective relay, so the explanation will be omitted.

【0006】図5に示すように、第5分路 5Lにはコ
ンデンサC5 、リアクトルL5 、抵抗R5 等から
なるフィルタ回路が設置され、第11分路11Lにはコ
ンデンサC11、リアクトルL11、抵抗R11等から
なるフィルタ回路が設置され、各分路 5L,11Lを
流れる電流i5,i11を検出する変流器CT1,CT
2,CT3 およびCT4,CT5,CT6 が設置さ
れている。このうち、変流器CT1,CT5 の出力端
は、補償変流器CCT1,CCT2 を通して互いにた
すき掛けに接続されており、変流器CT1,CT5 で
検出され、補償変流器CCT1,CCT2で補正された
電流の差電流Δiがとられる。補償変流器CCT1,C
CT2 は、分路間の基本波定格値の相違を初期調整時
に補正するためのものである。この差電流Δiは、第5
高調波通過フィルタF5 、第11高調波通過フィルタ
F11で各高調波成分が吸収され、残る基本波成分のみ
分路故障検出リレー 5A,11Bに導入される。
As shown in FIG. 5, a filter circuit consisting of a capacitor C5, a reactor L5, a resistor R5, etc. is installed in the fifth branch 5L, and a filter circuit consisting of a capacitor C11, a reactor L11, a resistor R11, etc. is installed in the eleventh branch 11L. A filter circuit consisting of current transformers CT1 and CT is installed to detect currents i5 and i11 flowing through each shunt 5L and 11L.
2, CT3, CT4, CT5, and CT6 are installed. Output terminals of current transformers CT1 and CT5 are cross-connected to each other through compensation current transformers CCT1 and CCT2, and are detected by current transformers CT1 and CT5, and corrected by compensation current transformers CCT1 and CCT2. The difference current Δi between the currents is taken. Compensation current transformer CCT1,C
CT2 is for correcting the difference in fundamental wave rating values between the shunts at the time of initial adjustment. This difference current Δi is the fifth
Each harmonic component is absorbed by the harmonic pass filter F5 and the eleventh harmonic pass filter F11, and only the remaining fundamental wave component is introduced into the shunt failure detection relays 5A and 11B.

【0007】分路故障検出リレー 5Aは、第5分路を
流れる電流i5 を基準 (ipol)にして第5分路
を流れる電流の増加を差電流Δiの増加に基づいて検出
するリレーであり、分路故障検出リレー11Bは、第1
1分路を流れる電流i11を基準にして第11分路を流
れる電流の増加を差電流Δiの減少に基づいて検出する
リレーである。
The shunt failure detection relay 5A is a relay that detects an increase in the current flowing through the fifth shunt based on an increase in the differential current Δi, with the current i5 flowing through the fifth shunt as a reference (ipol), The shunt failure detection relay 11B is the first
This relay detects an increase in the current flowing through the 11th branch based on the current i11 flowing through the 1st branch based on a decrease in the differential current Δi.

【0008】上記のように保護リレーを構成すれば、単
一分路の素子故障、2分路同一相の素子故障といった代
表的な事故に対して保護動作をさせることができる。例
えば、第5分路のコンデンサの素子故障によりインピー
ダンスが減少した場合、第5分路を通過する基本波電流
が増大し、第5−第11分路間の第5分路側差電流が増
大しリレー 5Aが動作するとともに、HP−第5分路
間の第5分路側差電流の増加により、HP−第5分路間
に設けたリレー5Bが動作するので、これらのリレー動
作によりトリップ指令を出すことができる。
By configuring the protection relay as described above, it is possible to perform a protective operation against typical accidents such as element failure in a single branch or element failure in two branches of the same phase. For example, if the impedance decreases due to an element failure of the capacitor in the 5th shunt, the fundamental wave current passing through the 5th shunt will increase, and the 5th shunt side difference current between the 5th and 11th shunts will increase. When relay 5A operates, relay 5B installed between HP and fifth shunt operates due to the increase in the difference current between HP and fifth shunt, so the trip command is issued by the operation of these relays. I can put it out.

【0009】また、2分路同一相のコンデンサの素子故
障、例えば第5分路、HP分路の同一相にコンデンサの
素子故障が発生したときは、第5分路およびHP分路の
電流が増大するために、第5−第11分路間の第5分路
側差電流の増大によりリレー5Aが動作するとともに、
第13−HP分路間のHP分路側差電流の増大によりリ
レーHPBが動作するので、この条件によりトリップ指
令を出すことができる。
Furthermore, when an element failure occurs in the capacitors in the same phase of the two shunts, for example, in the same phase of the 5th shunt and the HP shunt, the current in the 5th shunt and the HP shunt increases. In order to increase the current, the relay 5A operates due to an increase in the fifth branch side difference current between the fifth and eleventh branches, and
Since the relay HPB operates due to an increase in the HP shunt side difference current between the 13th-HP shunt, a trip command can be issued under this condition.

【0010】さらに単一分路の地絡・断線故障、例えば
第5分路のリアクトルL5 の導線部が設置する地絡、
あるいは抵抗R5 の断線が起こった場合には、第5分
路電流は減少し、等価的に第5−第11分路間の第11
分路側差電流が増大し、リレー11Bが動作するととも
に、HP−第5分路間のHP分路側差電流が増大し、リ
レーHPAが動作するので、この条件によりトリップ指
令を出すことができる。
[0010] Furthermore, a single shunt ground fault/disconnection fault, for example, a ground fault installed in the conductor section of reactor L5 of the fifth shunt,
Alternatively, if the resistor R5 is disconnected, the 5th shunt current decreases, and equivalently the 11th shunt current between the 5th and 11th shunts decreases.
The shunt side difference current increases and relay 11B operates, and the HP shunt side difference current between HP and the fifth shunt increases and relay HPA operates, so a trip command can be issued under this condition.

