JPH04245168A - Thionyl chloride-lithium battery - Google Patents

Thionyl chloride-lithium battery

Info

Publication number
JPH04245168A
JPH04245168A JP9131691A JP3169191A JPH04245168A JP H04245168 A JPH04245168 A JP H04245168A JP 9131691 A JP9131691 A JP 9131691A JP 3169191 A JP3169191 A JP 3169191A JP H04245168 A JPH04245168 A JP H04245168A
Authority
JP
Japan
Prior art keywords
battery
lithium
explosion
thionyl chloride
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9131691A
Other languages
Japanese (ja)
Inventor
Masanori Kogure
正紀 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9131691A priority Critical patent/JPH04245168A/en
Publication of JPH04245168A publication Critical patent/JPH04245168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent rupture or explosion, etc., due to an abrupt external heating by constituting a positive pole layer inside a battery case, and providing lithium at a negative pole in the center portion so as to separate the surface of the negative pole from the inside of the battery case by a predetermined distance. CONSTITUTION:A positive pole layer 3 is constituted inside a battery case 5; a lithium of a negative pole 1 is provided in the center portion; the surface of the negative pole 1 is separated from the inside of the battery case 5 more than 1.5mm apart; and a glass seal 9 serving as an explosion-protecting mechanism which operates in the range of 20 to 80kg/cm<2> of a battery internal pressure. When this battery is externally heated, since the lithium in the center portion of the battery is heated through an electrolyte, its temperature does not become higher than that of the electrolyte, so that the electrolyte is discharged outside the battery at temperature equal to or lower than the melting temperature of lithium to efficiently prevent a direct reaction between molten lithium and a thionyl chloride by operating the explosion-protecting mechanism 9 within the range of 20 to 80kg/cm<2> of the battery internal pressure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、塩化チオニルを電解
液の溶媒および正極活物質とし、リチウムを負極活物質
とする塩化チオニル・リチウム電池に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thionyl chloride/lithium battery using thionyl chloride as a solvent for an electrolyte and a positive electrode active material and lithium as a negative electrode active material.

【0002】0002

【従来の技術】塩化チオニルを電解液の溶媒および正極
活物質とし、リチウムを負極活物質とする塩化チオニル
・リチウム電池は、エネルギー密度が高く、低温特性に
優れている。電池の起電反応は、 2SOCl2  +
 4Li→ 4LiCl +SO2 + S で示され
、リチウムと塩化チオニルが電気化学的に反応して塩化
リチウムと二酸化硫黄と硫黄を生成する。
BACKGROUND OF THE INVENTION A thionyl chloride-lithium battery, which uses thionyl chloride as the electrolyte solvent and positive electrode active material and lithium as the negative electrode active material, has high energy density and excellent low-temperature characteristics. The electromotive reaction of the battery is 2SOCl2 +
It is shown as 4Li→ 4LiCl +SO2 + S, where lithium and thionyl chloride react electrochemically to produce lithium chloride, sulfur dioxide, and sulfur.

【0003】負極のリチウムは吸湿性が強く、また正極
活物質の塩化チオニルや放電生成物の二酸化硫黄は刺激
性が強いために、電池はハーメチックシールによる完全
密閉構造が採用されている。ハーメチックシールによる
封口は密閉性が高いために、貯蔵性が優れているという
長所を有するものの、誤った使用において電池内圧が異
常に高くなった場合、破裂や爆発を起こす危険性があっ
た。
[0003] Lithium as a negative electrode has strong hygroscopicity, and thionyl chloride as a positive electrode active material and sulfur dioxide as a discharge product are highly irritating, so batteries have adopted a completely sealed structure using a hermetic seal. Although the hermetic seal has the advantage of excellent storage properties due to its high airtightness, there is a risk of rupture or explosion if the internal pressure of the battery becomes abnormally high due to incorrect use.

