JPH04246158A - Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance - Google Patents

Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance

Info

Publication number
JPH04246158A
JPH04246158A JP2674191A JP2674191A JPH04246158A JP H04246158 A JPH04246158 A JP H04246158A JP 2674191 A JP2674191 A JP 2674191A JP 2674191 A JP2674191 A JP 2674191A JP H04246158 A JPH04246158 A JP H04246158A
Authority
JP
Japan
Prior art keywords
molten
alloy
layer
steel wire
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2674191A
Other languages
Japanese (ja)
Inventor
Yukio Ochiai
落合 征雄
Hiroshi Oba
浩 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2674191A priority Critical patent/JPH04246158A/en
Publication of JPH04246158A publication Critical patent/JPH04246158A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide manufacturing method for alloy plated steel wire having excellent surface characteristic and corrosion resistance by using flux method. CONSTITUTION:This plating vessel contains molten Pd layer at lower part of the plating vessel, molten Zn layer at inlet part of the wire on the molten Pb layer and molten Zn-Al-Mg alloy layer containing by wt. ratio 2-12% Al and 0.01-0.06% Mg at outlet part of the wire. After plating the steel wire by continuously passing the wire through this motel layer of the molten Zn, molten Pb and molten Zn-Al-Mg alloy in this order, this wire is cooled at <=10 deg.C/s cooling speed to manufacture the alloy plated steel wire having excellent surface characteristic and corrosion resistance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フラックス法による表
面性状および耐食性に優れたZn−Al−Mg合金めっ
き鋼線の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a Zn-Al-Mg alloy coated steel wire with excellent surface properties and corrosion resistance using a flux method.

【0002】0002

【従来の技術】鉄鋼材料の耐蝕性の向上を目的として、
多くのZn−Al合金をベースとする合金めっき技術が
開発されている。たとえば、特公昭55−26702号
公報にはZn−Al、特公昭54−33223号公報に
はZn−Al−Mg、特公平01−24221号公報に
はZn−Al−ミッシュメタル、特開昭56−1124
52号公報にはZn−Al−Naなどが公表されている
。これらは、いずれも溶融状態の合金めっき浴中に鋼材
を浸漬することにより、鋼材表面に浴組成と同じ合金め
っき層を付着せしめる方法である。
[Prior art] For the purpose of improving the corrosion resistance of steel materials,
Many Zn-Al alloy based alloy plating techniques have been developed. For example, Japanese Patent Publication No. 55-26702 discloses Zn-Al, Japanese Patent Publication No. 54-33223 discloses Zn-Al-Mg, Japanese Patent Publication No. 01-24221 discloses Zn-Al-Mishmetal, -1124
No. 52 discloses Zn-Al-Na and the like. In both of these methods, a steel material is immersed in a molten alloy plating bath to deposit an alloy plating layer having the same composition as the bath onto the surface of the steel material.

【0003】鋼線の溶融めっき技術の特徴は、めっきの
前処理として、酸化還元法は採用せずフラックス法を採
用していることである。たとえば、溶融Znめっきの場
合には、酸洗後の鋼線を塩化アンモニウムや塩化亜鉛を
含む水溶液中に浸漬したのち乾燥する方法で前処理し、
これを連続的に溶融Zn浴中に浸漬する方法でめっきが
なされる。しかし、Znめっき浴にAlが含まれる場合
には、フラックス中の塩素イオンとAlの反応により生
成した塩化アルミニウムの一部が鋼線表面に付着し、そ
の部分が不めっきとなるため、上記のフラックスは使用
できない。したがって、鋼線にZN−Al系合金めっき
を施す場合には、新たな前処理技術を開発する必要があ
る。
[0003] A feature of the hot-dip plating technology for steel wire is that, as a pretreatment for plating, a flux method is used instead of an oxidation-reduction method. For example, in the case of hot-dip Zn plating, the steel wire after pickling is pretreated by immersing it in an aqueous solution containing ammonium chloride or zinc chloride and then drying it.
Plating is performed by continuously immersing this in a molten Zn bath. However, if the Zn plating bath contains Al, some of the aluminum chloride produced by the reaction between chlorine ions in the flux and Al will adhere to the surface of the steel wire, leaving that part unplated. Flux cannot be used. Therefore, when applying ZN-Al alloy plating to steel wire, it is necessary to develop a new pretreatment technique.