【0011】[0011]

【発明が解決しようとする課題】ところが、上記のコン
デンサ内部素子故障の場合は故障分路の電流は増加する
が、地絡・断線故障の場合は、上記の説明から分かるよ
うに、他の分路の電流が等価的に増加するのみで、電流
の減少を直接検出できなかった。したがって、故障分路
のリレーは動作せず、故障のない分路のリレーが動作す
るという紛らわしさがあった。
[Problem to be Solved by the Invention] However, in the case of the above-mentioned capacitor internal element failure, the current in the faulty branch increases, but in the case of a ground fault or disconnection fault, as can be seen from the above explanation, the current in the faulty branch increases. The current in the path only increased equivalently, and the decrease in current could not be directly detected. Therefore, there was confusion in that the relays in the faulty branch did not operate, but the relays in the non-faulty branch did.

【0012】そこで本発明では、分路間の同一相基本波
差電流を検出することにより、高調波フィルタ設備を保
護する場合において、ディジタルリレー方式を採用する
とともに、高調波フィルタ設備のコンデンサ内部素子の
故障のみならず、高調波フィルタ設備内の地絡故障、断
線故障あるいはリレーにおける電流検出手段である変流
器2次側の短絡、地絡あるいは断線等による電流が減少
する故障に対しても故障分路を確実に検知し応動できる
高調波フィルタ設備の保護リレーを提供することを目的
とする。
Therefore, in the present invention, when protecting harmonic filter equipment by detecting the same-phase fundamental wave difference current between shunts, a digital relay system is adopted, and the internal elements of the capacitor of the harmonic filter equipment are In addition to failures, it can also be used to prevent current reduction due to ground faults or disconnections in harmonic filter equipment, or short circuits, ground faults, or disconnections on the secondary side of current transformers, which are the current detection means in relays. The purpose of the present invention is to provide a protection relay for harmonic filter equipment that can reliably detect and respond to a faulty branch.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の高調波フィルタ設備保護リレーは、各分路
に流入する電流を検出する電流検出手段と、電流検出手
段の検出電流に基づき基本波電流値を求める基本波抽出
手段と、各分路に設けられ、上記基本波抽出手段により
算出された当該分路と他の分路との基本波差電流の変化
から当該分路を流れる電流の増加を判定する第1の判定
手段と、各分路に設けられ、上記基本波抽出手段により
算出された当該分路と他の分路との基本波差電流の変化
から当該分路を流れる電流の減少を判定する第2の判定
手段と、第1の判定手段の判定出力に基づいてトリップ
指令信号を出力する第1のトリップ指令出力手段と第2
の判定手段の判定出力に基づいてトリップ指令信号を出
力する第2のトリップ指令出力手段とを有し、上記第1
のトリップ指令出力手段および第2のトリップ指令出力
手段がともに時限動作をするものであり、上記第1の判
定手段の判定のための判定値が、第2の判定手段の判定
値よりも小さく設定され、上記第1のトリップ指令出力
手段の動作時間が、第2のトリップ指令出力手段の動作
時間よりも長く設定されているものである。
[Means for Solving the Problems] To achieve the above object, the harmonic filter equipment protection relay of the present invention includes a current detecting means for detecting the current flowing into each shunt, and a current detecting means for detecting the current flowing into each shunt. fundamental wave extraction means for determining the fundamental wave current value based on the fundamental wave extraction means; a first determination means for determining an increase in the flowing current; and a first determination means provided for each shunt, which detects the shunt based on the change in the fundamental wave difference current between the shunt and other shunts calculated by the fundamental wave extraction means. a second determination means for determining a decrease in the current flowing through the first determination means; a first trip command output means for outputting a trip command signal based on a determination output of the first determination means;
a second trip command output means for outputting a trip command signal based on the determination output of the determination means;
The trip command output means and the second trip command output means both operate in a timed manner, and the judgment value for the judgment of the first judgment means is set to be smaller than the judgment value of the second judgment means. The operation time of the first trip command output means is set longer than the operation time of the second trip command output means.

【0014】[0014]

【作用】上記の構成の高調波フィルタ設備保護リレーに
よれば、まず、高調波フィルタ設備の各分路に流入する
電流を検出し、基本波抽出手段により基本波成分を抽出
する。そして、各基本波抽出手段により抽出された基本
波に基づき各分路間を流れる電流の差電流を求める。
[Operation] According to the harmonic filter equipment protection relay configured as described above, first, the current flowing into each branch of the harmonic filter equipment is detected, and the fundamental wave component is extracted by the fundamental wave extracting means. Then, the difference current between the currents flowing between each shunt is determined based on the fundamental wave extracted by each fundamental wave extracting means.

【0015】さらに第1の判定手段により分路の電流の
増加を検出し、第2の判定手段により分路の電流の減少
を検出する。このことによって、地絡故障、断線故障等
の電流が減少する故障に対しても、故障分路を直接検出
することができるようになる。この場合、コンデンサ素
子故障のような電流が増加する故障に対しては、非故障
分路に設けた第2の判定手段が分路の電流の減少を検出
し、地絡・断線故障のように電流が減少する故障に対し
ては、非故障分路に設けた第1の判定手段が分路の電流
の増加を検出してしまうおそれもある。
Further, the first determining means detects an increase in the current in the shunt, and the second determining means detects a decrease in the current in the shunt. This makes it possible to directly detect faulty shunts even for faults where current decreases, such as ground faults and disconnection faults. In this case, in the case of a fault where the current increases, such as a capacitor element fault, the second determination means installed in the non-faulty shunt detects a decrease in the current in the shunt, and For a fault in which the current decreases, there is a possibility that the first determination means provided in the non-faulty shunt may detect an increase in the current in the shunt.