【0004】従来、この様な危険を避けるために、電池
ケースには防爆機構が設けられている。電池内圧が異常
に高くなった場合、防爆機構を作動させて電池内容物の
一部を放出し、電池の破裂や爆発を防ごうとするもので
ある。このような防爆機構としては、減圧弁の使用や、
電池ケースの一部に溝や薄肉部を設けて、内部圧力が異
常に上昇したときに切裂破壊が生じるようにしたものが
ある。また内圧の上昇による応力を利用してハーメチッ
クシールを破壊することも行われている。
Conventionally, in order to avoid such dangers, battery cases have been provided with an explosion-proof mechanism. If the internal pressure of the battery becomes abnormally high, the explosion-proof mechanism is activated to release some of the battery contents to prevent the battery from bursting or exploding. Such explosion-proof mechanisms include the use of pressure reducing valves,
Some battery cases have grooves or thin-walled parts in a part of the battery case so that tearing and failure occur when the internal pressure rises abnormally. Additionally, the hermetic seal is destroyed by utilizing stress caused by increased internal pressure.

【0005】図2は、防爆用の溝を電池ケース底面に設
けた従来の筒形塩化チオニル・リチウム電池の断面図で
ある。1はリチウムからなる負極、2はガラス繊維不織
布からなる側面セパレータであり、3は多孔質炭素から
なる正極である。14はニッケルからなる正極集電体で
ある。5はステンレス鋼製の電池ケースであり、その内
面に接触して負極1が構成されている。6はステンレス
鋼からなる蓋体であり、この蓋体6の外周は電池ケース
5の開口部と溶接されている。蓋体6の中心部には小孔
7が穿設され、この小孔7にはステンレス製の棒状の正
極端子15が電気絶縁性のガラスシール材9を介して接
合され、ハーメチックシールを構成している。10は注
液口であり、電解液を注入後、溶接封口される。この電
池の電解液13として、塩化チオニルに四塩化アルミン
酸リチウムを溶解させたものが用いられ、上記塩化チオ
ニルは同時に正極活物質としての作用も果たしている。 16は防爆用の溝であり、容器の底部に十字に形成され
ており、電池内圧が異常に上昇すると開裂されて、容器
の破裂を防止している。
FIG. 2 is a cross-sectional view of a conventional cylindrical lithium thionyl chloride battery having an explosion-proof groove provided on the bottom of the battery case. 1 is a negative electrode made of lithium, 2 is a side separator made of glass fiber nonwoven fabric, and 3 is a positive electrode made of porous carbon. 14 is a positive electrode current collector made of nickel. 5 is a battery case made of stainless steel, and the negative electrode 1 is configured in contact with the inner surface of the battery case. Reference numeral 6 denotes a lid body made of stainless steel, and the outer periphery of this lid body 6 is welded to the opening of the battery case 5. A small hole 7 is bored in the center of the lid 6, and a rod-shaped positive electrode terminal 15 made of stainless steel is bonded to the small hole 7 via an electrically insulating glass sealing material 9 to form a hermetic seal. ing. 10 is a liquid injection port, which is sealed by welding after the electrolyte is injected. As the electrolytic solution 13 of this battery, a solution prepared by dissolving lithium aluminate tetrachloride in thionyl chloride is used, and the thionyl chloride also functions as a positive electrode active material. Reference numeral 16 denotes an explosion-proof groove, which is formed in the shape of a cross at the bottom of the container, and is ruptured when the battery internal pressure rises abnormally to prevent the container from bursting.

【0006】[0006]

【発明が解決しようとする課題】従来の電池は、充電や
過放電、短絡等の誤った使用により電池内圧が異常に上
昇した場合、防爆機構が作動して、内容物の一部を放出
し電池の破裂を防止することができた。しかしながら、
直接火中にさらされるような急激な昇温状態では防爆機
構が正常に作動せず、破裂や爆発がおこるという欠点が
あった。
[Problem to be solved by the invention] In conventional batteries, when the internal pressure of the battery rises abnormally due to incorrect use such as overcharging, overdischarging, or short circuiting, the explosion-proof mechanism is activated and some of the contents are released. We were able to prevent the battery from exploding. however,
The drawback was that the explosion-proof mechanism did not operate properly under conditions of rapid temperature rise, such as when directly exposed to fire, resulting in rupture or explosion.

