JPH04246833A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04246833A
JPH04246833A JP1181191A JP1181191A JPH04246833A JP H04246833 A JPH04246833 A JP H04246833A JP 1181191 A JP1181191 A JP 1181191A JP 1181191 A JP1181191 A JP 1181191A JP H04246833 A JPH04246833 A JP H04246833A
Authority
JP
Japan
Prior art keywords
silicon layer
polycrystalline silicon
gate electrode
concentration impurity
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1181191A
Other languages
Japanese (ja)
Inventor
Kazuyuki Mizushima
水嶋 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1181191A priority Critical patent/JPH04246833A/en
Publication of JPH04246833A publication Critical patent/JPH04246833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce the deterioration in characteristics due to heat carriers by a method wherein high and low concentration impurity diffused regions are selfmatchingly formed by one time ion-implantation step while a part of a gate electrode is overlapped with the part above the low concentration impurity diffused region so as to decrease the field intensity. CONSTITUTION:A coating film 8 is left only on the parts below the sides of stepped part of a polycrystal silicon layer 3 so as to remove all the other parts of the coating film 8. Next, the whole surface is anisotropically etched away by RIE step to remove the surface of a silicon oxide film 6, the coating film 8 and a polycrystal silicon film 3 so that the surface of a gate oxide film 2 may be just exposed to form a gate electrode 3a having oblique parts taking copied sectional shape after that of the coating film 8 on the stepped parts of the polycrystal silicon layer 3. Finally, low concentration impurity diffused regions 5 and high concentration impurity diffused regions 6 are formed beneath the oblique parts of the gate electrode 3a by ion-implanting phosphorus or arsenic using the gate electrode 3a as a mask.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に絶縁ゲート型電界効果トランジスタの製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing an insulated gate field effect transistor.

【0002】0002

【従来の技術】半導体装置の高性能化、高集積化にとも
ない絶縁ゲート型電界効果トランジスタのホットキャリ
アによる特性劣化の問題が顕在化してきている。これは
素子面積の縮小のためソース・ドレイン領域に高濃度の
不純物をドープする必要があり、そのため電界強度が増
加し、ホットキャリアが発生するが、このホットキャリ
アがゲート絶縁膜中にトラップされ見かけ上のしきい電
圧を変えてしまい特性の劣化を引き起こすという現象で
ある。
2. Description of the Related Art As semiconductor devices become more sophisticated and more highly integrated, the problem of deterioration of characteristics of insulated gate field effect transistors due to hot carriers has become apparent. In order to reduce the device area, it is necessary to dope the source/drain region with a high concentration of impurity, which increases the electric field strength and generates hot carriers, which are trapped in the gate insulating film and have an apparent This is a phenomenon in which changing the upper threshold voltage causes deterioration of characteristics.

【0003】この現象を回避するための技術としては従
来、リンとヒ素の拡散係数の差を利用し高濃度不純物拡
散領域の周囲に、同一導電型の低濃度不純物拡散領域を
形成し電界を緩和する方法がDDD(Double  
Diffused  Drain)構造として知られて
いる。また、ゲート電極近傍のみ低濃度不純物拡散領域
とし、側壁部を利用し側壁部の外側に高濃度不純物拡散
領域を形成して電界緩和を行なう方法としてLDD(L
ightly  Doped  Drain )構造が
知られている。
Conventionally, as a technique to avoid this phenomenon, a low concentration impurity diffusion region of the same conductivity type is formed around a high concentration impurity diffusion region by utilizing the difference in diffusion coefficient between phosphorus and arsenic to alleviate the electric field. The method to do this is DDD (Double
This is known as a Diffused Drain structure. In addition, LDD (L
(lightly doped drain) structure is known.

