JPH04236754A - Production of zn-al alloy plated steel wire - Google Patents

Production of zn-al alloy plated steel wire

Info

Publication number
JPH04236754A
JPH04236754A JP1680091A JP1680091A JPH04236754A JP H04236754 A JPH04236754 A JP H04236754A JP 1680091 A JP1680091 A JP 1680091A JP 1680091 A JP1680091 A JP 1680091A JP H04236754 A JPH04236754 A JP H04236754A
Authority
JP
Japan
Prior art keywords
molten
alloy
plating
layer
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1680091A
Other languages
Japanese (ja)
Inventor
Yukio Ochiai
落合 征雄
Hiroshi Oba
浩 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1680091A priority Critical patent/JPH04236754A/en
Publication of JPH04236754A publication Critical patent/JPH04236754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide the process for producing the Zn-Al-plated steel wire which is free from plating defects, such as partly non-plating and has excellent surface smoothness. CONSTITUTION:This process for producing the Zn-Al alloy steel sheet copper wire consists in forming a molten Pb layer in the lower part of a plating bath layer, a molten Zn layer in the wire inlet part of this molten Pb layer and a molten Zn-Al alloy layer contg. 2 to 12% Al in the wire outlet part and continuously passing the steel wire to be plated in these molten metal layers in order of the molten Zn, the molten Pb and the molten Zn-Al alloy, thereby plating this steel wire.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フラックス法によるZ
n−Al合金めっき鋼線の製造方法に関するものである
[Industrial Application Field] The present invention is directed to Z
The present invention relates to a method for manufacturing n-Al alloy plated steel wire.

【0002】0002

【従来の技術】鉄鋼材料の耐食性の向上を目的として、
多くのZnをベースとする合金めっき技術が開発されて
いる。たとえば、特公昭55−26702号公報にはZ
n−Al、特公昭54−33223号公報にはZn−A
l−Mg、特公平01−24221号公報にはZn−A
l−ミッシュメタル、特開昭56−112452号公報
にはZn−Al−Naなどが公表されている。これらは
、いずれも溶融状態の合金めっき浴中に鋼材を浸漬する
ことにより、鋼材表面に浴組成と同じ合金めっき層を付
着せしめる方法である。
[Prior Art] For the purpose of improving the corrosion resistance of steel materials,
Many Zn-based alloy plating techniques have been developed. For example, in Japanese Patent Publication No. 55-26702, Z
n-Al, Zn-A in Japanese Patent Publication No. 54-33223
l-Mg, and Zn-A in Japanese Patent Publication No. 01-24221.
L-misch metal, Zn-Al-Na, etc. are disclosed in Japanese Patent Application Laid-Open No. 112452/1983. In both of these methods, a steel material is immersed in a molten alloy plating bath to deposit an alloy plating layer having the same composition as the bath onto the surface of the steel material.

【0003】鋼線の溶融めっき技術の特徴は、めっきの
前処理として、酸化還元法は採用せずフラックス法を採
用していることである。たとえば、溶融Znめっきの場
合には、酸洗後の鋼線を塩化アンモニウムや塩化亜鉛を
含む水溶液中に浸漬したのち乾燥する方法で前処理し、
これを連続的に溶融Zn浴中に浸漬する方法でめっきが
なされる。しかし、Znめっき浴にAlが含まれる場合
には、フラックス中の塩素イオンとAlの反応により生
成した塩化アルミニウムの一部が鋼線表面に付着し、そ
の部分が不めっきとなるため、上記のフラックスは使用
できない。したがって、鋼線にZn−Al系合金めっき
を施す場合には、新たな前処理技術を開発する必要があ
る。
[0003] A feature of the hot-dip plating technology for steel wire is that, as a pretreatment for plating, a flux method is used instead of an oxidation-reduction method. For example, in the case of hot-dip Zn plating, the steel wire after pickling is pretreated by immersing it in an aqueous solution containing ammonium chloride or zinc chloride and then drying it.
Plating is performed by continuously immersing this in a molten Zn bath. However, if the Zn plating bath contains Al, some of the aluminum chloride produced by the reaction between chlorine ions in the flux and Al will adhere to the surface of the steel wire, leaving that part unplated. Flux cannot be used. Therefore, when applying Zn-Al alloy plating to steel wire, it is necessary to develop a new pretreatment technique.