【0007】塩化チオニル・リチウム電池は、内部短絡
や外部からの加熱等により加熱されると、温度の上昇に
つれ、塩化チオニルや放電生成物の二酸化硫黄の蒸気圧
が高くなり、内圧が上昇して、破裂する危険がある。さ
らに、温度が負極のリチウムの融点180 ℃に達する
と、溶融したリチウムと塩化チオニルの直接反応が起こ
り瞬時に爆発する。従来の電池は、内圧の上昇を検出し
て、リチウムの温度が180 ℃に達する前に防爆機構
を作動させ、塩化チオニルを放出しようとするものであ
った。塩化チオニルがなければリチウムが溶融しても爆
発は起こらないからである。
When a lithium thionyl chloride battery is heated due to an internal short circuit or external heating, the vapor pressure of thionyl chloride and the discharge product sulfur dioxide increases as the temperature rises, causing the internal pressure to rise. , there is a risk of rupture. Furthermore, when the temperature reaches the melting point of lithium in the negative electrode, 180° C., a direct reaction between the molten lithium and thionyl chloride occurs, resulting in an instantaneous explosion. Conventional batteries detect an increase in internal pressure and activate an explosion-proof mechanism to release thionyl chloride before the lithium temperature reaches 180°C. This is because without thionyl chloride, no explosion will occur even if lithium melts.

【0008】しかしながら、従来の電池では、電池ケー
ス内面に負極を構成しているので、外部から急激に加熱
した場合には、電池内部の温度が防爆機構の作動圧に達
する前にリチウムの温度が180 ℃を越えることがあ
り、爆発を防ぐことができなかった。
However, in conventional batteries, the negative electrode is formed on the inside of the battery case, so if the battery is suddenly heated from the outside, the temperature of the lithium will rise before the temperature inside the battery reaches the operating pressure of the explosion-proof mechanism. Temperatures could exceed 180 degrees Celsius, and explosions could not be prevented.

【0009】[0009]

【課題を解決するための手段】本発明は、塩化チオニル
を電解液の溶媒および正極活物質として用い、リチウム
を負極活物質として用いた筒形の塩化チオニル・リチウ
ム電池であって、電池ケース内面に接触して構成された
正極層と、セパレータと、該セパレータを介して中心部
に構成された負極と、電池内圧 20kg/cm2 か
ら 80kg/cm2 の範囲で作動する防爆機構とを
備え、該負極の表面は電池ケースの内面より1.5mm
 以上離れていることを特徴とするものである。
[Means for Solving the Problems] The present invention provides a cylindrical thionyl chloride/lithium battery using thionyl chloride as the solvent of the electrolytic solution and the positive electrode active material, and lithium as the negative electrode active material. a positive electrode layer configured in contact with the battery, a separator, a negative electrode configured in the center via the separator, and an explosion-proof mechanism that operates within a battery internal pressure range of 20 kg/cm2 to 80 kg/cm2, and the negative electrode The surface of is 1.5mm from the inside of the battery case.
It is characterized by being far apart.

【0010】0010

【作用】本発明電池は従来の電池構成とは逆に、電池ケ
ース内面に正極層を構成し、負極のリチウムを電池の中
心部に設け、負極の表面を電池ケースの内面より1.5
mm 以上離し、適正な電池内圧で作動する防爆機構を
使用することにより、急激な外部からの加熱に対しても
破裂や爆発等の異常の発生を防止するものである。
[Operation] Contrary to the conventional battery structure, the battery of the present invention has a positive electrode layer on the inner surface of the battery case, and the negative electrode lithium is provided in the center of the battery, so that the surface of the negative electrode is 1.5 mm higher than the inner surface of the battery case.
By using an explosion-proof mechanism that operates at an appropriate battery internal pressure with a separation of at least 2 mm, the occurrence of abnormalities such as rupture and explosion can be prevented even in the event of sudden external heating.