【0004】一方、電界緩和の手段として、低濃度不純
物拡散領域の不純物濃度を一定とするとともに、その直
上にまでゲート電極を配置する方法が提案されている{
テクニカル・ダイジェスト・インターナショナル・エレ
クトロン・デバイシズ・ミーティング(Technic
al  Digest   Internationa
lElectron  Devices  Meeti
ng)1986年,742〜745頁及びテクニカル・
ダイジェスト・インターナショナル・エレクトロン・デ
バイシズ・ミーティング(Technical  Di
gest  International  Elec
tron  Devices  Meeting)19
87年,38〜41 頁参照}。
On the other hand, as a means of alleviating the electric field, a method has been proposed in which the impurity concentration in the low concentration impurity diffusion region is kept constant and the gate electrode is arranged directly above it.
Technical Digest International Electron Devices Meeting (Technic
al Digest International
lElectron Devices Meeti
ng) 1986, pp. 742-745 and technical
Digest International Electron Devices Meeting (Technical Digest)
gest International Elec
tron Devices Meeting)19
1987, pp. 38-41}.

【0005】図3(a)〜(c)は従来の半導体装置の
製造方法を説明するための工程順に示した半導体チップ
の断面図である。
FIGS. 3A to 3C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a conventional method of manufacturing a semiconductor device.

【0006】図3(a)に示すように、素子形成領域を
設けたP型シリコン基板1の表面にゲート酸化膜2を設
け、ゲート酸化膜2の上に多結晶シリコン層3及び酸化
シリコン膜6を順次堆積して設ける。次に、酸化シリコ
ン膜6及び多結晶シリコン層3の上面を選択的に順次エ
ッチングして多結晶シリコン層3の膜厚の一部を残す。 次に、酸化シリコン膜6及び酸化シリコン膜6直下の多
結晶シリコン層3をマスクとしてシリコン基板1にリン
イオンを低濃度にイオン注入し、N型の低濃度不純物拡
散領域5を形成する。
As shown in FIG. 3A, a gate oxide film 2 is provided on the surface of a P-type silicon substrate 1 provided with an element formation region, and a polycrystalline silicon layer 3 and a silicon oxide film are formed on the gate oxide film 2. 6 are sequentially deposited and provided. Next, the upper surfaces of the silicon oxide film 6 and the polycrystalline silicon layer 3 are selectively and sequentially etched to leave a portion of the thickness of the polycrystalline silicon layer 3. Next, using the silicon oxide film 6 and the polycrystalline silicon layer 3 directly under the silicon oxide film 6 as masks, phosphorus ions are implanted into the silicon substrate 1 at a low concentration to form an N-type low concentration impurity diffusion region 5.

【0007】次に、図3(b)に示すように、酸化シリ
コン膜7を全面に堆積する。
Next, as shown in FIG. 3(b), a silicon oxide film 7 is deposited over the entire surface.

【0008】次に、図3(c)に示すように、全面をエ
ッチバックし、酸化シリコン膜6直下の多結晶シリコン
層3の側面にのみ酸化シリコン膜7を残して側壁部7a
を形成し、平面上の酸化シリコン膜7及び多結晶シリコ
ン層3を除去し、ゲート電極3aを形成する。次に、ゲ
ート電極3a及び側壁部7aをマスクとしてヒ素イオン
を高濃度にイオン注入し、低濃度不純物拡散領域5と接
続するN型の高濃度不純物拡散領域4を形成し、LDD
構造のソース・ドレイン領域を形成する。
Next, as shown in FIG. 3C, the entire surface is etched back, leaving the silicon oxide film 7 only on the side surface of the polycrystalline silicon layer 3 directly under the silicon oxide film 6, and forming the side wall portion 7a.
is formed, and the planar silicon oxide film 7 and polycrystalline silicon layer 3 are removed to form a gate electrode 3a. Next, arsenic ions are implanted at a high concentration using the gate electrode 3a and the side wall portions 7a as masks to form an N-type high concentration impurity diffusion region 4 connected to the low concentration impurity diffusion region 5, and the LDD
Form source/drain regions of the structure.