【0004】これに対して、従来、 特開昭58−13
6759号公報に示されているように、合金めっき専用
のフラックスの開発が行なわれている。一方、特公平1
−54428号公報に開示されているように、一次めっ
きとして0.1〜0.2%のAlを含むZn浴中で通常
の溶融Znめっきを施した後、これを目的とする合金め
っき浴に浸漬する方法(2浴法)も開発されている。 
さらに、特公昭46−7161号公報には、酸化還元法
によるZn−Al合金めっき法が開示されている。
[0004] On the other hand, conventionally
As shown in Japanese Patent No. 6759, a flux specifically for alloy plating has been developed. On the other hand, Tokuho 1
As disclosed in Japanese Patent No. 54428, after performing normal hot-dip Zn plating in a Zn bath containing 0.1 to 0.2% Al as primary plating, it is applied to an alloy plating bath for the purpose. A dipping method (two-bath method) has also been developed.
Further, Japanese Patent Publication No. 46-7161 discloses a Zn-Al alloy plating method using an oxidation-reduction method.

【0005】[0005]

【発明が解決しようとする課題】合金めっき用に開発さ
れたフラックスは、一般に分解温度が高い。このため、
めっき浴中での分解を促進するために、めっき浴温度を
上げ、通線速度を下げる必要がある。これには、めっき
槽材料の耐熱性を高める必要があり、さらには、生産性
の低下をともなう。また、フラックスの分解生成物の一
部が鋼線表面に付着して残り、この部分が不めっきとな
るため、良好なめっき肌が得にくい。
[Problems to be Solved by the Invention] Fluxes developed for alloy plating generally have a high decomposition temperature. For this reason,
In order to promote decomposition in the plating bath, it is necessary to raise the plating bath temperature and lower the wire passing speed. This requires increasing the heat resistance of the plating tank material, and is also accompanied by a decrease in productivity. Further, a part of the decomposition products of the flux remains attached to the surface of the steel wire, and this part becomes unplated, making it difficult to obtain a good plating surface.

【0006】上記特公平1−54428号公報に開示さ
れているような、 2浴法で合金めっきを行なうには、
1次めっき段階でのFe−Zn合金層の発達を抑制する
ために、Zn浴中に0.1〜0.2%のAlを添加する
必要がある。しかし、Zn浴中のAlは鋼線と反応しや
すく、また、大気酸化の影響をうけるため、浴組成は変
動しやすい。このため、Al不足による過大な厚みの合
金層の生成、 あるいは、逆にAl過多に起因する不め
っきなどの表面欠陥が発生しやすい。
[0006] In order to perform alloy plating by the two-bath method as disclosed in the above-mentioned Japanese Patent Publication No. 1-54428,
In order to suppress the development of the Fe-Zn alloy layer during the primary plating stage, it is necessary to add 0.1 to 0.2% Al to the Zn bath. However, since Al in the Zn bath easily reacts with steel wire and is also affected by atmospheric oxidation, the bath composition tends to fluctuate. For this reason, an excessively thick alloy layer is likely to be formed due to a lack of Al, or, conversely, surface defects such as unplated surfaces are likely to occur due to an excess of Al.

【0007】酸化還元法を採用した場合、これまで述べ
たような問題は回避される。 しかし、酸化還元法では
、鋼線は700℃以上の高温にさらされる。これは、低
炭素鋼線では問題ないが、高炭素鋼線では著しい強度低
下をまねく。このため、酸化還元法は一般的なめっき法
とはなりえない。
[0007] When the redox method is adopted, the problems described above are avoided. However, in the redox method, the steel wire is exposed to high temperatures of 700°C or higher. Although this is not a problem for low carbon steel wires, it causes a significant decrease in strength for high carbon steel wires. For this reason, the redox method cannot be used as a general plating method.

【0008】以上述べたように、従来の合金めっき技術
では、不めっきなどのめっき欠陥がなく、かつ、表面平
滑性に優れたZn−Al合金めっき鋼線を製造すること
は不可能であった。本発明の目的は、上記従来法の問題
点を解決し、表面肌がより一層良好なZn−Al合金め
っき鋼線の製造方法を提供することである。
[0008] As described above, with conventional alloy plating technology, it has been impossible to produce Zn-Al alloy plated steel wire that is free from plating defects such as non-plating and has excellent surface smoothness. . An object of the present invention is to solve the problems of the conventional methods described above and to provide a method for producing a Zn-Al alloy plated steel wire with an even better surface texture.