【0011】すなわち、本発明電池を外部より加熱する
と、正極層を介して、正極あるいはセパレータ中の電解
液が加熱され、電池温度の上昇につれて電池内圧が上昇
する。電池内圧が 20kg/cm2 から 80kg
/cm2 の範囲内で防爆機構を作動させることにより
、リチウムの溶融温度以下で電解液は電池外部へ放出さ
れ、溶融リチウムと塩化チオニルとの直接反応は有効に
防止される。電池中央部のリチウムは、電解液を介して
加熱されるために、従来のように電解液の温度より高く
なることはない。しかしながら、正極層やセパレータ層
が薄く、負極表面と電池ケースとの距離が近すぎると、
局所的な過熱によってリチウムの温度が上がる可能性が
あり、負極の表面と電池ケースの内面との間の距離は1
.5mm 以上とすることが望ましい。
That is, when the battery of the present invention is heated from the outside, the electrolyte in the positive electrode or the separator is heated through the positive electrode layer, and as the battery temperature rises, the internal pressure of the battery increases. Battery internal pressure from 20kg/cm2 to 80kg
By operating the explosion-proof mechanism within the range of /cm2, the electrolytic solution is discharged to the outside of the battery at a temperature below the melting temperature of lithium, and direct reaction between molten lithium and thionyl chloride is effectively prevented. Because the lithium in the center of the battery is heated through the electrolyte, it does not reach a temperature higher than that of the electrolyte, unlike in conventional batteries. However, if the positive electrode layer or separator layer is thin and the distance between the negative electrode surface and the battery case is too close,
The temperature of lithium may increase due to local overheating, and the distance between the surface of the negative electrode and the inner surface of the battery case is 1
.. It is desirable to set it to 5 mm or more.