【0004】これに対して、従来、 特開昭58−13
6759号公報に示されているように、合金めっき専用
のフラックスの開発が行われている。一方、特公平1−
54428号公報に開示されているように、一次めっき
として0.1〜0.2%のAlを含むZn浴中で通常の
Znめっきを施した後、これを目的とする合金めっき浴
に浸漬する方法(2浴法)も開発されている。さらに、
特公昭46−7161号公報には、酸化還元法によるZ
n−Al合金めっき法が開示されている。
[0004] On the other hand, conventionally
As shown in Japanese Patent No. 6759, a flux specifically for alloy plating has been developed. On the other hand, special fair 1-
As disclosed in Japanese Patent No. 54428, ordinary Zn plating is performed in a Zn bath containing 0.1 to 0.2% Al as primary plating, and then immersed in an alloy plating bath for this purpose. A method (two-bath method) has also been developed. moreover,
In Japanese Patent Publication No. 46-7161, Z
An n-Al alloy plating method is disclosed.

【0005】[0005]

【発明が解決しようとする課題】合金めっき用に開発さ
れたフラックスは、一般に分解温度が高い。このため、
めっき浴中での分解を促進するために、めっき浴温度を
上げ、通線速度を下げる必要がある。これには、めっき
槽材料の耐熱性を高める必要があり、さらには、生産性
の低下をともなう。また、フラックスの分解生成物の一
部が鋼線表面に付着して残り、この部分が不めっきとな
るため、良好なめっき肌が得にくい。
[Problems to be Solved by the Invention] Fluxes developed for alloy plating generally have a high decomposition temperature. For this reason,
In order to promote decomposition in the plating bath, it is necessary to raise the plating bath temperature and lower the wire passing speed. This requires increasing the heat resistance of the plating tank material, and is also accompanied by a decrease in productivity. Further, a part of the decomposition products of the flux remains attached to the surface of the steel wire, and this part becomes unplated, making it difficult to obtain a good plating surface.

【0006】上記特公平1−54428号公報に開示さ
れているような、2浴法で合金めっきを行なうには、 
一次めっき段階でのFe−Zn合金層の発達を抑制する
ために、Zn浴中に0.1〜0.2%のAlを添加する
必要がある。しかし、Zn浴中のAlは鋼線と反応しや
すく、また、大気酸化の影響をうけるたため、浴組成は
変動しやすい。このため、Al不足による過大な厚みの
合金層の生成、あるいは、逆にAl過多に起因する不め
っきなどの表面欠陥が発生しやすい。
[0006] In order to perform alloy plating by the two-bath method as disclosed in the above-mentioned Japanese Patent Publication No. 1-54428,
In order to suppress the development of the Fe-Zn alloy layer during the primary plating stage, it is necessary to add 0.1 to 0.2% Al to the Zn bath. However, since Al in the Zn bath easily reacts with the steel wire and is also affected by atmospheric oxidation, the bath composition tends to fluctuate. Therefore, an excessively thick alloy layer is likely to be formed due to a lack of Al, or, conversely, surface defects such as non-plating due to an excess of Al are likely to occur.

【0007】酸化還元法を採用した場合、これまで述べ
たような問題は回避される。 しかし、酸化還元法では
、鋼線は700℃以上の高温にさらされる。これは、低
炭素鋼線では問題ないが、高炭素鋼線では著しい強度低
下をまねく。このため、酸化還元法は一般的なめっき法
とはなりえない。
[0007] When the redox method is adopted, the problems described above are avoided. However, in the redox method, the steel wire is exposed to high temperatures of 700°C or higher. Although this is not a problem for low carbon steel wires, it causes a significant decrease in strength for high carbon steel wires. For this reason, the redox method cannot be used as a general plating method.

【0008】以上述べたように、従来のZn−Alをベ
ースとする合金めっき技術では、不めっきなどのめっき
欠陥がなく、かつ、表面平滑性に優れた合金めっき鋼線
を製造することは不可能であった。本発明の目的は、上
記従来法の問題点を解決し、表面肌がより一層良好なZ
n−Al合金めっき鋼線の製造方法を提供することであ
る。
[0008] As described above, with the conventional Zn-Al based alloy plating technology, it is impossible to produce an alloy-plated steel wire that is free from plating defects such as unplated areas and has excellent surface smoothness. It was possible. The purpose of the present invention is to solve the problems of the above-mentioned conventional methods and to provide a Z
An object of the present invention is to provide a method for manufacturing an n-Al alloy plated steel wire.