【0009】[0009]

【発明が解決しようとする課題】上述した従来の半導体
装置の製造方法は、電界を緩和するための低濃度不純物
拡散領域と高濃度不純物拡散領域とを形成するために2
回のイオン注入を必要としていた。さらに、低濃度不純
物拡散領域直上にゲート電極の一部を形成するために、
多結晶シリコン層のエッチングを途中で止める必要があ
り、この残膜の膜厚の制御が、不純物分布に大きく影響
するという問題点があった。
[Problems to be Solved by the Invention] In the conventional semiconductor device manufacturing method described above, two steps are required to form a low concentration impurity diffusion region and a high concentration impurity diffusion region for relaxing the electric field.
It required multiple ion implantations. Furthermore, in order to form a part of the gate electrode directly above the low concentration impurity diffusion region,
There is a problem in that it is necessary to stop the etching of the polycrystalline silicon layer midway through, and controlling the thickness of this remaining film greatly affects the impurity distribution.

【0010】0010

【課題を解決するための手段】本発明の半導体装置の第
1の製造方法は、素子形成領域を形成した一導電型半導
体基板の上にゲート絶縁膜を形成し前記ゲート絶縁膜上
に多結晶シリコン層及び絶縁膜を順次堆積する工程と、
前記絶縁膜及び多結晶シリコン層の上面を選択的に順次
エッチングして前記多結晶シリコン層の膜厚の一部を残
し段差部を設ける工程と、前記段差部のみにマスク層を
設けて全面をエッチバックし前記段差部にマスク層の形
状を写した傾斜を有するゲート電極を形成し他の部分の
多結晶シリコン層を除去する工程と、前記ゲート電極を
マスクとして前記半導体基板に逆導電型不純物をイオン
注入し、前記傾斜部の直下に逆導電型の低濃度不純物拡
散領域及び前記低濃度不純物拡散領域と接続する逆導電
型の高濃度不純物拡散領域を形成する工程とを含んで構
成される。
[Means for Solving the Problems] A first method for manufacturing a semiconductor device of the present invention is to form a gate insulating film on a semiconductor substrate of one conductivity type in which an element formation region is formed, and to cover the gate insulating film with a polycrystalline polycrystalline film. a step of sequentially depositing a silicon layer and an insulating film;
a step of selectively and sequentially etching the upper surfaces of the insulating film and the polycrystalline silicon layer to leave a portion of the thickness of the polycrystalline silicon layer to form a stepped portion; and a step of providing a mask layer only on the stepped portion to cover the entire surface. A step of etching back and forming a gate electrode having an inclination that mirrors the shape of the mask layer in the stepped portion and removing other portions of the polycrystalline silicon layer, and using the gate electrode as a mask, impurities of opposite conductivity type are added to the semiconductor substrate. ion implantation to form a low concentration impurity diffusion region of a reverse conductivity type directly under the slope portion and a high concentration impurity diffusion region of a reverse conductivity type connected to the low concentration impurity diffusion region. .