【0012】0012

【実施例】図1は、本発明による塩化チオニル・リチウ
ム電池の断面図である。5は電池ケースであり、直径1
4mm、高さ48mmの有底円筒形で、厚さ0.5mm
 のステンレス鋼を使用した。3は電池ケース5の内周
面に設けた正極である。この正極3は、ポリテトラフル
オロエチレン10重量%を結着剤としたアセチレンブラ
ックからなる円筒状の多孔質炭素体であり、その厚さは
1.4mm である。この正極3の内側には、厚さ0.
4mm のガラス繊維不織布製の側部セパレータ2が配
されており、底面には厚さ1.2mm の保護セパレー
タ11と厚さ0.6mm の底部セパレータ12が配さ
れている。そして、これらのセハルレータを介して、円
筒状の負極1が収納されている。この負極1は金属リチ
ウムであり、その内側にニッケル製エキスパンドメタル
からなる負極集電体4が圧着されている。6は厚さ0.
5mm のステンレス鋼板製の蓋体で、この蓋体6の外
周は、電池ケース5の開口部とレーザ溶接されている。 蓋体6の中心部には直径4mm の小孔7が穿設され、
この小孔7にはステンレス製の直径2.3mm の棒状
の負極端子8が電気絶縁性のガラスシール材9を介して
接合され、ハーメチックシールを構成している。またこ
の小孔7は、電池内圧の上昇によりガラスシール9が破
れ防爆機構として働く。蓋体6の厚さや小孔7の直径、
ガラスシール材9の厚さや材質を変更することにより、
ガラスシール材が破壊する作動圧を適宜変更することが
できる。負極端子8と負極集電体4はスポット溶接され
ている。電解液13として、塩化チオニルに四塩化アル
ミン酸リチウムを1.5 モル/リットルの割合で溶解
させたものを使用した。塩化チオニルは電解液と同時に
正極活物質としての作用を果たしている。10は注液口
であり、電解液注入後、溶接封口されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a cross-sectional view of a lithium thionyl chloride battery according to the present invention. 5 is the battery case, which has a diameter of 1
4mm, height 48mm cylindrical shape with a bottom, thickness 0.5mm
Made of stainless steel. 3 is a positive electrode provided on the inner peripheral surface of the battery case 5. This positive electrode 3 is a cylindrical porous carbon body made of acetylene black with 10% by weight of polytetrafluoroethylene as a binder, and has a thickness of 1.4 mm. The inside of this positive electrode 3 has a thickness of 0.
A side separator 2 made of a non-woven glass fiber fabric of 4 mm is disposed, and a protective separator 11 of 1.2 mm thick and a bottom separator 12 of 0.6 mm thick are disposed on the bottom surface. A cylindrical negative electrode 1 is housed through these cell plates. This negative electrode 1 is made of metallic lithium, and a negative electrode current collector 4 made of expanded metal made of nickel is crimped inside thereof. 6 is thickness 0.
The lid 6 is made of a 5 mm stainless steel plate, and the outer periphery of the lid 6 is laser welded to the opening of the battery case 5. A small hole 7 with a diameter of 4 mm is bored in the center of the lid body 6.
A rod-shaped negative electrode terminal 8 made of stainless steel and having a diameter of 2.3 mm is joined to this small hole 7 via an electrically insulating glass sealing material 9, thereby forming a hermetic seal. Further, this small hole 7 acts as an explosion-proof mechanism when the glass seal 9 is broken due to an increase in the internal pressure of the battery. The thickness of the lid body 6 and the diameter of the small hole 7,
By changing the thickness and material of the glass sealing material 9,
The operating pressure at which the glass seal material breaks can be changed as appropriate. The negative electrode terminal 8 and the negative electrode current collector 4 are spot welded. As the electrolytic solution 13, a solution in which lithium aluminate tetrachloride was dissolved in thionyl chloride at a rate of 1.5 mol/liter was used. Thionyl chloride functions both as an electrolyte and as a positive electrode active material. 10 is a liquid injection port, which is sealed by welding after the electrolyte is injected.

【0013】防爆機構として働くガラスシール材の作動
圧をそれぞれ 20kg/cm2 、 30kg/cm
2 、 40kg/cm2 、 60kg/cm2 、
 80kg/cm2 、100kg/cm2 とした上
記構成の電池を各10個ずつ組み立て、加熱試験を行っ
た。
[0013] The operating pressure of the glass sealing material that acts as an explosion-proof mechanism is 20 kg/cm2 and 30 kg/cm, respectively.
2, 40kg/cm2, 60kg/cm2,
Ten batteries each having the above configurations with a weight of 80 kg/cm 2 and 100 kg/cm 2 were assembled, and a heating test was conducted.

【0014】図3は加熱試験の方法を示したものである
。17は試験電池、18はガスバーナであり、試験電池
とガスバーナとの距離は10cmとした。
FIG. 3 shows the heating test method. 17 is a test battery, 18 is a gas burner, and the distance between the test battery and the gas burner was 10 cm.