【0009】[0009]

【課題を解決するための手段】本発明は、めっき槽下部
に溶融Pb層、 該溶融Pb層上の入線部に溶融Zn層
、出線部に重量比でAlを2〜12%含有する溶融Zn
−Al合金層を形成させ、鋼線を溶融Zn、溶融Pb、
溶融Zn−Al合金の順序で該溶融金属層を連続的に通
過させめっきすることを特徴とするZn−Al合金めっ
き鋼線の製造方法である。
[Means for Solving the Problems] The present invention provides a molten Pb layer in the lower part of the plating tank, a molten Zn layer in the inlet part on the molten Pb layer, and a molten Zn layer containing 2 to 12% Al by weight in the outgoing part. Zn
-Al alloy layer is formed, and the steel wire is molten Zn, molten Pb,
This is a method for producing a Zn-Al alloy plated steel wire, characterized in that the molten Zn-Al alloy is plated by passing the molten metal layer continuously in this order.

【0010】0010

【作用】以下に、本発明を詳細に説明する。脱脂、酸洗
後の鋼線を、 通常の溶融Znめっきの場合のフラック
ス処理と同様、塩化アンモニウムや塩化亜鉛を含む水溶
液中に浸漬したのち乾燥し、合金めっき槽で連続的にめ
っきを行なう。入線部は溶融Zn層であるので合金めっ
き用のフラックスを使用する必要は無く、このため、フ
ラックスの未分解等に起因するめっき欠陥は発生しない
[Operation] The present invention will be explained in detail below. The steel wire after degreasing and pickling is immersed in an aqueous solution containing ammonium chloride or zinc chloride, dried, and then continuously plated in an alloy plating bath, similar to the flux treatment for normal hot-dip Zn plating. Since the wire entry portion is a molten Zn layer, there is no need to use flux for alloy plating, and therefore, plating defects due to undecomposed flux, etc. do not occur.

【0011】合金めっき槽内には、下部に400〜50
0℃の溶融Pb層、これに接する上部の入線部には44
0〜500℃の溶融Zn層、出線部には400〜500
℃の溶融Zn−Al合金層が形成されている。
[0011] Inside the alloy plating tank, there are 400 to 50
The molten Pb layer at 0°C, the upper wire entry part in contact with this is 44
Melted Zn layer at 0~500℃, 400~500℃ on the outgoing wire part
℃ molten Zn-Al alloy layer is formed.

【0012】鋼線は、はじめに溶融Zn層を通過中にZ
nと反応し、その表面にはZn−Fe合金層(固相)が
形成される。Zn−Fe合金層厚みの制御はZn浴温度
および鋼線の走行速度の制御により行なう。次いで、 
下部の溶融Pb層に進入するが、その際、Znは絞りと
られるため、鋼線はその表面をZn−Fe合金層のみに
より被覆された状態で通過し、溶融Zn−Al合金層に
入る。このような絞り機構の存在は、Zn−Al合金浴
層にZnが持ち込まれることによる合金浴組成の変動を
防止する効果を有す。溶融Pb層通過中、鋼線とPbの
反応はないが、溶融Pbにより鋼線温度は次の合金めっ
きに必要な温度に調整される。
[0012] While the steel wire first passes through the molten Zn layer, the Zn
reacts with n to form a Zn-Fe alloy layer (solid phase) on its surface. The Zn--Fe alloy layer thickness is controlled by controlling the Zn bath temperature and the running speed of the steel wire. Then,
When entering the lower molten Pb layer, the Zn is squeezed out, so the steel wire passes through with its surface covered only by the Zn--Fe alloy layer, and enters the molten Zn--Al alloy layer. The presence of such a throttling mechanism has the effect of preventing fluctuations in the alloy bath composition due to Zn being brought into the Zn-Al alloy bath layer. While passing through the molten Pb layer, there is no reaction between the steel wire and Pb, but the molten Pb adjusts the steel wire temperature to the temperature required for the next alloy plating.