【0016】しかし、上記第1のトリップ指令出力手段
および第2のトリップ指令出力手段に時限動作をさせ、
上記第1の判定手段の判定のための判定値を第2の判定
手段のそれよりも小さくし、第1のトリップ指令出力手
段の動作時間を、第2のトリップ指令出力手段の動作時
間よりも長くすることによって(図2参照。同図は本発
明の保護リレーの動作領域を示す。第1の判定手段およ
び第2の判定手段の動作感度となる判定値として、基本
波電流定格値の変化率を用いるものとし、各々の変化率
をPc 、Pg で示し、第1のトリップ指令出力手段
の動作時間をTc 、第2のトリップ指令出力手段の動
作時間をTgで示している。)、コンデンサ内部素子故
障のような電流が増加する故障に対しては、第1の判定
手段によりまず高感度、長時間で電流の増加を検出させ
、地絡・断線故障のように電流が減少する故障に対して
は、第2の判定手段により、短い時間で電流の減少を検
出させることとしたので、上記のような2重検出のおそ
れは回避できる。
However, if the first trip command output means and the second trip command output means are made to operate in a timed manner,
The judgment value for the judgment of the first judgment means is made smaller than that of the second judgment means, and the operation time of the first trip command output means is made shorter than the operation time of the second trip command output means. By increasing the length (see Figure 2), the figure shows the operating range of the protective relay of the present invention.The change in the fundamental current rated value is used as a judgment value that is the operating sensitivity of the first judgment means and the second judgment means. The respective rates of change are shown as Pc and Pg, the operating time of the first trip command output means is shown as Tc, and the operating time of the second trip command output means is shown as Tg.), capacitor For faults where the current increases, such as internal element faults, the first determination means first detects the increase in current with high sensitivity and over a long period of time, and then detects faults where the current decreases, such as ground faults and disconnection faults. In contrast, since the second determining means detects the decrease in current in a short period of time, the possibility of double detection as described above can be avoided.

【0017】このように動作感度、動作時間を変えたの
は、上記のような断線故障、地絡故障では、故障位置に
よっては故障電流が大きくなり故障波及防止の意味から
短時間で検出しなければならないのに対して、分路のコ
ンデンサ内部素子は数多くの小容量コンデンサ素子が直
列並列に接続されて構成されており、その1素子の故障
(短絡故障)によるインピーダンスの減少は僅かで従っ
て電流増加も僅かであり、高感度で検出しなければなら
ず、また系統の過渡現象による不要動作の影響を避ける
ために長時間で動作させなければならないからである。
The reason why the operating sensitivity and operating time are changed in this way is that in the case of the above-mentioned open circuit faults and ground faults, the fault current will be large depending on the fault location, so it must be detected in a short time to prevent the fault from spreading. In contrast, the internal elements of a shunt capacitor are composed of many small-capacity capacitor elements connected in series and parallel, and the impedance decreases only slightly due to a failure of one element (short-circuit failure), so the current This is because the increase is small, it must be detected with high sensitivity, and it must be operated for a long time to avoid the influence of unnecessary operations due to transient phenomena in the system.

【0018】[0018]

【実施例】以下実施例を示す添付図面によって詳細に説
明する。図1は、第5分路 5L、第11分路11L、
第13分路13L、HP分路HPLに接続されたフィル
タ回路2a〜2dと各フィルタ回路2a〜2dを保護す
る保護リレーの回路図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples will be explained in detail below with reference to the accompanying drawings showing examples. FIG. 1 shows the fifth branch 5L, the eleventh branch 11L,
It is a circuit diagram of filter circuits 2a-2d connected to 13th shunt 13L and HP shunt HPL, and a protection relay that protects each filter circuit 2a-2d.

【0019】フィルタ回路2a〜2dは、それぞれコン
デンサ、リアクトル、抵抗等からなる直列回路となって
いる。フィルタ回路2a〜2dに流れる電流は変流器3
a〜3dにより検出され、それぞれ基本波抽出回路1a
〜1dに入力される。基本波抽出回路1a〜1dは、電
流の高調波成分を減衰させる高調波減衰フィルタ11a
〜11dと、基本波の一周期に相当する時間を一定時間
間隔で等分(実施例では12等分している。これ以上で
も以下でもよいことはもちろんである)した各時点ごと
にサンプリングするサンプリング回路12a〜12dと
、サンプリング回路12a〜12dによって取得された
各サンプリング値に対して、サンプリング値の2乗値を
一周期に相当する時間にわたって加算した値を用いて平
方根演算する実効値演算回路13a〜13dとを有して
いる。
Each of the filter circuits 2a to 2d is a series circuit consisting of a capacitor, a reactor, a resistor, and the like. The current flowing through the filter circuits 2a to 2d is connected to the current transformer 3.
a to 3d, each of which is detected by the fundamental wave extraction circuit 1a.
~1d is input. The fundamental wave extraction circuits 1a to 1d include a harmonic attenuation filter 11a that attenuates harmonic components of current.
~11d, and the time corresponding to one period of the fundamental wave is divided into equal intervals at fixed time intervals (in the example, it is divided into 12 equal parts.Of course, it is possible to divide the time into 12 equal parts.It goes without saying that it can be more or less than this) and sampled at each time point. Sampling circuits 12a to 12d, and an effective value calculation circuit that performs a square root calculation using a value obtained by adding the square value of the sampling value over a period of time to each sampling value acquired by the sampling circuits 12a to 12d. 13a to 13d.

【0020】基本波抽出回路1a〜1dによって求めら
れた基本波成分は、判定回路4(差電流算出手段および
判定手段として動作する)に入力され、判定回路4によ
り、各分路を流れる電流の基本波成分の差電流の増減が
判定式(後述)に従って判定される。判定回路4の出力
は論理回路5(トリップ指令出力手段に対応する)によ
り処理され、論理回路5から一定の基準に従ってトリッ
プ指令信号が出力される。
The fundamental wave components obtained by the fundamental wave extraction circuits 1a to 1d are input to a judgment circuit 4 (operating as a difference current calculating means and a judgment means), and the judgment circuit 4 calculates the current flowing through each branch. An increase or decrease in the difference current of the fundamental wave component is determined according to a determination formula (described later). The output of the determination circuit 4 is processed by a logic circuit 5 (corresponding to trip command output means), and the logic circuit 5 outputs a trip command signal according to a certain standard.