【0015】試験電池は、防爆機構の作動圧が100k
g/cm2 のものに2 個の爆発が認められたが、作
動圧が 80kg/cm2以下の電池は、全て加熱中に
防爆機構が働いた。防爆機構が作動した電池では、ガラ
スシール部より電解液が放出あるいは蒸発して、加熱を
続けても破裂や爆発は起こらなかった。防爆機構が作動
した電池では、電解液がある限り電解液の沸点以上には
温度が上がらず、負極のリチウムが溶融する時には電池
内にはすでに塩化チオニルは存在せず、爆発的な反応は
起こり得ないからである。しかし、作動圧100kg/
cm2 の電池は、防爆機構が作動するまでにリチウム
の温度が融点近くまで加熱されており、爆発に至ったも
のがあったと考えられる。したがって、防爆機構の作動
圧は 80kg/cm2 以下とすることが望ましい。 なお、作動圧があまり低いと通常の高温使用においても
作動する可能性があるために、 20kg/cm2 以
上とすることが望ましい。
[0015] The test battery had an explosion-proof mechanism operating pressure of 100k.
Although two explosions were observed in batteries with a working pressure of 80 kg/cm2 or less, the explosion-proof mechanism was activated during heating for all batteries with an operating pressure of 80 kg/cm2 or less. In batteries where the explosion-proof mechanism was activated, the electrolyte was released or evaporated from the glass seal, and no rupture or explosion occurred even if heating continued. In a battery with an explosion-proof mechanism activated, as long as there is an electrolyte, the temperature will not rise above the boiling point of the electrolyte, and by the time the lithium in the negative electrode melts, there is no longer any thionyl chloride in the battery, and an explosive reaction will occur. That's because you don't get it. However, the working pressure is 100kg/
It is thought that some of the lithium batteries had heated up to near their melting point by the time the explosion-proof mechanism was activated, leading to explosions. Therefore, it is desirable that the operating pressure of the explosion-proof mechanism be 80 kg/cm2 or less. Note that if the operating pressure is too low, it may operate even during normal high-temperature use, so it is desirable to set it to 20 kg/cm2 or more.

【0016】上記の加熱試験に使用した試験電池の負極
表面は、電池ケースの内面から1.8mm だけ離れて
いる。 正極の厚さを1.4mm から、1.1mm に薄くし
た電池についても同様の加熱試験を行い爆発しないこと
を確認した。 使用したセパレータの厚さは0.4mm であり、この
ときの試験電池の負極表面は、電池ケースの内面から1
.5mm 離れていた。
The negative electrode surface of the test battery used in the above heating test was separated from the inner surface of the battery case by 1.8 mm. Similar heating tests were conducted on batteries in which the thickness of the positive electrode was reduced from 1.4 mm to 1.1 mm, and it was confirmed that they would not explode. The thickness of the separator used was 0.4 mm, and the negative electrode surface of the test battery was 1 inch from the inner surface of the battery case.
.. They were 5mm apart.

【0017】しかしながら、正極の厚さを0.8mm 
にしたところ、防爆機能は作動するにもかかわらず爆発
する電池が発生した。また、正極の厚さは1.1mm 
あっても、セパレータの厚さを0.2mm とした場合
、同様の爆発現象が認められた。これは、電池ケースと
リチウム表面の距離が近すぎるために、リチウムが局所
的に加熱され溶融したものであると考えられる。
However, if the thickness of the positive electrode is 0.8 mm
However, some batteries exploded even though the explosion-proof function was activated. In addition, the thickness of the positive electrode is 1.1 mm
However, when the separator thickness was 0.2 mm, a similar explosion phenomenon was observed. This is thought to be because the distance between the battery case and the lithium surface was too close, and the lithium was locally heated and melted.

【0018】電池の爆発を防ぐためには、電池ケース内
面とリチウムとの距離は1.5mm 以上必要であった
。電池ケースとの距離が1.5mm 以上あれば、リチ
ウム表面は正極層とセパレータ層により保護されるため
に、局所的な加熱は起こりにくく、またその間に電解液
がある限り、リチウムの溶融温度まで加熱されることは
ないためである。
[0018] In order to prevent the battery from exploding, the distance between the inner surface of the battery case and the lithium must be 1.5 mm or more. If the distance from the battery case is 1.5 mm or more, the lithium surface is protected by the positive electrode layer and separator layer, so local heating is unlikely to occur, and as long as there is an electrolyte between them, the lithium surface will be heated up to the melting temperature of lithium. This is because it is never heated.