【0013】溶融Zn−Al合金層を通過中、鋼線表面
のZn−Fe合金層(固相)はZn−Al合金のAlと
反応し、耐食性ならびに加工性に優れたZn−Al−F
e金属間化合物層が形成される。溶融Zn−Al合金層
を出た鋼線は、冷却されたのち巻き取られる。この際、
溶融Zn−Al合金層温度と鋼線の走行速度に応じてめ
っき付着量が決定される。たとえば、上記、 Zn−A
l−Fe金属間化合物層上にZn−Al合金を厚く付着
せしめる(いわゆる厚めっきを行なう)ためには、Zn
−Al合金層温度を下げ、走行速度を高めることを行な
う。この場合、Zn−Fe合金層と合金浴中のAlの反
応が律速過程となるが、溶融Pb層通過中に鋼線温度が
目標温度に到達しているため反応は十分進行し高速化に
よるめっき不良の問題は生じない。
While passing through the molten Zn-Al alloy layer, the Zn-Fe alloy layer (solid phase) on the surface of the steel wire reacts with the Al of the Zn-Al alloy, forming Zn-Al-F with excellent corrosion resistance and workability.
e An intermetallic compound layer is formed. The steel wire leaving the molten Zn-Al alloy layer is cooled and then wound up. On this occasion,
The coating amount is determined according to the temperature of the molten Zn-Al alloy layer and the running speed of the steel wire. For example, above, Zn-A
In order to deposit Zn-Al alloy thickly on the l-Fe intermetallic compound layer (performing so-called thick plating), Zn
- Lower the Al alloy layer temperature and increase the running speed. In this case, the reaction between the Zn-Fe alloy layer and Al in the alloy bath is the rate-determining process, but since the steel wire temperature has reached the target temperature while passing through the molten Pb layer, the reaction progresses sufficiently and the plating is completed at high speed. There are no defects.

【0014】次に合金組成の限定理由についてのべる。 Zn−Al合金の耐食性はAl濃度に依存し、Al濃度
の高い方が良好な耐食性を示す。したがって、十分な耐
食性向上効果を得るためには3%以上含有せしめる必要
がある。一方、12%を超えると添加効果が飽和してく
るうえ、融点上昇によりめっき温度が高くなり、鋼線強
度の低下をまねく。これより、Zn−Al合金のAl濃
度の下限を2%、上限を12%とする。なお、Zn−A
l二元系合金以外にも、前記従来技術に示したところの
、Zn−Alをベースとする各種合金を使用することも
可能である。
Next, the reasons for limiting the alloy composition will be discussed. The corrosion resistance of the Zn-Al alloy depends on the Al concentration, and the higher the Al concentration, the better the corrosion resistance. Therefore, in order to obtain a sufficient effect of improving corrosion resistance, the content must be 3% or more. On the other hand, if it exceeds 12%, the effect of addition becomes saturated, and the plating temperature increases due to the rise in melting point, leading to a decrease in steel wire strength. From this, the lower limit of the Al concentration of the Zn-Al alloy is 2% and the upper limit is 12%. In addition, Zn-A
In addition to the 1-binary alloy, it is also possible to use various Zn-Al based alloys as shown in the prior art.

【0015】[0015]

【実施例】以下、実施例を図面を参照して説明する。J
IS規格のSWRH72A鋼線(2.3mm)を伸線後
、脱脂酸洗し、その後、塩化アンモニウム+塩化亜鉛水
溶液中でフラックス処理を行なった。フラックス処理後
の鋼線に対して、図1に示すところの合金めっき槽を用
いて合金めっきを行なった。フラックス処理後の鋼線5
は、溶融Zn層2、溶融Pb層3、溶融Zn−Al合金
層4の順序で合金めっき槽を通過したのち、垂直に引き
上げられ水冷装置で冷却される。合金めっき層のAl含
有率は1.6%から13.0%まで変化させ、めっき後
の鋼線の表面性状と耐食性を評価した。
[Embodiments] Hereinafter, embodiments will be explained with reference to the drawings. J
After drawing an IS standard SWRH72A steel wire (2.3 mm), it was degreased and pickled, and then fluxed in an aqueous solution of ammonium chloride and zinc chloride. After the flux treatment, the steel wire was subjected to alloy plating using an alloy plating bath shown in FIG. Steel wire 5 after flux treatment
After passing through the alloy plating tank in the order of molten Zn layer 2, molten Pb layer 3, and molten Zn-Al alloy layer 4, it is vertically pulled up and cooled by a water cooling device. The Al content of the alloy plating layer was varied from 1.6% to 13.0%, and the surface texture and corrosion resistance of the steel wire after plating were evaluated.