【0011】本発明の半導体装置の第2の製造方法は、
素子形成領域を形成した一導電型半導体基板の上にゲー
ト絶縁膜を形成し前記ゲート絶縁膜上に多結晶シリコン
膜を堆積する工程と、前記多結晶シリコン層を選択的に
エッチングしてゲート電極を形成する工程と、前記ゲー
ト電極を含む表面に薄い多結晶シリコン層及び絶縁膜を
堆積してエッチバックし前記ゲート電極の側面にのみに
残して側壁部を形成する工程と、前記側壁部の絶縁膜を
エッチング除去して前記ゲート電極の側面及び近傍に前
記薄い多結晶シリコン層を残す工程と、前記ゲート電極
及び薄い多結晶シリコン層をマスクとして前記半導体基
板に逆導電型不純物をイオン注入し前記薄い多結晶シリ
コン層の直下に逆導電型の低濃度不純物拡散領域と前記
低濃度不純物拡散領域に接続する高濃度不純物拡散領域
とを形成する工程とを含んで構成される。
A second method for manufacturing a semiconductor device of the present invention includes:
A gate insulating film is formed on the one conductivity type semiconductor substrate on which the element formation region is formed, a polycrystalline silicon film is deposited on the gate insulating film, and a gate electrode is formed by selectively etching the polycrystalline silicon layer. a step of depositing a thin polycrystalline silicon layer and an insulating film on the surface including the gate electrode and etching it back to form a sidewall portion by leaving only on the side surface of the gate electrode; etching away the insulating film to leave the thin polycrystalline silicon layer on the side surface and vicinity of the gate electrode; and ion-implanting impurities of opposite conductivity type into the semiconductor substrate using the gate electrode and the thin polycrystalline silicon layer as a mask. The method includes the step of forming a low concentration impurity diffusion region of an opposite conductivity type directly under the thin polycrystalline silicon layer and a high concentration impurity diffusion region connected to the low concentration impurity diffusion region.

【0012】0012

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0013】図1(a)〜(c)は本発明の第1の実施
例を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 1A to 1C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a first embodiment of the present invention.

【0014】まず、図1(a)に示すように、素子形成
領域を形成したP型シリコン基板1の表面を熱酸化して
ゲート酸化膜2を設け、ゲート酸化膜2の上に厚さ0.
5〜0.8μmの多結晶シリコン層3及び厚さ0.3μ
mの酸化シリコン膜6を順次堆積する。次に、酸化シリ
コン膜6及び多結晶シリコン層3の上面を選択的に順次
エッチングして多結晶シリコン層3の厚さが0.1μm
程度になった時点でエッチングを停止する。
First, as shown in FIG. 1(a), a gate oxide film 2 is formed by thermally oxidizing the surface of a P-type silicon substrate 1 on which an element formation region is formed, and a gate oxide film 2 is formed on the gate oxide film 2 to a thickness of 0. ..
Polycrystalline silicon layer 3 of 5-0.8 μm and thickness 0.3 μm
m silicon oxide films 6 are sequentially deposited. Next, the upper surfaces of the silicon oxide film 6 and the polycrystalline silicon layer 3 are selectively and sequentially etched so that the thickness of the polycrystalline silicon layer 3 is 0.1 μm.
Etching is stopped when it reaches a certain level.

【0015】次に、図1(b)に示すように、回転塗布
法によりシリカフィルムや有機物膜等の塗布膜8を塗布
して全面をエッチバックし、多結晶シリコン層3の段差
部側面の下部にのみ塗布膜8を残して他の塗布膜8を除
去する。ここで、塗布膜8は固形分濃度3〜6%、塗布
回転数3500〜5000rpmで形成する。
Next, as shown in FIG. 1(b), a coating film 8 such as a silica film or an organic film is applied by a spin coating method and the entire surface is etched back to remove the side surface of the stepped portion of the polycrystalline silicon layer 3. The coating film 8 is left only in the lower part and the other coating film 8 is removed. Here, the coating film 8 is formed at a solid content concentration of 3 to 6% and a coating rotation speed of 3500 to 5000 rpm.