【0019】リチウム負極を電池ケース内面に設けた従
来電池についても、防爆機構の作動圧をそれぞれ 20
kg/cm2 、 30kg/cm2 、 40kg/
cm2 、 60kg/cm2 、 80kg/cm2
 、100kg/cm2 として、同様の加熱試験を行
った。従来電池は、外部からの急激な加熱に対しては防
爆機構の効果はなく、何れも爆発した。作動圧 40k
g/cm2 以下の電池は、爆発の前に防爆機構が作動
して電解液の放出が始まっていたが、爆発現象を防ぐこ
とはできなかった。
Regarding conventional batteries with a lithium negative electrode provided on the inner surface of the battery case, the operating pressure of the explosion-proof mechanism was set at 20%.
kg/cm2, 30kg/cm2, 40kg/
cm2, 60kg/cm2, 80kg/cm2
, 100 kg/cm2, and a similar heating test was conducted. Conventional batteries had no explosion-proof mechanism against sudden external heating, and all of them exploded. Working pressure 40k
Although the explosion-proof mechanism of the batteries below g/cm2 was activated and the electrolyte began to be released before the explosion, it was not possible to prevent the explosion phenomenon.

【0020】従来電池は、電池ケースの内面に負極のリ
チウムが圧着されており、外部からの熱は、直接リチウ
ムに伝わり、わずかの時間でリチウムの溶融温度に達し
、電池爆発に至ったものである。防爆機構の作動圧が低
い場合は、防爆機構が作動し電解液の放出が始まってい
るが、外部からの熱は負極のリチウムを介して伝えられ
るために、常にリチウムの温度の方が電解液の温度より
高く、電池ケース内に塩化チオニルが残存している段階
で、リチウムが溶融し爆発したものである。
[0020] In conventional batteries, the lithium negative electrode was crimped onto the inner surface of the battery case, and heat from the outside was directly transmitted to the lithium, reaching the melting temperature of the lithium in a short period of time, leading to the battery exploding. be. When the operating pressure of the explosion-proof mechanism is low, the explosion-proof mechanism is activated and the electrolyte has begun to be released, but since heat from the outside is transmitted through the lithium of the negative electrode, the temperature of the lithium is always higher than the electrolyte. Lithium melted and exploded when thionyl chloride remained inside the battery case.

【0021】[0021]

【発明の効果】以上述べたように、本発明により、外部
からの急激な加熱に対しても破裂や爆発しない塩化チオ
ニル・リチウム電池を提供することができる。すなわち
、本発明による塩化チオニル・リチウム電池は、充電や
過放電,短絡等による内部圧力の上昇に対してはもちろ
ん、電池火中への投入のような誤使用や、プリント基板
用の半田槽への落下のような事故においても安全であり
、工業的価値の大きなものである。
As described above, the present invention makes it possible to provide a lithium thionyl chloride battery that does not burst or explode even when exposed to rapid external heating. In other words, the thionyl chloride lithium battery according to the present invention is not only resistant to increases in internal pressure due to charging, over-discharging, and short circuits, but also to misuse such as throwing the battery into a fire, and preventing it from being placed in a soldering bath for printed circuit boards. It is safe even in the event of an accident such as a fall, and is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における塩化チオニル・リチ
ウム電池の断面図である。
FIG. 1 is a cross-sectional view of a thionyl chloride lithium battery in one embodiment of the present invention.

【図2】従来の塩化チオニル・リチウム電池の断面図で
ある。
FIG. 2 is a cross-sectional view of a conventional thionyl chloride lithium battery.

【図3】ガスバーナによる電池加熱試験の方法を示した
図である。
FIG. 3 is a diagram showing a method of battery heating test using a gas burner.