【0021】以下、上記保護リレーの動作を説明する。 サンプリング回路12a〜12dにより各時点ごとにサ
ンプリングされたサンプル値im は、実効値演算回路
13a〜13dに入り処理される。  実効値演算回路
13a〜13dによる演算処理手法を簡単に説明すると
、ある時点において、過去のサンプリング値i0 〜i
11の2乗の総和をとってこれに1/12をかけて平方
根をとるのである。つまり、(1) 式により計算する
The operation of the protection relay described above will be explained below. The sample values im sampled at each time point by the sampling circuits 12a to 12d enter the effective value calculation circuits 13a to 13d and are processed. To briefly explain the calculation processing method by the effective value calculation circuits 13a to 13d, at a certain point in time, past sampling values i0 to i
We take the sum of 11 squared, multiply it by 1/12, and take the square root. In other words, it is calculated using equation (1).

【0022】[0022]

【数1】[Math 1]

【0023】上記(1) 式の実効値演算を用いると、
電流が基本波成分を多く含み、高調波成分をあまり含ま
ないときは、基本波の大きさI1 は、実効値演算で高
精度に近似できることがよく知られている(例えば基本
波および第5次高調波のみ存在するとし基本波I1=1
00,第5次高調波I5=3とすると、実効値は100
.0450となり、ほとんど基本波成分に等しい)ので
、(1) 式を近似的に電流の基本波成分の大きさを抽
出する演算式とみなすことができるからである。
[0023] Using the effective value calculation of equation (1) above,
It is well known that when the current contains many fundamental wave components and few harmonic components, the magnitude of the fundamental wave I1 can be approximated with high accuracy by effective value calculation (for example, the fundamental wave and the fifth harmonic). Assuming that only harmonics exist, fundamental wave I1=1
00, 5th harmonic I5 = 3, the effective value is 100
.. 0450, which is almost equal to the fundamental wave component), so equation (1) can be regarded as an arithmetic expression for approximately extracting the magnitude of the fundamental wave component of the current.

【0024】この演算により、過去の1サイクルにおる
値を使って基本波成分を算出することができる。以下、
このようにして求められた各分路を流れる基本波成分を
I(i)〓(i=5,11,13,HP)と表示する。 このようにして得られた各分路を流れる基本波成分は、
判定回路4に入力される。
[0024] Through this calculation, the fundamental wave component can be calculated using the values in one past cycle. below,
The fundamental wave component flowing through each branch path determined in this manner is expressed as I(i) (i=5, 11, 13, HP). The fundamental wave component flowing through each branch obtained in this way is
The signal is input to the determination circuit 4.

【0025】図3は判定回路4の構成図である。第5分
路の基本波出力I(5)は、それぞれ第1判定回路41
a、第2判定回路42aに入り、両判定回路において、
第11分路の基本波出力I(11)、第13分路の基本
波出力I(13)、HP分路の基本波出力I(HP)と
比較判定される。この場合、第1判定回路41aにおけ
る判定式は、第j分路(j= 5,11,13,HP)
 における基本波電流定格値をInjで表わすものとし
、 r5j=In5/Inj を用いて、I(5)−r5jI(j)をΔI5j (j
=11,13,HP) と定義すると、〓ΔI5j≧I
n5×Pc/100 である。ここに、In5は上記の
とおり第5分路における基本波電流定格値、Pc は素
子故障判定のための基本波電流定格値の変化率に相当す
る値(%)である。例えばPc =5%とすると、上記
判定式は、第5分路の電流が、第j分路の電流を基準に
して、第5分路の基本波電流定格値の5%以上増加した
ことを表わすのである。
FIG. 3 is a block diagram of the determination circuit 4. The fundamental wave output I(5) of the fifth branch is the first judgment circuit 41, respectively.
a, enters the second judgment circuit 42a, and in both judgment circuits,
A comparison is made with the fundamental wave output I (11) of the 11th branch, the fundamental wave output I (13) of the 13th branch, and the fundamental wave output I (HP) of the HP branch. In this case, the determination formula in the first determination circuit 41a is the j-th branch (j = 5, 11, 13, HP)
Let Inj represent the fundamental wave current rating value in
= 11, 13, HP), then 〓ΔI5j≧I
It is n5×Pc/100. Here, In5 is the fundamental wave current rating value in the fifth branch as described above, and Pc is a value (%) corresponding to the rate of change of the fundamental wave current rating value for determining element failure. For example, if Pc = 5%, the above judgment formula indicates that the current in the fifth branch has increased by 5% or more of the fundamental wave current rating value of the fifth branch, with respect to the current in the j-th branch. It represents.

【0026】上記第1判定回路41aにおける判定の結
果は、 j=11,j=13,j=HP の場合に対し
てそれぞれとられるので、合計3つの判定信号が出力さ
れることになる。 各判定結果を表わす信号を↑511,↑513,↑5H
Pで表示する。また、第2判定回路42aにおける判定
式は、ΔI5j≦−In5×Pg/100 (j=11
,13,HP)となる。ここに、Pg は地絡・断線の
検出のための基本波電流定格値変化率に相当する値(%
)でありPg >Pc に選ばれている。例えばPg 
=10%とすると、上記判定式は、第5分路の電流が、
第j分路の電流を基準にして、第5分路の基本波電流定
格値の10%以上減少したことを表わす。
The results of the determination in the first determination circuit 41a are taken for the cases of j=11, j=13, and j=HP, so a total of three determination signals are output. Signals representing each judgment result are ↑511, ↑513, ↑5H
Display as P. Further, the determination formula in the second determination circuit 42a is ΔI5j≦−In5×Pg/100 (j=11
, 13, HP). Here, Pg is the value (%
), and Pg > Pc. For example, Pg
= 10%, the above judgment formula shows that the current in the fifth branch is
This indicates that the current in the jth branch is reduced by 10% or more of the rated value of the fundamental wave current in the fifth branch.