【0009】[0009]

【課題を解決するための手段】本発明は、めっき槽下部
に溶融Pb層、 該溶融Pb層上の入線部に溶融Zn層
、出線部に重量比でAl:2〜12%、Mg:0.01
〜0.06%を含有する溶融Zn−Al−Mg合金層を
形成させ、鋼線を溶融Zn、溶融Pb、溶融Zn−Al
−Mg合金の順序で該溶融金属層を連続的に通過させめ
っきすることを特徴とする表面性状ならびに耐食性に優
れた合金めっき鋼線の製造方法である。
[Means for Solving the Problems] The present invention includes a molten Pb layer at the bottom of the plating tank, a molten Zn layer at the incoming line part on the molten Pb layer, and a weight ratio of Al: 2 to 12%, Mg: 0.01
A molten Zn-Al-Mg alloy layer containing ~0.06% was formed, and the steel wire was
- A method for producing an alloy-plated steel wire with excellent surface quality and corrosion resistance, characterized by plating by passing the molten metal layer continuously in the order of Mg alloy.

【0010】0010

【作用】以下に、本発明を詳細に説明する。脱脂、酸洗
後の鋼線を、 通常の溶融Znめっきの場合のフラック
ス処理と同様、塩化アンモニウムや塩化亜鉛を含む水溶
液中に浸漬したのち乾燥し、合金めっき槽で連続的にめ
っきを行なう。入線部は溶融Zn層であるので合金めっ
き用のフラックスを使用する必要は無く、このため、フ
ラックスの未分解等に起因するめっき欠陥は発生しない
。合金めっき槽内には。下部に440〜500℃の溶融
Pb層、これに接する上部の入線部には400〜500
℃の溶融Zn層、出線部には400〜500℃の少量の
Mgを含有する溶融Zn−Al合金層が形成されている
[Operation] The present invention will be explained in detail below. The steel wire after degreasing and pickling is immersed in an aqueous solution containing ammonium chloride or zinc chloride, dried, and then continuously plated in an alloy plating bath, similar to the flux treatment for normal hot-dip Zn plating. Since the wire entry portion is a molten Zn layer, there is no need to use flux for alloy plating, and therefore, plating defects due to undecomposed flux, etc. do not occur. Inside the alloy plating tank. A molten Pb layer at 440~500℃ at the bottom, and a 400~500℃
℃ molten Zn layer, and a 400 to 500° C. molten Zn-Al alloy layer containing a small amount of Mg is formed in the lead wire portion.

【0011】鋼線は、はじめに溶融Zn層を通過中にZ
nと反応し、その表面にはZn−Fe合金層(固相)が
形成される。Zn−Fe合金層厚みの制御はZn浴温度
および鋼線の走行速度の制御により行なう。次いで、 
下部の溶融Pb層に進入するが、その際、Znは絞りと
られるため、鋼線はその表面をZn−Fe合金層のみに
より被覆された状態で通過し、溶融Zn−Al−Mg合
金層に入る。このような絞り機構の存在は、Zn−Al
−Mg合金浴層にZnが持ち込まれることによる合金浴
組成の変動を防止する効果を有す。溶融Pb層通過中、
鋼線とPbの反応はないが、溶融Pbにより鋼線温度は
次の合金めっきに必要な温度に調整される。
[0011] While the steel wire first passes through the molten Zn layer, the Zn
reacts with n to form a Zn-Fe alloy layer (solid phase) on its surface. The Zn--Fe alloy layer thickness is controlled by controlling the Zn bath temperature and the running speed of the steel wire. Then,
The steel wire enters the lower molten Pb layer, but at that time, the Zn is squeezed out, so the steel wire passes through with its surface covered only by the Zn-Fe alloy layer, and passes into the molten Zn-Al-Mg alloy layer. enter. The existence of such a diaphragm mechanism indicates that Zn-Al
- It has the effect of preventing variations in the alloy bath composition due to Zn being brought into the Mg alloy bath layer. While passing through the molten Pb layer,
Although there is no reaction between the steel wire and Pb, the temperature of the steel wire is adjusted by the molten Pb to the temperature required for the next alloy plating.