【符号の説明】[Explanation of symbols]

1      負極 2      側面セパレータ 3      正極 4      負極集電体 5      電池ケース 6      蓋体 7      小孔 8      負極端子 9      ガラスシール 10    注液口 11    保護セパレータ 12    底部セパレータ 13    電解液 14    正極集電体 15    正極端子 16    防爆用溝 17    試験電池 18    ガスバーナー 1 Negative electrode 2 Side separator 3 Positive electrode 4 Negative electrode current collector 5 Battery case 6 Lid body 7 Small hole 8 Negative terminal 9 Glass seal 10 Liquid injection port 11 Protective separator 12 Bottom separator 13 Electrolyte 14 Positive electrode current collector 15 Positive terminal 16 Explosion-proof groove 17 Test battery 18 Gas burner

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】塩化チオニルを電解液の溶媒および正極活
物質として用い、リチウムを負極活物質として用いた筒
形の塩化チオニル・リチウム電池であって、電池ケース
内面に接触して構成された正極層と、セパレータと、該
セパレータを介して中心部に構成された負極と、電池内
圧 20kg/cm2 から80kg/cm2 の範囲
で作動する防爆機構とを備え、該負極の表面は電池ケー
スの内面より1.5mm 以上離れていることを特徴と
する塩化チオニル・リチウム電池。
Claim 1: A cylindrical thionyl chloride-lithium battery using thionyl chloride as a solvent of an electrolytic solution and a positive electrode active material and lithium as a negative electrode active material, the positive electrode being in contact with the inner surface of a battery case. layer, a separator, a negative electrode configured in the center through the separator, and an explosion-proof mechanism that operates within a battery internal pressure range of 20 kg/cm2 to 80 kg/cm2, and the surface of the negative electrode is located closer to the inner surface of the battery case. A thionyl chloride lithium battery characterized by being separated by 1.5 mm or more.
JP9131691A 1991-01-30 1991-01-30 Thionyl chloride-lithium battery Pending JPH04245168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9131691A JPH04245168A (en) 1991-01-30 1991-01-30 Thionyl chloride-lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9131691A JPH04245168A (en) 1991-01-30 1991-01-30 Thionyl chloride-lithium battery

Publications (1)

Publication Number Publication Date
JPH04245168A true JPH04245168A (en) 1992-09-01

Family

ID=12338101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9131691A Pending JPH04245168A (en) 1991-01-30 1991-01-30 Thionyl chloride-lithium battery

Country Status (1)

Country Link
JP (1) JPH04245168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006108529A1 (en) * 2005-04-15 2006-10-19 Daimlerchrysler Ag Liquid-cooled battery and method for operating such a battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006108529A1 (en) * 2005-04-15 2006-10-19 Daimlerchrysler Ag Liquid-cooled battery and method for operating such a battery

Similar Documents

Publication Publication Date Title
US5609972A (en) Cell cap assembly having frangible tab disconnect mechanism
US6045939A (en) Lithium secondary battery having thermal switch
JP4499680B2 (en) Cylindrical lithium ion secondary battery
US5741606A (en) Overcharge protection battery vent
KR100601500B1 (en) Lithium ion secondary battery having temperature and pressure sensing type
KR100351608B1 (en) Explosion-proof nonaqueous electrolyte secondary cell and rupture pressure setting method therefor
JP2000067840A (en) Safe vent hole for storage battery or battery
US20180053924A1 (en) Sealed type battery
JPH0562664A (en) Explosion proof type nonaqueous secondary battery
US8043738B2 (en) Liquid action substance battery
JP2006228520A (en) Secondary battery
JPH06333548A (en) Explosion-proof battery
JPH07254401A (en) Sealed battery
KR100770116B1 (en) Cylindrical Li Secondary battery
KR0153001B1 (en) Inorganic nonaqueous electrolytic solution type cell
JPS6386358A (en) Nonaqueous electrolyte battery
JPH04245168A (en) Thionyl chloride-lithium battery
JP2000208132A (en) Nonaqueous electrolyte secondary battery and battery thermal relay
JPH0831397A (en) Explosion-proof battery
JPH11250884A (en) Battery
KR100277652B1 (en) Cap Assembly of Secondary Battery
JPH10241739A (en) Nonaqueous electrolytic secondary battery
JPS6386355A (en) Nonaqueous electrolyte battery
JPS60249241A (en) Sealed battery
JPS60198051A (en) Sealed battery