【0027】上記第2判定回路42aにおける判定の結
果も、 j=11,j=13,j=HP に対してそれ
ぞれとられるので、合計3つの判定信号が出力されるこ
とになる。各判定結果を表わす信号を↓511,↓51
3,↓5HPで表示する。以上の説明は、第5分路の電
流を判定するための第1判定回路41a、第2判定回路
42aに対するものであったが、第11分路の基本波出
力、第13分路の基本波出力13、HP分路の基本波出
力を判定する場合も、それぞれ第1判定回路、第2判定
回路が設けられている(図示せず)。それぞれの判定回
路の動作式は、上記の場合と同様に表わすことができる
ので省略する。各判定結果を、↑115 ,↑1113
,↑11HP,↓115 ,↓1113,↓11HP,
↑135 ,↑1311,↑13HP,↓135 ,↓
1311,↓13HP,↑HP5 ,↑HP11,↑H
P13,↓HP5 ,↓HP11,↓HP13で表わす
The results of the determination in the second determination circuit 42a are also taken for j=11, j=13, and j=HP, so a total of three determination signals are output. Signals representing each judgment result ↓511, ↓51
3.Display at ↓5HP. The above explanation was for the first judgment circuit 41a and the second judgment circuit 42a for judging the current of the fifth branch, but the fundamental wave output of the eleventh branch and the fundamental wave of the thirteenth branch are Also when determining the fundamental wave output of the output 13 and the HP branch, a first determination circuit and a second determination circuit are provided, respectively (not shown). The operating equations of each determination circuit can be expressed in the same way as in the above case, so their description will be omitted. Each judgment result is ↑115, ↑1113
,↑11HP,↓115 ,↓1113,↓11HP,
↑135, ↑1311, ↑13HP, ↓135, ↓
1311, ↓13HP, ↑HP5, ↑HP11, ↑H
Represented by P13, ↓HP5, ↓HP11, ↓HP13.

【0028】図4は論理回路5の詳細図であり、同図(
a) に示した回路と同図(b) に示した回路とを合
わせたものが論理回路5を構成する。第1判定の結果得
られた各判定信号↑511,↑513,↑5HPは、図
4(a) に示すように、↑511と↑513、↑51
3と↑5HP、↑5HPと↑513の3つの対になって
それぞれAND回路50a,51a,52aに入力り、
各AND回路50a,51a,52aの出力は、OR回
路53aに入り、OR回路53aから出た信号は時限T
c をもつ時限回路54aを通して外部にコンデンサ内
部素子故障検出信号として出力される。また、他の判定
信号↑115 ,↑1113,↑11HP、↑135 
,↑1311,↑13HP、↑HP5 ,↑HP11,
↑HP13も同様にAND回路50b〜52b、50c
〜52c、50d〜52dに入り、OR回路53b〜5
3d、時限回路54b〜54dを通して外部にコンデン
サ内部素子故障検出信号として出力される。この結果、
4つの時限回路54a〜54dからそれぞれ第5分路コ
ンデンサ内部素子故障検出信号、第11分路コンデンサ
内部素子故障検出信号、第13分路コンデンサ内部素子
故障検出信号、HP分路コンデンサ内部素子故障検出信
号が得られる。
FIG. 4 is a detailed diagram of the logic circuit 5.
A combination of the circuit shown in (a) and the circuit shown in (b) of the same figure constitutes the logic circuit 5. Each judgment signal ↑511, ↑513, ↑5HP obtained as a result of the first judgment is as shown in Fig. 4(a).
3 and ↑5HP, and ↑5HP and ↑513, which form three pairs and input to AND circuits 50a, 51a, and 52a, respectively.
The outputs of the AND circuits 50a, 51a, 52a enter the OR circuit 53a, and the signal output from the OR circuit 53a is sent to the time limit T.
The signal is outputted to the outside as a capacitor internal element failure detection signal through a timer circuit 54a having a timer circuit 54a. In addition, other judgment signals ↑115, ↑1113, ↑11HP, ↑135
,↑1311,↑13HP,↑HP5 ,↑HP11,
↑HP13 also has AND circuits 50b to 52b, 50c
~52c, 50d~52d, OR circuit 53b~5
3d, it is outputted to the outside as a capacitor internal element failure detection signal through the timer circuits 54b to 54d. As a result,
The 5th shunt capacitor internal element failure detection signal, the 11th shunt capacitor internal element failure detection signal, the 13th shunt capacitor internal element failure detection signal, and the HP shunt capacitor internal element failure detection signal are output from the four timer circuits 54a to 54d, respectively. I get a signal.