【0012】溶融Zn−Al−Mg合金層を通過中、鋼
線表面のZn−Fe合金層(固相)はZn−Al−Mg
合金中のAlと反応し、耐食性ならびに加工性に優れた
Zn−Al−Fe金属化合物層が形成される。溶融Zn
−Al−Mg合金層を出た鋼線は、冷却されたのち巻き
取られる、この際、溶融合金層温度と鋼線の走行速度に
応じてめっき付着量が決定される。たとえば、上記、Z
n−Al−Fe金属間化合物層上にZn−Al−Mg合
金を厚く付着せしめる(いわゆる厚めっきを行なう)た
めには、Zn−Al−Mg合金層温度を下げ、走行速度
を高めることを行なう。この場合、Zn−Fe合金層と
合金浴中のAlの反応が律速過程となるが、溶融Pb層
通過中に鋼線温度が目標温度に到達しているため反応は
十分進行し高速化によるめっき不良の発生等の問題は生
じない。
[0012] While passing through the molten Zn-Al-Mg alloy layer, the Zn-Fe alloy layer (solid phase) on the surface of the steel wire becomes Zn-Al-Mg.
It reacts with Al in the alloy to form a Zn-Al-Fe metal compound layer with excellent corrosion resistance and workability. Molten Zn
The steel wire that has exited the -Al-Mg alloy layer is cooled and then wound up. At this time, the amount of coating is determined according to the temperature of the molten alloy layer and the running speed of the steel wire. For example, above, Z
In order to deposit Zn-Al-Mg alloy thickly on the n-Al-Fe intermetallic compound layer (so-called thick plating), lower the Zn-Al-Mg alloy layer temperature and increase the running speed. . In this case, the reaction between the Zn-Fe alloy layer and Al in the alloy bath is the rate-determining process, but since the steel wire temperature has reached the target temperature while passing through the molten Pb layer, the reaction progresses sufficiently and the plating is completed at high speed. Problems such as occurrence of defects do not occur.

【0013】次に合金組成の限定理由についてのべる。 Zn−Al合金の耐食性はAl濃度に依存し、Al濃度
の高い方が良好な耐食性を示す。したがって、十分な耐
食性向上効果を得るためには2%以上含有せしめる必要
がある。一方、12%を超えると添加効果が飽和してく
るうえ、融点上昇によりめっき温度が高くなり、鋼線強
度の低下をまねく。これにより、Zn−Al−Mg合金
のAl濃度の下限を2%、上限を12%とする。
Next, the reasons for limiting the alloy composition will be discussed. The corrosion resistance of the Zn-Al alloy depends on the Al concentration, and the higher the Al concentration, the better the corrosion resistance. Therefore, in order to obtain a sufficient corrosion resistance improvement effect, it is necessary to contain 2% or more. On the other hand, if it exceeds 12%, the effect of addition becomes saturated, and the plating temperature increases due to the rise in melting point, leading to a decrease in steel wire strength. As a result, the lower limit of the Al concentration of the Zn-Al-Mg alloy is set to 2% and the upper limit to 12%.

【0014】本発明法では、溶融Zn−Al合金と溶融
Pbが直接接触しているために、操業中に溶融Zn−A
l合金中に少量のPbが溶解し、合金めっき鋼線の耐食
性を低下せしめる。そのため、合金浴中に少量のMgを
添加することにより耐食性の劣化を防止する。Mgの添
加量は、0.01%未満ではその効果が十分でなく、一
方、0.06%を超えて添加してもMgは溶解せず、し
たがってその添加効果は飽和する。これより、Mg濃度
の下限を0.01%、 上限を0.06%とする。
In the method of the present invention, since the molten Zn-Al alloy and molten Pb are in direct contact, the molten Zn-A
A small amount of Pb dissolves in the alloy, reducing the corrosion resistance of the alloy-plated steel wire. Therefore, deterioration of corrosion resistance is prevented by adding a small amount of Mg to the alloy bath. If the amount of Mg added is less than 0.01%, the effect will not be sufficient, whereas if it is added in excess of 0.06%, Mg will not dissolve, and therefore the effect of the addition will be saturated. From this, the lower limit of Mg concentration is set to 0.01% and the upper limit is set to 0.06%.