【0016】比較とした従来法(1)は、 特開昭58
−136759号公報に記載の方法で、Zn−Al合金
めっき用フラックスを使用したものである。また、従来
法(2)は、特公平1−54428号公報に示された方
法(2浴法)で、1次めっきとしてAlを0.12%含
むZn浴でめっきを行なっている。
[0016] The conventional method (1) for comparison is disclosed in Japanese Patent Application Laid-open No. 1983
This is a method described in Japanese Patent No. 136759, using a Zn-Al alloy plating flux. Conventional method (2) is the method (two-bath method) disclosed in Japanese Patent Publication No. 1-54428, in which plating is performed in a Zn bath containing 0.12% Al as the primary plating.

【0017】表1に、めっき条件とめっき鋼線の表面性
状および耐食性を示す。耐食性の評価は、JIS  Z
2371に規定された塩水噴霧試験により行ない、赤錆
発生時間を溶融Znめっき鋼線と比較した。結果を下記
の(1)式で定義する耐食性倍率として定量化した。
Table 1 shows the plating conditions, surface properties and corrosion resistance of the plated steel wire. Evaluation of corrosion resistance is based on JIS Z
2371, and the red rust generation time was compared with that of hot-dip Zn-plated steel wire. The results were quantified as a corrosion resistance magnification defined by the following equation (1).

【0018】[0018]

【数1】 表1からわかるように、本発明法で製造された合金めっ
き鋼線は、「ぶつ」、「ざら」、不めっき等のめっき欠
陥がなく、また、安定した高い耐食性を示す。
[Equation 1] As can be seen from Table 1, the alloy-plated steel wire produced by the method of the present invention has no plating defects such as "bumps", "roughness", and no plating, and also exhibits stable and high corrosion resistance.

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【表2】[Table 2]

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
によれば、従来法に比べめっき欠陥の発生がなく、また
耐食性に優れた合金めっき鋼線の製造が可能である。ま
た、本発明法では、溶融Pb層を用いているために合金
浴層へZnが持ち込まれることがなく、このため、合金
浴組成の変動が大幅に減少し、高位安定した耐食性を維
持することが容易である。さらに、1次めっき(溶融Z
nめっき)と合金めっきを別個に行なう場合と比較して
、本発明法では、両者が一体構造のめっき槽を構成して
いるため、設備ならびに運転コストの低減化が可能であ
る。
As is clear from the above description, according to the present invention, it is possible to produce an alloy-plated steel wire that is free from plating defects and has excellent corrosion resistance compared to conventional methods. Furthermore, in the method of the present invention, since a molten Pb layer is used, Zn is not brought into the alloy bath layer. Therefore, fluctuations in the alloy bath composition are significantly reduced, and highly stable corrosion resistance can be maintained. is easy. Furthermore, primary plating (molten Z
Compared to the case where plating (N plating) and alloy plating are performed separately, in the method of the present invention, both constitute a plating tank with an integrated structure, so it is possible to reduce equipment and operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】合金めっき槽の断面図である。FIG. 1 is a sectional view of an alloy plating tank.

【符号の説明】[Explanation of symbols]

1  合金めっき槽本体 2  溶融Zn層 3  溶融Pb層 4  溶融Zn−Al合金層 5  フラックス処理後の鋼線 6  合金めっき鋼線 7  隔壁 8  ガイドロール 9  ガイドロール 10  浸漬ロール 11  浸漬ロール 12  冷却装置 1 Alloy plating tank body 2 Molten Zn layer 3 Molten Pb layer 4 Molten Zn-Al alloy layer 5 Steel wire after flux treatment 6 Alloy plated steel wire 7 Partition wall 8 Guide roll 9 Guide roll 10 Dipping roll 11 Dipping roll 12 Cooling device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  めっき槽下部に溶融Pb層、該溶融P
b層上の入線部に溶融Zn層、出線部にAlを重量比で
2〜12%含有する溶融Zn−Al合金層を形成させ、
鋼線を溶融Zn、溶融Pb、溶融Zn−Al合金の順序
で該溶融金属層を連続的に通過させめっきすることを特
徴とするZn−Al合金めっき鋼線の製造方法。
Claim 1: A molten Pb layer at the bottom of the plating tank, and a molten Pb layer at the bottom of the plating tank.
A molten Zn layer is formed in the incoming line part on the b layer, and a molten Zn-Al alloy layer containing 2 to 12% Al by weight is formed in the outgoing line part,
A method for producing a Zn-Al alloy plated steel wire, which comprises plating the steel wire by passing the molten metal layer continuously in the order of molten Zn, molten Pb, and molten Zn-Al alloy.
JP1680091A 1991-01-18 1991-01-18 Production of zn-al alloy plated steel wire Pending JPH04236754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1680091A JPH04236754A (en) 1991-01-18 1991-01-18 Production of zn-al alloy plated steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1680091A JPH04236754A (en) 1991-01-18 1991-01-18 Production of zn-al alloy plated steel wire