【0029】また、第2判定の結果得られた各判定信号
↓511,↓513,↓5HPも図4(b) に示すよ
うに、↓511と↓513、↓513と↓5HP、↓5
HPと↓513の3つの対になってそれぞれAND回路
55a,56a,57aに入り、各AND回路55a,
56a,57aの出力は、OR回路58aに入り、OR
回路58aから出た信号は時限Tg をもつ時限回路5
9aを通して外部にフィルタ設備内の地絡・断線故障検
出信号として出力される。また、他の判定信号↓115
 ,↓1113,↓11HP、↓135 ,↓1311
,↓13HP、↓HP5 ,↓HP11,↓HP13も
同様にAND回路55b〜57b、55c〜57c、5
5d〜57dに入り、OR回路58b〜58d、時限回
路59b〜59dを通して外部にフィルタ設備内の地絡
・断線故障検出信号として出力される。この結果、4つ
の時限回路59a〜59dからそれぞれ第5分路地絡・
断線故障検出信号、第11分路地絡・断線故障検出信号
、第13分路地絡・断線故障検出信号、第HP分路地絡
・断線故障検出信号が得られる。
[0029] Also, as shown in Fig. 4(b), the respective judgment signals ↓511, ↓513, ↓5HP obtained as a result of the second judgment are ↓511 and ↓513, ↓513 and ↓5HP, ↓5.
HP and ↓513 form three pairs and enter AND circuits 55a, 56a, 57a, respectively, and each AND circuit 55a,
The outputs of 56a and 57a enter the OR circuit 58a and
The signal output from circuit 58a is sent to time limit circuit 5 with time limit Tg.
It is outputted to the outside through 9a as a ground fault/disconnection failure detection signal within the filter equipment. Also, other judgment signals ↓115
,↓1113,↓11HP,↓135 ,↓1311
, ↓13HP, ↓HP5 , ↓HP11, ↓HP13 are similarly AND circuits 55b to 57b, 55c to 57c, 5
5d to 57d, and is output to the outside through OR circuits 58b to 58d and time limit circuits 59b to 59d as a ground fault/disconnection failure detection signal in the filter equipment. As a result, from the four timer circuits 59a to 59d, the fifth alley fault and
A disconnection fault detection signal, an 11th branch alley fault/disconnection fault detection signal, a 13th branch alley fault/disconnection fault detection signal, and a HP branch alley fault/disconnection fault detection signal are obtained.

【0030】以上の論理回路の動作について説明すると
、まず、1つの分路(第i分路とする)のコンデンサ内
部素子故障の時は、その分路の第1判定回路41aから
判定信号↑ij (j≠i)が3つ出るので、その分路
のAND回路が必ず動作し、OR回路の出力が現れる。 したがって、その出力が時間Tc 以上続いたならば、
時限回路から出力を出すことができる。
To explain the operation of the above logic circuit, first, when the internal element of the capacitor in one shunt (referred to as the i-th shunt) fails, a determination signal ↑ij is output from the first determination circuit 41a of that shunt. Since three (j≠i) are output, the AND circuit of that branch is sure to operate, and the output of the OR circuit appears. Therefore, if the output continues for more than time Tc,
An output can be produced from a timed circuit.

【0031】この時、他の分路の第2判定回路42aも
動作し判定信号↓ji を出すことがあるが、当該他の
分路のAND回路が動作しないので、誤った信号を出す
ことはない。また、1つの分路(i分路とする)の地絡
・断線故障の時は、その分路の第2判定回路42aから
判定信号↓ij (j≠i)が3つ出るので、AND回
路が必ず動作し、OR回路の出力が現れる。したがって
、その出力が時間Tg 以上続いたならば、時限回路の
出力を出すことができる。この時、他の分路の第1判定
回路41aも動作し判定信号↑ji を出すことがある
が、AND回路が動作しないので、誤った信号を出すこ
とがないのは上の場合と同じである。
At this time, the second judgment circuit 42a of the other branch may also operate and output the judgment signal ↓ji, but since the AND circuit of the other branch does not operate, there is no possibility of outputting an erroneous signal. do not have. In addition, when there is a ground fault or disconnection fault in one shunt (referred to as the i-branch), three determination signals ↓ij (j≠i) are output from the second determination circuit 42a of that shunt, so an AND circuit is used. always operates, and the output of the OR circuit appears. Therefore, if the output continues for the time Tg or longer, the output of the time limit circuit can be output. At this time, the first judgment circuit 41a of the other branch may also operate and output the judgment signal ↑ji, but since the AND circuit does not operate, no erroneous signal will be output, as in the case above. be.

【0032】次に、2分路(第i分路および第j分路と
する)のコンデンサ内部素子同時故障の時は、第i分路
の第1判定回路から判定信号↑ik (k≠i, k≠
j)が2つ出るので、AND回路が動作し、OR回路の
出力が現れる。また、第j分路の第1判定回路からも判
定信号↑jk (k≠j, k≠i)が2つ出るので、
その分路のAND回路が動作し、OR回路の出力が現れ
る。よって、第i分路のコンデンサ内部素子故障検出信
号と第j分路のコンデンサ内部素子故障検出信号とが両
方出ることになり、両分路のコンデンサ内部素子故障で
あることが分かる。
Next, when the internal elements of the capacitors in the two branches (referred to as the i-th branch and the j-th branch) simultaneously fail, a judgment signal ↑ik (k≠i , k≠
Since two j) are output, the AND circuit operates and the output of the OR circuit appears. Also, two judgment signals ↑jk (k≠j, k≠i) are output from the first judgment circuit of the j-th branch, so
The AND circuit of the branch operates, and the output of the OR circuit appears. Therefore, both the i-th branch capacitor internal element failure detection signal and the j-th branch capacitor internal element failure detection signal are output, indicating that there is a failure in the capacitor internal elements of both branches.

【0033】なお、第2判定回路からも判定信号↓ki
 (k≠i,k≠j)、↓kj (k≠i, k≠j)
が出ることになり、i,j以外の分路のAND回路が2
つ働き、i,j以外の分路の地絡・断線信号が出ること
になるが、地絡・断線検出の基本波電流定格値の変化率
Pg をPc よりも大きく設定しているので、先にコ
ンデンサ内部素子故障検出信号が現れる。したがって、
地絡・断線と判定されるおそれはない。
[0033] Furthermore, the judgment signal ↓ki is also sent from the second judgment circuit.
(k≠i, k≠j), ↓kj (k≠i, k≠j)
will be output, and the AND circuit of the shunts other than i and j will be 2
However, since the rate of change Pg of the fundamental wave current rated value for detecting ground faults and disconnections is set larger than Pc, A capacitor internal element failure detection signal appears. therefore,
There is no risk of it being judged as a ground fault or disconnection.