【0015】合金浴にMgが添加された場合、めっき後
の鋼線は10℃/s以下の冷却速度で冷却する必要があ
る。10℃/sを超える冷却速度で冷却した場合、曲げ
加工時、めっき層に容易に亀裂が発生し、めっき層の剥
離およびそれに起因する耐食性の劣化を惹起する。冷却
速度は小さいほど好ましい結果が得られる。
[0015] When Mg is added to the alloy bath, the steel wire after plating must be cooled at a cooling rate of 10°C/s or less. When cooling at a cooling rate exceeding 10° C./s, cracks easily occur in the plating layer during bending, causing peeling of the plating layer and deterioration of corrosion resistance due to this. The lower the cooling rate, the better the results.

【0016】[0016]

【実施例】以下、実施例を図面を参照して説明する。J
IS規格のSWRH72A鋼線(2.3mm)を伸線後
、脱脂酸洗し、その後、塩化アンモニウム+塩化亜鉛水
溶液中でフラックス処理を行なった。フラックス処理後
の鋼線に対して、図1に示すところの合金めっき槽を用
いて合金めっきを行なった。フラックス処理後の鋼線5
は、溶融Zn層2、溶融Pb層3、溶融Zn−Al−M
g合金層4の順序で合金めっき槽を通過したのち、垂直
に引き上げられ、所定の冷却速度で冷却された。
[Embodiments] Hereinafter, embodiments will be explained with reference to the drawings. J
After drawing an IS standard SWRH72A steel wire (2.3 mm), it was degreased and pickled, and then fluxed in an aqueous solution of ammonium chloride and zinc chloride. After the flux treatment, the steel wire was subjected to alloy plating using an alloy plating bath shown in FIG. Steel wire 5 after flux treatment
are molten Zn layer 2, molten Pb layer 3, molten Zn-Al-M
After passing through the alloy plating bath in the order of g-alloy layer 4, it was pulled up vertically and cooled at a predetermined cooling rate.

【0017】表1に、めっき条件とめっき鋼線の表面性
状、 耐食性および曲げ加工性を示す。
Table 1 shows the plating conditions, surface properties, corrosion resistance and bending workability of the plated steel wire.

【0018】[0018]

【表1−1】[Table 1-1]

【0019】[0019]

【表1−2】[Table 1-2]

【0020】No.1〜7は、合金めっき層のAl含有
率を1.6%から13.0%まで変化させ、めっき後の
鋼線の表面性状、耐食性および曲げ加工性を評価したも
のである。比較とした従来法(1)は、 特開昭58−
136759号公報に記載の方法で、Zn−Al合金め
っき用フラックスを使用したものである。また、従来法
(2)は、特公平1−54428号公報に示された方法
(2浴法)で、1次めっきとしてAlを0.12%含む
Zn浴でめっきを行なっている。No.11〜15は、
Mg含有量の影響を示したものである。 Mg含有量が
0.01%未満のNo.11および12は耐食性が低い
[0020]No. Nos. 1 to 7 were obtained by changing the Al content of the alloy plating layer from 1.6% to 13.0% and evaluating the surface properties, corrosion resistance, and bending workability of the steel wire after plating. The conventional method (1) for comparison is JP-A-58-
This is a method described in Japanese Patent No. 136759, using a Zn-Al alloy plating flux. Conventional method (2) is the method (two-bath method) disclosed in Japanese Patent Publication No. 1-54428, in which plating is performed in a Zn bath containing 0.12% Al as the primary plating. No. 11 to 15 are
This figure shows the influence of Mg content. No. with Mg content of less than 0.01%. Nos. 11 and 12 have low corrosion resistance.

【0021】ここで、耐食性の評価は、JIS  Z2
371に規定された塩水噴霧試験により行ない、赤錆発
生時間を溶融Znめっき鋼線と比較した。結果を下記の
(1)式で定義する耐食性倍率として定量化した。
[0021] Here, the evaluation of corrosion resistance is based on JIS Z2
A salt spray test was conducted as specified in 371, and the red rust generation time was compared with that of hot-dip Zn-plated steel wire. The results were quantified as a corrosion resistance magnification defined by the following equation (1).