Publications (1)

Publication Number Publication Date
JPH04236754A true JPH04236754A (en) 1992-08-25

Family

ID=11926232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1680091A Pending JPH04236754A (en) 1991-01-18 1991-01-18 Production of zn-al alloy plated steel wire

Country Status (1)

Country Link
JP (1) JPH04236754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040701A (en) * 2002-03-05 2002-05-30 덕산산업주식회사 Hot-dip aluminizing pot
WO2014121979A1 (en) * 2013-02-05 2014-08-14 Thyssenkrupp Steel Europe Ag Method for hot-dip coating a metal strip, in particular a steel strip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381434A (en) * 1976-12-28 1978-07-18 Nippon Kokan Kk Melting plating method of zinccaluminium alloy
JPS6244563A (en) * 1985-08-20 1987-02-26 Hokkai Koki Kk Manufacture of hot dip zinc-aluminum alloy coated steel wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381434A (en) * 1976-12-28 1978-07-18 Nippon Kokan Kk Melting plating method of zinccaluminium alloy
JPS6244563A (en) * 1985-08-20 1987-02-26 Hokkai Koki Kk Manufacture of hot dip zinc-aluminum alloy coated steel wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040701A (en) * 2002-03-05 2002-05-30 덕산산업주식회사 Hot-dip aluminizing pot
WO2014121979A1 (en) * 2013-02-05 2014-08-14 Thyssenkrupp Steel Europe Ag Method for hot-dip coating a metal strip, in particular a steel strip
US9670573B2 (en) 2013-02-05 2017-06-06 Thyssenkrupp Steel Europe Ag Method for the hot-dip coating of metal strip, in particular steel strip

Similar Documents

Publication Publication Date Title
JP2777571B2 (en) Aluminum-zinc-silicon alloy plating coating and method for producing the same
US4390377A (en) Novel continuous, high speed method of galvanizing and annealing a continuously travelling low carbon ferrous wire
JPS6043476A (en) Continuous aluminizing method
JPH0753901B2 (en) Hot dip galvanizing method
JPH04236754A (en) Production of zn-al alloy plated steel wire
JPH03281788A (en) Production of zn-al alloy plated steel wire
JPS6138259B2 (en)
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPH04246158A (en) Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance
JP3114609B2 (en) Method for producing galvannealed steel sheet with excellent surface properties
JPH0565612A (en) Hot-dip galvanizing method for si-containing steel sheet
JP2747554B2 (en) Aluminum / zinc alloy-plated steel sheet and method for producing the same
JP3376914B2 (en) Manufacturing method and apparatus for hot-dip galvanized steel sheet
JPH0154428B2 (en)
JPH04154949A (en) Production of zn-al alloy plated steel wire
JPH0971851A (en) Production of zinc-tin alloy plated steel sheet
JPS6055588B2 (en) Method for producing molten zinc-magnesium alloy plated steel sheet
JPS58120771A (en) Manufacture of alloyed galvanized steel plate
JPH0372060A (en) Steel sheet thickly plated with pb alloy and its production
JPH05287483A (en) Production of galvanized alloy coating object
JPH07180016A (en) Device for controlling concentration of al in bath of continuous hot dip galvanizing line
JPH09157819A (en) Production of thinly coated galvanized steel sheet
JPH04176852A (en) Aluminum-zinc alloy hot-dipping method
JPH03281787A (en) Production of zn-al alloy plated steel wire
JPH05163558A (en) Manufacture of si-containing high strength hot-dip galvanizing carbon steel sheets and alloy hot-dip galyannealed steel sheets