【0034】次に、2分路(第i分路および第j分路と
する)の地絡・断線故障の時は、第i分路の第2判定回
路から判定信号↓ik (k≠i, k≠j)が2つ出
るので、AND回路が必ず動作し、OR回路の出力が現
れる。また、第j分路の第2判定回路からも判定信号↓
jk (k≠j, k≠i)が2つ出るので、その分路
のAND回路が必ず動作し、OR回路の出力が現れる。 よって、第1分路の地絡・断線故障検出信号と第j分路
の地絡・断線故障検出信号とが両方出ることになり、両
分路の地絡・断線故障であることが分かる。この時、第
1判定回路からも判定信号↑ki (k≠i, k≠j
)、↑kj (k≠i, k≠j)が出ることになり、
i,j以外の分路のAND回路が2つ働き、i,j以外
の分路のコンデンサ内部素子故障信号が出ることになる
が、地絡・断線検出の時限Tg をコンデンサ内部素子
故障検出の時限Tc よりも短くしているので、地絡・
断線検出信号がまず現れ、コンデンサ内部素子故障と判
定することはない。
Next, when there is a ground fault or disconnection fault in the two branches (referred to as the i-th branch and the j-th branch), the judgment signal ↓ik (k≠i , k≠j), the AND circuit always operates and the output of the OR circuit appears. In addition, the judgment signal ↓ is also output from the second judgment circuit of the j-th branch.
Since two jk (k≠j, k≠i) are output, the AND circuit of the branch always operates, and the output of the OR circuit appears. Therefore, both the first branch ground fault/disconnection fault detection signal and the j-th branch ground fault/disconnection fault detection signal are output, indicating that there is a ground fault/disconnection fault in both branches. At this time, the first judgment circuit also sends a judgment signal ↑ki (k≠i, k≠j
), ↑kj (k≠i, k≠j) will appear,
Two AND circuits for the shunts other than i and j will work, and a capacitor internal element failure signal for the shunts other than i and j will be output. Since the time limit is shorter than Tc, ground faults and
The disconnection detection signal appears first, and it is not determined that there is a failure in the capacitor's internal elements.

【0035】以上の結果を表にまとめたのが、表1〜表
4である。表1は1分路のコンデンサ内部素子故障の場
合、表2は2分路のコンデンサ内部素子故障の場合、表
3は1分路の地絡・断線故障の場合、表4は2分路の地
絡・断線故障の場合を示す。表の中で◎は判定回路の判
定出力、×は判定回路の非判定出力を示し、○は判定回
路の判定出力が考えられるが、前述のように、Pg >
Pc、かつTg <Tc としているので、実際には出
力として現れることはない場合を示している。なお、表
1〜表4では、1分路故障は第5分路のみ、2分路故障
は第5分路と第11分路との間の場合を示しているが、
他の分路における故障もまったく同様に考えることがで
きる。
Tables 1 to 4 summarize the above results. Table 1 is for a capacitor internal element failure in 1 branch, Table 2 is for a 2 branch capacitor internal element failure, Table 3 is for a ground fault or disconnection failure in 1 branch, and Table 4 is for a 2 branch capacitor internal element failure. This shows the case of ground fault/disconnection fault. In the table, ◎ indicates the judgment output of the judgment circuit, × indicates the non-judgment output of the judgment circuit, and ○ indicates the judgment output of the judgment circuit, but as mentioned above, Pg >
Since Pc and Tg < Tc, this shows a case that does not actually appear as an output. Note that in Tables 1 to 4, a 1-shunt failure occurs only in the 5th branch, and a 2-shunt failure occurs between the 5th and 11th branches.
Failures in other shunts can be considered in exactly the same way.

【0036】[0036]

【表1】[Table 1]

【0037】[0037]

【表2】[Table 2]

【0038】[0038]

【表3】[Table 3]

【0039】[0039]

【表4】[Table 4]

【0040】なお、本発明は上記の実施例に限定される
ものではなく、例えば基本波成分を求めるのに実効値演
算を行うのでなく、フーリエ積分法等によって求めても
よい。その他本発明の要旨を変更しない範囲内において
、種々の設計変更を施すことが可能である。
It should be noted that the present invention is not limited to the above-described embodiments; for example, instead of performing effective value calculation to obtain the fundamental wave component, the fundamental wave component may be obtained by Fourier integral method or the like. Various other design changes can be made without changing the gist of the present invention.

【0041】[0041]

【発明の効果】以上のように、本発明の高調波フィルタ
設備保護リレーによれば、高調波フィルタ設備の各分路
に流入する電流を検出し、基本波成分を求めた後、分路
を流れる電流の増加および減少を他分路の電流との差の
形で別々に求め、それぞれに対して異なった判定値およ
び時限を適用することによって、コンデンサ内部素子の
故障、フィルタ設備内の地絡・断線等の故障のいずれに
対しても正確に応動する保護リレーを実現することがで
きる。
As described above, according to the harmonic filter equipment protection relay of the present invention, the current flowing into each shunt of the harmonic filter equipment is detected, the fundamental wave component is determined, and then the shunt is By calculating the increase and decrease in the flowing current separately in the form of the difference from the current in other shunts, and applying different judgment values and time limits to each, it is possible to detect failures in internal elements of capacitors and ground faults in filter equipment. - It is possible to realize a protection relay that responds accurately to any failure such as disconnection.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】高調波フィルタ設備保護リレーの具体的構成を
示すブロック図である。
FIG. 1 is a block diagram showing a specific configuration of a harmonic filter equipment protection relay.

【図2】高調波フィルタ設備保護リレーの動作領域を示
すグラフである。
FIG. 2 is a graph showing the operating range of a harmonic filter equipment protection relay.

【図3】判定回路の内部構成を示すブロック図である。FIG. 3 is a block diagram showing the internal configuration of a determination circuit.