【0022】[0022]

【数1】                 合金めっき鋼線の赤
錆発生時間(hr)耐食性倍率=──────────
────────────      (1)    
          溶融Znめっき鋼線の赤錆発生時
間(hr)
[Equation 1] Red rust occurrence time (hr) of alloy-plated steel wire Corrosion resistance magnification =──────────
──────────── (1)
Red rust generation time (hr) of hot-dip Zn-coated steel wire

【0023】目標とする耐食性倍率は3以上
である。No.16〜20は、めっき後の冷却速度の影
響を調べたものである。冷却速度が10℃/sを超える
No.19および20は加工性が悪く、自径巻き付け試
験でクラックが発生した。さらに、これらクラックのた
め、塩水噴霧試験において早期に赤錆が発生した。ここ
で、曲げ加工性の評価は、自径(1d)巻き付け法で行
なった。表1からわかるように、本発明で製造された合
金めっき鋼線は、「ぶつ」、「ざら」、不めっき等のめ
っき欠陥がなく、また、安定した高い耐食性と加工性を
示す。
[0023] The target corrosion resistance magnification is 3 or more. No. Nos. 16 to 20 are results in which the influence of the cooling rate after plating was investigated. No. 1 whose cooling rate exceeds 10°C/s. Samples Nos. 19 and 20 had poor workability, and cracks occurred in the self-diameter winding test. Furthermore, due to these cracks, red rust occurred early in the salt spray test. Here, the bending workability was evaluated by the self-diameter (1d) winding method. As can be seen from Table 1, the alloy-plated steel wire manufactured according to the present invention has no plating defects such as "bumps", "roughness", and unplatedness, and also exhibits stable high corrosion resistance and workability.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
によれば、従来法に比べめっき欠陥の発生がなく、耐食
性と加工性に優れた合金めっき鋼線の製造が可能である
。 また、本発明法では、溶融Pb層を用いているため
に合金浴層へZnが持ち込まれることがなく、このため
、合金浴組成の変動を大幅に減少せしめることが可能で
あり、一方、合金浴へのPbの侵入による耐食性の劣化
はMg添加により防止される。さらに、1次めっき(溶
融Znめっき)と合金めっきを別個に行なう場合と比較
して、本発明法では、両者が一体構造のめっき槽を構成
しているため、設備ならびに運転コストの低減化が可能
である。
As is clear from the above description, according to the present invention, it is possible to produce an alloy-plated steel wire that is free from plating defects and has excellent corrosion resistance and workability compared to conventional methods. Furthermore, in the method of the present invention, since the molten Pb layer is used, Zn is not brought into the alloy bath layer, and therefore it is possible to significantly reduce fluctuations in the alloy bath composition. Deterioration of corrosion resistance due to the intrusion of Pb into the bath is prevented by adding Mg. Furthermore, compared to the case where primary plating (hot-dip Zn plating) and alloy plating are performed separately, in the method of the present invention, both constitute a plating tank with an integrated structure, so equipment and operating costs can be reduced. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は合金めっき槽の断面図である。 FIG. 1 is a sectional view of an alloy plating tank.

【符号の説明】[Explanation of symbols]

1  合金めっき槽本体 2  溶融Zn層 3  溶融Pb層 4  溶融Zn−Al−Mg合金層 5  フラックス処理後の鋼線 6  合金めっき鋼線 7  隔壁 8  ガイドロール 9  ガイドロール 10  浸漬ロール 11  浸漬ロール 12  冷却装置 1 Alloy plating tank body 2 Molten Zn layer 3 Molten Pb layer 4 Molten Zn-Al-Mg alloy layer 5 Steel wire after flux treatment 6 Alloy plated steel wire 7 Partition wall 8 Guide roll 9 Guide roll 10 Dipping roll 11 Dipping roll 12 Cooling device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  めっき槽下部に溶融Pb層、該溶融P
b層上の入線部に溶融Zn層、出線部に重量比でA1:
2〜12%、Mg:0.01〜0.06%を含有する溶
融Zn−Al−Mg合金層を形成させ、鋼線を溶融Zn
、溶融Pb、溶融Zn−Al−Mg合金の順序で該溶融
金属層を連続的に通過させることによりめつきした後、
10℃/s以下の冷却速度で冷却することを特徴とする
表面性状および耐食性に優れた合金めっき鋼線の製造方
法。
Claim 1: A molten Pb layer at the bottom of the plating tank, and a molten Pb layer at the bottom of the plating tank.
Molten Zn layer on the incoming line part on layer b, weight ratio A1 on the outgoing line part:
A molten Zn-Al-Mg alloy layer containing 2% to 12% Mg and 0.01% to 0.06% Mg is formed, and the steel wire is coated with molten Zn.
, molten Pb, and molten Zn-Al-Mg alloy in this order, after plating by passing the molten metal layer continuously,
A method for producing an alloy-plated steel wire with excellent surface texture and corrosion resistance, characterized by cooling at a cooling rate of 10° C./s or less.
JP2674191A 1991-01-29 1991-01-29 Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance Pending JPH04246158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2674191A JPH04246158A (en) 1991-01-29 1991-01-29 Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2674191A JPH04246158A (en) 1991-01-29 1991-01-29 Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance

Publications (1)

Publication Number Publication Date
JPH04246158A true JPH04246158A (en) 1992-09-02

Family

ID=12201728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2674191A Pending JPH04246158A (en) 1991-01-29 1991-01-29 Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH04246158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860324A (en) * 1994-08-22 1996-03-05 Kawasaki Steel Corp Zinc-magnesium-aluminum hot dip galvanized steel excellent in corrosion resistance and its production
WO2014121979A1 (en) * 2013-02-05 2014-08-14 Thyssenkrupp Steel Europe Ag Method for hot-dip coating a metal strip, in particular a steel strip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177158A (en) * 1984-02-23 1985-09-11 Nippon Mining Co Ltd Zinc alloy for hot dip galvanizing
JPS6244563A (en) * 1985-08-20 1987-02-26 Hokkai Koki Kk Manufacture of hot dip zinc-aluminum alloy coated steel wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177158A (en) * 1984-02-23 1985-09-11 Nippon Mining Co Ltd Zinc alloy for hot dip galvanizing
JPS6244563A (en) * 1985-08-20 1987-02-26 Hokkai Koki Kk Manufacture of hot dip zinc-aluminum alloy coated steel wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860324A (en) * 1994-08-22 1996-03-05 Kawasaki Steel Corp Zinc-magnesium-aluminum hot dip galvanized steel excellent in corrosion resistance and its production
WO2014121979A1 (en) * 2013-02-05 2014-08-14 Thyssenkrupp Steel Europe Ag Method for hot-dip coating a metal strip, in particular a steel strip
US9670573B2 (en) 2013-02-05 2017-06-06 Thyssenkrupp Steel Europe Ag Method for the hot-dip coating of metal strip, in particular steel strip

Similar Documents

Publication Publication Date Title
JP2777571B2 (en) Aluminum-zinc-silicon alloy plating coating and method for producing the same
JPH07207421A (en) Galvanizing method
US6372296B2 (en) High aluminum galvanized steel
JPH0419299B2 (en)
JPH0753901B2 (en) Hot dip galvanizing method
JPH03281788A (en) Production of zn-al alloy plated steel wire
JPH04246158A (en) Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance
JPS6138259B2 (en)
JPH04236754A (en) Production of zn-al alloy plated steel wire
JPH08269662A (en) Production of zinc-tin alloy coated steel sheet
JPS63297577A (en) Surface structure of steel material strengthened in physical property and its production
KR20190078330A (en) Plated steel wire and manufacturing method for the same
JP2747554B2 (en) Aluminum / zinc alloy-plated steel sheet and method for producing the same
JPH0971851A (en) Production of zinc-tin alloy plated steel sheet
JPH09157819A (en) Production of thinly coated galvanized steel sheet
JPH04154949A (en) Production of zn-al alloy plated steel wire
JPH0154428B2 (en)
JPH04333551A (en) Production of hot dip galvanized steel sheet by preliminary ni plating
JPS6055588B2 (en) Method for producing molten zinc-magnesium alloy plated steel sheet
JP4166412B2 (en) Method for producing hot-dip galvanized steel sheet
JPH09157821A (en) Production of thinly coated galvanized steel sheet
JPH0372060A (en) Steel sheet thickly plated with pb alloy and its production
JPS6358225B2 (en)
JPH0235024B2 (en)
JPH03281787A (en) Production of zn-al alloy plated steel wire

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950613