【0016】次に、図1(c)に示すように、全面をR
IE(反応性イオンエッチング)法により異方性エッチ
ングしてゲート酸化膜2の表面がちょうど露出するよう
に、酸化シリコン膜6の上面及び塗布膜8並びに多結晶
シリコン層をエッチングして除去し、多結晶シリコン層
3の段差部に塗布膜8の断面形状を写した傾斜部を有す
るゲート電極3aを形成する。次に、ゲート電極3aを
マスクとしてリン又はヒ素イオンをイオン注入し、ゲー
ト電極3aの傾斜部直下のシリコン基板1に低濃度不純
物拡散領域5及び低濃度不純物拡散領域5と接続するシ
リコン基板1に高濃度不純物拡散領域4とを有するソー
ス・ドレイン領域を形成する。
Next, as shown in FIG. 1(c), the entire surface is R
The upper surface of the silicon oxide film 6, the coating film 8, and the polycrystalline silicon layer are etched and removed by anisotropic etching using an IE (reactive ion etching) method so that the surface of the gate oxide film 2 is just exposed; A gate electrode 3a having an inclined portion mirroring the cross-sectional shape of the coating film 8 is formed in a stepped portion of the polycrystalline silicon layer 3. Next, using the gate electrode 3a as a mask, phosphorus or arsenic ions are implanted into the silicon substrate 1 directly under the sloped portion of the gate electrode 3a, into the low concentration impurity diffusion region 5, and into the silicon substrate 1 connected to the low concentration impurity diffusion region 5. A source/drain region having a high concentration impurity diffusion region 4 is formed.

【0017】図2(a)〜(c)は本発明の第2の実施
例を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 2A to 2C are cross-sectional views of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.

【0018】図2(a)に示すように、第1の実施例と
同様の工程によりゲート酸化膜2の上に多結晶シリコン
層3を0.5〜0.8μmの厚さに堆積した後、多結晶
シリコン層3を選択的にエッチングしてゲート電極3a
を形成する。次にゲート電極3aを含む表面に20〜5
0nmの厚さの多結晶シリコン層9を堆積し、多結晶シ
リコン層9の上に窒化シリコン膜10をゲート電極3a
と同じ程度の厚さに堆積する。
As shown in FIG. 2(a), after depositing a polycrystalline silicon layer 3 to a thickness of 0.5 to 0.8 μm on the gate oxide film 2 by the same process as in the first embodiment, , selectively etching the polycrystalline silicon layer 3 to form a gate electrode 3a.
form. Next, on the surface including the gate electrode 3a, 20 to 5
A polycrystalline silicon layer 9 with a thickness of 0 nm is deposited, and a silicon nitride film 10 is formed on the polycrystalline silicon layer 9 as a gate electrode 3a.
deposits to a similar thickness.

【0019】次に、図2(b)に示すように、窒化シリ
コン膜10及び多結晶シリコン層9をエッチバックし、
ゲート電極3aの側面にのみ窒化シリコン膜10及び多
結晶シリコン層9を残して側壁部10aを形成し、他の
部分の窒化シリコン膜10及び多結晶シリコン層9を除
去する。
Next, as shown in FIG. 2(b), the silicon nitride film 10 and the polycrystalline silicon layer 9 are etched back.
Sidewall portions 10a are formed leaving silicon nitride film 10 and polycrystalline silicon layer 9 only on the side surfaces of gate electrode 3a, and other portions of silicon nitride film 10 and polycrystalline silicon layer 9 are removed.

【0020】次に、図2(c)に示すように、側壁部1
0aの窒化シリコン膜10をエッチング除去し、ゲート
電極3aをマスクとしてリン又はヒ素イオンをシリコン
基板にイオン注入し多結晶シリコン層9の直下のN型の
低濃度不純物拡散領域5及び低濃度不純物拡散領域5に
接続する高濃度不純物拡散領域4とを形成する。
Next, as shown in FIG. 2(c), the side wall portion 1
The silicon nitride film 10 of 0a is removed by etching, and phosphorus or arsenic ions are implanted into the silicon substrate using the gate electrode 3a as a mask to form an N-type low concentration impurity diffusion region 5 directly under the polycrystalline silicon layer 9 and low concentration impurity diffusion. A high concentration impurity diffusion region 4 connected to region 5 is formed.

【0021】第2の実施例では、第1の実施例に比べ工
程が一部増加するが、側壁部のエッチングに対するマー
ジンが大きくなりソース・ドレイン領域の寸法制御が容
易になるという利点がある。
In the second embodiment, the number of steps is increased in some steps compared to the first embodiment, but there is an advantage that the margin for etching the sidewall portion is increased and the dimensions of the source/drain regions can be easily controlled.

【0022】[0022]

【発明の効果】以上説明したように本発明は、ソース・
ドレイン領域形成のために、1回のイオン注入工程で高
濃度不純物拡散領域と低濃度不純物拡散領域を自己整合
的に形成でき、また低濃度不純物拡散領域の直上にゲー
ト電極の一部が重なり電界強度を緩和できるため、ホッ
トキャリアによる特性劣化の少ない絶縁ゲート型電界効
果トランジスタを簡単な工程で制御性良く製造できると
いう効果を有する。
[Effects of the Invention] As explained above, the present invention provides source and
To form the drain region, a high-concentration impurity diffusion region and a low-concentration impurity diffusion region can be formed in a self-aligned manner in a single ion implantation process, and a portion of the gate electrode overlaps directly above the low-concentration impurity diffusion region, which reduces the electric field. Since the strength can be relaxed, an insulated gate field effect transistor with less characteristic deterioration due to hot carriers can be manufactured in a simple process with good controllability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を説明するための工程順
に示した半導体チップの断面図である。
FIG. 1 is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための工程順
に示した半導体チップの断面図である。
FIG. 2 is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.

【図3】従来の半導体装置の製造方法を説明するための
工程順に示した半導体チップの断面図である。
FIG. 3 is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1    シリコン基板 2    ゲート酸化膜 3    多結晶シリコン層 3a    ゲート電極 4    高濃度不純物拡散領域 5    低濃度不純物拡散領域 6,7    酸化シリコン膜 7a    側壁部 8    塗布膜 9    多結晶シリコン層 10    窒化シリコン層 10a    側壁部 1 Silicon substrate 2 Gate oxide film 3 Polycrystalline silicon layer 3a Gate electrode 4 High concentration impurity diffusion region 5 Low concentration impurity diffusion region 6,7 Silicon oxide film 7a Side wall part 8 Coating film 9 Polycrystalline silicon layer 10 Silicon nitride layer 10a Side wall part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  素子形成領域を形成した一導電型半導
体基板の上にゲート絶縁膜を形成し前記ゲート絶縁膜上
に多結晶シリコン層及び絶縁膜を順次堆積する工程と、
前記絶縁膜及び多結晶シリコン層の上面を選択的に順次
エッチングして前記多結晶シリコン層の膜厚の一部を残
し段差部を設ける工程と、前記段差部のみにマスク層を
設けて全面をエッチバックし前記段差部にマスク層の形
状を写した傾斜を有するゲート電極を形成し他の部分の
多結晶シリコン層を除去する工程と、前記ゲート電極を
マスクとして前記半導体基板に逆導電型不純物をイオン
注入し、前記傾斜部の直下に逆導電型の低濃度不純物拡
散領域及び前記低濃度不純物拡散領域と接続する逆導電
型の高濃度不純物拡散領域を形成する工程とを含むこと
を特徴とする半導体装置の製造方法。
1. A step of forming a gate insulating film on a semiconductor substrate of one conductivity type in which an element formation region is formed, and sequentially depositing a polycrystalline silicon layer and an insulating film on the gate insulating film,
a step of selectively and sequentially etching the upper surfaces of the insulating film and the polycrystalline silicon layer to leave a portion of the thickness of the polycrystalline silicon layer to form a stepped portion; and a step of providing a mask layer only on the stepped portion to cover the entire surface. A step of etching back and forming a gate electrode having an inclination that mirrors the shape of the mask layer in the stepped portion and removing other portions of the polycrystalline silicon layer, and using the gate electrode as a mask, impurities of opposite conductivity type are added to the semiconductor substrate. ion implantation to form a low concentration impurity diffusion region of a reverse conductivity type directly under the slope portion and a high concentration impurity diffusion region of a reverse conductivity type connected to the low concentration impurity diffusion region. A method for manufacturing a semiconductor device.
【請求項2】  素子形成領域を形成した一導電型半導
体基板の上にゲート絶縁膜を形成し前記ゲート絶縁膜上
に多結晶シリコン膜を堆積する工程と、前記多結晶シリ
コン層を選択的にエッチングしてゲート電極を形成する
工程と、前記ゲート電極を含む表面に薄い多結晶シリコ
ン層及び絶縁膜を堆積してエッチバックし前記ゲート電
極の側面にのみに残して側壁部を形成する工程と、前記
側壁部の絶縁膜をエッチング除去して前記ゲート電極の
側面及び近傍に前記薄い多結晶シリコン層を残す工程と
、前記ゲート電極及び薄い多結晶シリコン層をマスクと
して前記半導体基板に逆導電型不純物をイオン注入し前
記薄い多結晶シリコン層の直下に逆導電型の低濃度不純
物拡散領域と前記低濃度不純物拡散領域に接続する高濃
度不純物拡散領域とを形成する工程とを含むことを特徴
とする半導体装置の製造方法。
2. A step of forming a gate insulating film on a semiconductor substrate of one conductivity type in which an element formation region is formed, depositing a polycrystalline silicon film on the gate insulating film, and selectively depositing the polycrystalline silicon layer. a step of etching to form a gate electrode; and a step of depositing a thin polycrystalline silicon layer and an insulating film on the surface including the gate electrode and etching back to form a side wall portion by leaving only on the side surfaces of the gate electrode. , a step of etching away the insulating film on the side wall portion to leave the thin polycrystalline silicon layer on the side surface and vicinity of the gate electrode, and etching the semiconductor substrate with a reverse conductivity type using the gate electrode and the thin polycrystalline silicon layer as a mask A step of ion-implanting impurities to form a low concentration impurity diffusion region of an opposite conductivity type and a high concentration impurity diffusion region connected to the low concentration impurity diffusion region directly under the thin polycrystalline silicon layer. A method for manufacturing a semiconductor device.
JP1181191A 1991-02-01 1991-02-01 Manufacture of semiconductor device Pending JPH04246833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181191A JPH04246833A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181191A JPH04246833A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04246833A true JPH04246833A (en) 1992-09-02

Family

ID=11788202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181191A Pending JPH04246833A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04246833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303272A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303272A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP4627211B2 (en) * 2005-04-22 2011-02-09 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2862696B2 (en) An improved method of fabricating an integrated circuit structure having a lightly doped drain (LDD)
US5972754A (en) Method for fabricating MOSFET having increased effective gate length
US5656518A (en) Method for fabrication of a non-symmetrical transistor
JPH1126597A (en) Fabrication of semiconductor device
US5654215A (en) Method for fabrication of a non-symmetrical transistor
US5723352A (en) Process to optimize performance and reliability of MOSFET devices
US5731240A (en) Manufacturing method for semiconductor depositing device
JPH0147016B2 (en)
JP3049496B2 (en) Method of manufacturing MOSFET
JP3088547B2 (en) Method for manufacturing semiconductor device
JPH04246833A (en) Manufacture of semiconductor device
JPH07115195A (en) Mos transistor and its manufacture
JP2751336B2 (en) Method for manufacturing semiconductor device
JPH05152321A (en) Manufacture of semiconductor device
KR910009042B1 (en) Method of manufacturing a semiconductor device
JP3366709B2 (en) Method for manufacturing MOS transistor
KR100194204B1 (en) MOS transistor and manufacturing method thereof
JPH0778979A (en) Fabrication of semiconductor device
JPH03209762A (en) Semiconductor device and its manufacture
KR100421899B1 (en) Method for fabricating semiconductor device
JP3656867B2 (en) Manufacturing method of fine MOS transistor
JP3848782B2 (en) Manufacturing method of semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JPH02135738A (en) Manufacture of semiconductor device
JPS63308963A (en) Semiconductor device and manufacture thereof