【図4】論理回路の内部構成を示す回路図である。FIG. 4 is a circuit diagram showing the internal configuration of a logic circuit.

【図5】従来のアナログ式高調波フィルタ設備保護リレ
ーを示す回路図である。
FIG. 5 is a circuit diagram showing a conventional analog harmonic filter equipment protection relay.

【符号の説明】[Explanation of symbols]

1a〜1d  基本波抽出回路 2a〜2d  フィルタ 3a〜3d  変流器 4  判定回路 5  論理回路 11a〜11d  高調波減衰回路 12a〜12d  サンプリング回路 13a〜13d  実効値演算回路 41a  第1判定回路 41b  第2判定回路 1a-1d Fundamental wave extraction circuit 2a-2d filter 3a-3d Current transformer 4 Judgment circuit 5 Logic circuit 11a-11d Harmonic attenuation circuit 12a-12d Sampling circuit 13a to 13d Effective value calculation circuit 41a First judgment circuit 41b Second judgment circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高調波フィルタ設備の高調波分路間の同一
相基本波差電流を検出することにより、高調波フィルタ
設備を保護するリレーであって、各分路に流入する電流
を検出する電流検出手段と、電流検出手段の検出電流に
基づき基本波電流値を求める基本波抽出手段と、各分路
に設けられ、上記基本波抽出手段により算出された当該
分路と他の分路との基本波差電流の変化から当該分路を
流れる電流の増加を判定する第1の判定手段と、各分路
に設けられ、上記基本波抽出手段により算出された当該
分路と他の分路との基本波差電流の変化から当該分路を
流れる電流の減少を判定する第2の判定手段と、第1の
判定手段の判定出力に基づいてトリップ指令信号を出力
する第1のトリップ指令出力手段と第2の判定手段の判
定出力に基づいてトリップ指令信号を出力する第2のト
リップ指令出力手段とを有し、上記第1のトリップ指令
出力手段および第2のトリップ指令出力手段がともに時
限動作をするものであり、上記第1の判定手段の判定の
ための判定値が、第2の判定手段の判定値よりも小さく
設定され、上記第1のトリップ指令出力手段の動作時間
が、第2のトリップ指令出力手段の動作時間よりも長く
設定されていることを特徴とする高調波フィルタ設備保
護リレー。
[Claim 1] A relay that protects harmonic filter equipment by detecting the same-phase fundamental wave difference current between harmonic shunts of harmonic filter equipment, which detects the current flowing into each shunt. A current detecting means, a fundamental wave extracting means for determining a fundamental wave current value based on the detected current of the current detecting means, and a means for connecting the shunt and other shunts, which are provided in each shunt and calculated by the fundamental wave extracting means. a first determination means for determining an increase in the current flowing through the shunt from a change in the fundamental wave difference current of the shunt; and a first trip command output that outputs a trip command signal based on the determination output of the first determination means. and a second trip command output means for outputting a trip command signal based on the determination output of the second determination means, the first trip command output means and the second trip command output means both having a time limit. The judgment value for the judgment of the first judgment means is set smaller than the judgment value of the second judgment means, and the operation time of the first trip command output means is set to be smaller than the judgment value of the second judgment means. A harmonic filter equipment protection relay characterized in that the operating time of the trip command output means of item 2 is set longer.
JP03005385A 1991-01-21 1991-01-21 Harmonic filter equipment protection relay Expired - Fee Related JP3132011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03005385A JP3132011B2 (en) 1991-01-21 1991-01-21 Harmonic filter equipment protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03005385A JP3132011B2 (en) 1991-01-21 1991-01-21 Harmonic filter equipment protection relay

Publications (2)

Publication Number Publication Date
JPH04248314A true JPH04248314A (en) 1992-09-03
JP3132011B2 JP3132011B2 (en) 2001-02-05

Family

ID=11609704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03005385A Expired - Fee Related JP3132011B2 (en) 1991-01-21 1991-01-21 Harmonic filter equipment protection relay

Country Status (1)

Country Link
JP (1) JP3132011B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089071A (en) * 2021-11-22 2022-02-25 南京熊猫汉达科技有限公司 Device and method for predicting state of harmonic filtering unit of short-wave transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089071A (en) * 2021-11-22 2022-02-25 南京熊猫汉达科技有限公司 Device and method for predicting state of harmonic filtering unit of short-wave transmitter

Also Published As

Publication number Publication date
JP3132011B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
CA2773904C (en) Charging current compensation for line current differential protection
US4329727A (en) Directional power distance relay
US4453191A (en) Overvoltage directional relay
GB1590665A (en) Protective relay circuit for interphase faults
KR20040014364A (en) Directional ground relay system
KR101986036B1 (en) Protection relay device
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
EP2328249B1 (en) Reclosing method for electrical power transmission line
US20100053828A1 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JPH02193524A (en) Protection of transformer and detection of fault winding thereof method thereof
US4819119A (en) Faulted phase selector for single pole tripping and reclosing schemes
US3340432A (en) Electric circuit for detecting faults in capacitors in power systems
JPH04248314A (en) Protective relay for higher harmonics filter facility
JP7418245B2 (en) current differential relay device
JP2001258145A (en) Protective relay system
JPH04121342U (en) Harmonic filter equipment protection relay
US11962140B2 (en) Coordination of protective elements in an electric power system
JPH04140016A (en) Method and device for locating ground fault, and ground fault distance relay
EP1295374B1 (en) Method and device for power system protection
KR20160001907A (en) Rule-based system for setting of protective relays and operating method thereof
US20030107381A1 (en) Method and device for power system protection
JP2969468B2 (en) Disconnection detection method for zero-phase input device
JP3254765B2 (en) Phase protection equipment shunt reactor protection relay
JP2541013B2 (en) Harmonic filter Digital relay for equipment protection
Louderback AEP Experience with Harmonic Filter Bank Protection

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees