JPH04244561A - Thermal drive cold generator - Google Patents

Thermal drive cold generator

Info

Publication number
JPH04244561A
JPH04244561A JP932391A JP932391A JPH04244561A JP H04244561 A JPH04244561 A JP H04244561A JP 932391 A JP932391 A JP 932391A JP 932391 A JP932391 A JP 932391A JP H04244561 A JPH04244561 A JP H04244561A
Authority
JP
Japan
Prior art keywords
hydrogen
metal hydride
metal
vessels
hydrides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP932391A
Other languages
Japanese (ja)
Other versions
JP2840464B2 (en
Inventor
Naoki Ko
直樹 広
Koji Akashi
幸治 明石
Masakazu Morozu
昌和 諸頭
Masato Osumi
正人 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP932391A priority Critical patent/JP2840464B2/en
Publication of JPH04244561A publication Critical patent/JPH04244561A/en
Application granted granted Critical
Publication of JP2840464B2 publication Critical patent/JP2840464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To efficiently use an apparatus by providing cold removing means for removing cold at the time of discharging hydrogen from first metal hydride, and generating means having a turbine to be driven by the movement of hydrogen between second metal hydrides. CONSTITUTION:When a room cooling is not conducted, metal hydrides of vessels 3, 4 are not used, but only metal hydrides of vessels 1, 2 are used. In this case, movements of hydrogens between the vessels 1 and 3 and between the vessels 2 and 4 are stopped by switching valves 16a, 16b, one of the hydrides of the vessels 1, 2 is raised to high temperature and high pressure, the other is cooled, and to ambient temperature and low pressure, a gas turbine 17 is driven by the movement of the hydrogen therebetween, and a generator 18 is generated. The process is switched by switching means 7 and gas 3-way valves 14, 15 to continuously electrically generate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属水素化物を利用し
た熱駆動型冷熱発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally driven cold heat generating device using metal hydrides.

【0002】0002

【従来の技術】ある種の金属や合金が発熱的に水素を吸
蔵して金属水素化物を形成し、また、この金属水素化物
が可逆的に水素を放出することが知られている。(金属
水素化物は脱水素化すると金属になるが、この場合も含
めて、金属水素化物ということにする。)近年この金属
水素化物の特性を利用して冷熱や温熱を得るためのシス
テムが、例えば特公昭63−4111号に提案されてい
る。
2. Description of the Related Art It is known that certain metals and alloys absorb hydrogen exothermically to form metal hydrides, and that these metal hydrides reversibly release hydrogen. (When a metal hydride is dehydrogenated, it becomes a metal, but we will refer to it as a metal hydride, including this case.) In recent years, systems for obtaining cold or hot heat using the properties of metal hydrides have been developed. For example, it is proposed in Japanese Patent Publication No. 63-4111.

【0003】0003

【発明が解決しようとする課題】しかしながら、こうし
た従来の方式では冷暖房に使用する場合、春、秋時はシ
ステムを有効に利用できないという問題点があった。
[Problems to be Solved by the Invention] However, when using these conventional systems for heating and cooling, there is a problem that the system cannot be used effectively in spring and autumn.

【0004】0004

【課題を解決するための手段】本発明はこのような点に
鑑みて為されたものであって、平衡水素圧力が高い第1
の金属水素化物と平衡水素圧力が低い第2の金属水素化
物を用い、この第2の金属水素化物を加熱するとともに
、それによって発生した水素を第1の金属水素化物に吸
収させた後、前記第1の金属水素化物からの水素放出に
より冷熱を取り出す熱吸放出機構を複数有した熱駆動型
冷熱発生装置において、前記第1の金属水素化物からの
水素の放出時に冷熱を取り出す冷熱取り出し手段と、上
記複数の第2の金属水素化物間に具備され、これら第2
の金属水素化物間での水素移動により駆動されるタービ
ンを備えた発電手段と、を設けている。
[Means for Solving the Problems] The present invention has been made in view of the above points.
Using a second metal hydride having a lower equilibrium hydrogen pressure than the metal hydride, the second metal hydride is heated and the hydrogen generated thereby is absorbed into the first metal hydride, and then the A thermally driven cold heat generating device having a plurality of heat absorbing and releasing mechanisms for extracting cold heat by releasing hydrogen from the first metal hydride, a cold heat extracting means for extracting cold heat when hydrogen is released from the first metal hydride; is provided between the plurality of second metal hydrides, and these second metal hydrides are provided between the plurality of second metal hydrides.
power generation means comprising a turbine driven by hydrogen transfer between the metal hydrides.

【0005】[0005]

【作用】本発明では、複数の第2の金属水素化物を用い
、一方を加熱、他方の金属水素化物を冷却し、この間に
設置したガスタービンを両金属水素化物間の水素の移動
により回し、発電するので、本装置を冷暖房に使用しな
い場合でも、それに応じてタービンの軸仕事が行え、発
電できるので、年間を通じて、効率よくシステムが利用
できる。
[Operation] In the present invention, a plurality of second metal hydrides are used, one is heated and the other metal hydride is cooled, and a gas turbine installed between the two metal hydrides is rotated by the movement of hydrogen between the two metal hydrides. Since it generates electricity, even if this device is not used for air conditioning or heating, the shaft work of the turbine can be done accordingly and electricity can be generated, so the system can be used efficiently throughout the year.

【0006】[0006]

【実施例】図1は本発明冷熱発生装置の一実施例を示す
ブロック図であり、1、2はこのシステムの作動温度範
囲において、水素平衡圧力が高いLaNi5系の金属水
素 化物MH1を収納した容器、3、4はこのシステム
の作動温度範囲において水素 平衡圧力が低いMmNi
5系の金属水素化物MH2を収納した容器である。これ
らの容器1,2には、3方弁5a、5b、5c、5d、
及び管体6a、6bにより構成される切り替え手段7を
介して加熱部9と放熱部10とに交互に接続される。さ
らに容器3,4には、3方弁5e、5f、5g、5h及
び管体6c、6dにより構成される切り替え手段8を介
して放熱部10と冷却負荷11とが交互に接続される。 又、前記加熱部9はボイラ等からなり、オイル等からな
る熱媒を加熱して、前記3方弁5a〜dの切り換えによ
り金属水素化物収納容器1または2に熱交換的に送り込
む。 それとは逆に放熱部10は金属水素化物収納容器1,2
に熱交換的に接続される。さらに、3方弁5e〜hの切
り換えにより金属水素化物容器3、4と、放熱部10、
冷却負荷11は熱交換的に接続される。この時の熱媒体
は例えばアルコール等を使用すればよい。
[Example] Figure 1 is a block diagram showing an embodiment of the cold heat generating device of the present invention, and 1 and 2 house a LaNi5-based metal hydride MH1 that has a high hydrogen equilibrium pressure in the operating temperature range of this system. Containers 3 and 4 are hydrogen in the operating temperature range of this system. MmNi has a low equilibrium pressure.
This is a container containing a 5-series metal hydride MH2. These containers 1 and 2 are provided with three-way valves 5a, 5b, 5c, 5d,
It is alternately connected to the heating section 9 and the heat dissipation section 10 via a switching means 7 constituted by pipe bodies 6a and 6b. Further, a heat radiation section 10 and a cooling load 11 are alternately connected to the containers 3 and 4 via a switching means 8 constituted by three-way valves 5e, 5f, 5g, and 5h and pipe bodies 6c and 6d. Further, the heating section 9 is composed of a boiler or the like, and heats a heat medium made of oil or the like and sends it into the metal hydride storage container 1 or 2 in a heat exchange manner by switching the three-way valves 5a to 5d. On the contrary, the heat dissipation section 10 includes metal hydride storage containers 1 and 2.
connected for heat exchange. Furthermore, by switching the three-way valves 5e to 5h, the metal hydride containers 3, 4, the heat dissipation section 10,
The cooling load 11 is connected in a heat exchange manner. For example, alcohol or the like may be used as the heat medium at this time.

【0007】また、容器1,3及び容器2,4はそれぞ
れ水素導管12及び13により接続されている。さらに
、この管とは別に容器1,2間にガス三方弁14、15
を介して、ガスタービン17、発電機18が接続されて
いる。こうした装置において前述の加熱部9、切り換え
部7,8の3方弁5a〜5hは制御部19により一元的
に制御される。
Further, the containers 1 and 3 and the containers 2 and 4 are connected by hydrogen conduits 12 and 13, respectively. Furthermore, apart from this pipe, gas three-way valves 14 and 15 are installed between the containers 1 and 2.
A gas turbine 17 and a generator 18 are connected via. In such an apparatus, the heating section 9 and the three-way valves 5a to 5h of the switching sections 7 and 8 are centrally controlled by a control section 19.

【0008】図2に本発明に使用されるLaNi5系金
属水素化物、MmNi5系金属水素化物の温度と圧力の
特性図を示す。図1及び図2を用いて動作を説明する。
FIG. 2 shows temperature and pressure characteristics of the LaNi5-based metal hydride and the MmNi5-based metal hydride used in the present invention. The operation will be explained using FIGS. 1 and 2.

【0009】最初、加熱部9をボイラにより加熱し、加
熱された熱媒オイルを収納容器1に熱交換的に取り込む
。そして、この容器1内の金属水素化物は加熱され、図
2のSA状態に示す用に、容器1内で水素は高温高圧(
10atm)となる。これにより、収納容器3の金属水
素化物に発熱的に吸蔵される(SB状態)。このサイク
ルを第1サイクルとする。
First, the heating section 9 is heated by a boiler, and the heated heating medium oil is introduced into the storage container 1 in a heat exchange manner. Then, the metal hydride in the container 1 is heated, and the hydrogen in the container 1 is heated at high temperature and high pressure (
10 atm). As a result, it is exothermically occluded in the metal hydride in the storage container 3 (SB state). This cycle is referred to as the first cycle.

【0010】一方、放熱器10により常温に保持されて
いる金属水素化物MH2の収納容器 2内は常温低圧の
状態にあり、また、水素が吸蔵されている金属水素化物
MH1 の収納容器4内は常温で高圧の状態になってい
る。 このため、収納容器4から収納容器2に水素導管13を
通って水素が流れ、収納容器4の金属水素化物MH1 
から水素が吸熱的に発生する。この水素は、収納容器2
の金属水素化物MH2に は発熱的に吸蔵される。従っ
て、制御部19が3方弁5e〜5hを切り換えることに
より、冷却負荷11と収納容器4とを熱交換的に接続し
て、収納容器4の金属水素化物MH1の吸熱現象によっ
て発生する冷熱が冷却負荷11に供給される。この時、
金属水素化物MH1を収納した収納容器4内は状態SC
よりも高圧の 状態SDに保持され、金属水素化物MH
2を収納した容器2は状態SCに保持さ れる。この状
態は金属水素化物MH1からの水素放出がほぼ終了する
まで継続す る。このサイクルを第2サイクルとする。
On the other hand, the inside of the storage container 2 for the metal hydride MH2, which is maintained at room temperature by the radiator 10, is at room temperature and low pressure, and the inside of the storage container 4 for the metal hydride MH1, which has hydrogen stored therein, is at room temperature and low pressure. It is under high pressure at room temperature. Therefore, hydrogen flows from the storage container 4 to the storage container 2 through the hydrogen conduit 13, and the metal hydride MH1 in the storage container 4 is
Hydrogen is generated endothermically. This hydrogen is stored in storage container 2.
is exothermically occluded in the metal hydride MH2. Therefore, by switching the three-way valves 5e to 5h, the control unit 19 connects the cooling load 11 and the storage container 4 in a heat exchange manner, and the cold heat generated by the endothermic phenomenon of the metal hydride MH1 in the storage container 4 is removed. It is supplied to the cooling load 11. At this time,
The state inside the storage container 4 containing the metal hydride MH1 is SC.
The metal hydride MH is maintained at a higher pressure state SD than
Container 2 containing 2 is held in state SC. This state continues until hydrogen release from metal hydride MH1 is almost completed. This cycle is referred to as the second cycle.

【0011】こうしたサイクルが終了した後、切り換え
手段7,8により、3方弁5a〜hを切り換えて、容器
1を放熱部10に、容器2を加熱部9に、容器3を冷却
負荷11に、容器4を放熱部10に熱交換的に接続し、
前述と同様な第1,2サイクルを繰り返すことで連続的
に冷熱が得られる。
After this cycle is completed, the switching means 7 and 8 switch the three-way valves 5a to 5h to switch the container 1 into the heat radiating section 10, the container 2 into the heating section 9, and the container 3 into the cooling load 11. , connecting the container 4 to the heat radiation part 10 in a heat exchange manner,
By repeating the first and second cycles similar to those described above, cold heat can be obtained continuously.

【0012】また、冷熱を得ない時(冷房を使用しない
時)、は容器3,4の金属水素化物は使用せず、容器1
,2の金属水素化物のみを使用する。この運転方法につ
いて述べる。
[0012] Also, when not obtaining cold heat (when not using air conditioning), the metal hydride in containers 3 and 4 is not used, and the metal hydride in container 1 is not used.
, 2 metal hydrides are used only. This operating method will be described below.

【0013】この時、容器1,3間及び容器2,4間の
水素移動は開閉弁16a,bにより止められ、容器1,
2の金属水素化物の一方を高温高圧に、他方を冷却し、
常温低圧にし、この間の水素移動により(SA状態から
SC状態へ)ガスタービン17を駆動させ、発電機18
により発電を行う。この過程を切り換え手段7及びガス
3方弁14,15を切り換えることにより、連続的に発
電を行う。
At this time, the hydrogen movement between the containers 1 and 3 and between the containers 2 and 4 is stopped by the on-off valves 16a and 16b.
One of the two metal hydrides is brought to high temperature and pressure, the other is cooled,
At room temperature and low pressure, the hydrogen transfer during this time drives the gas turbine 17 (from the SA state to the SC state), and the generator 18
generates electricity. By switching this process by switching the switching means 7 and the three-way gas valves 14 and 15, power generation is performed continuously.

【0014】[0014]

【発明の効果】本発明はこのような点に鑑みて為された
ものであって、平衡水素圧力が高い第1の金属水素化物
と平衡水素圧力が低い第2の金属水素化物を用い、この
第2の金属水素化物を加熱するとともに、それによって
発生した水素を第1の金属水素化物に吸収させた後、前
記第1の金属水素化物からの水素放出により冷熱を取り
出す熱吸放出機構を複数有した熱駆動型冷熱発生装置に
おいて、前記第1の金属水素化物からの水素の放出時に
冷熱を取り出す冷熱取り出し手段と、上記複数の第2の
金属水素化物間に具備され、これら第2の金属水素化物
間での水素移動により駆動されるタービンを備えた発電
手段と、を設けているので、装置を冷暖房に使用しない
時期であっても、複数の第2の金属水素化物を用い、一
方を加熱、他方の金属水素化物を冷却し、この間に設置
したガスタービンを両金属水素化物間の水素の移動によ
りタービンを回し、発電でき、装置の効率的な利用が図
れる。
Effects of the Invention The present invention has been made in view of the above points, and uses a first metal hydride with a high equilibrium hydrogen pressure and a second metal hydride with a low equilibrium hydrogen pressure. A plurality of heat absorbing and releasing mechanisms that heat a second metal hydride and absorb the generated hydrogen into the first metal hydride, and then extract cold heat by releasing hydrogen from the first metal hydride. A thermally driven cold heat generating device comprising: a cold heat extraction means for extracting cold heat when hydrogen is released from the first metal hydride; and a cold heat extraction means provided between the plurality of second metal hydrides; A power generation means equipped with a turbine driven by hydrogen transfer between hydrides is provided, so even when the device is not used for cooling or heating, multiple second metal hydrides can be used and one of the One metal hydride is heated, the other metal hydride is cooled, and a gas turbine installed between the two metal hydrides is rotated by the movement of hydrogen between the two metal hydrides to generate electricity, allowing efficient use of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の熱駆動冷熱発生装置の一実施例の概略
構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a thermally driven cold generating device of the present invention.

【図2】本発明に用いられる金属水素化物における水素
ガスの吸収、放出特性図である。
FIG. 2 is a diagram showing the absorption and release characteristics of hydrogen gas in the metal hydride used in the present invention.

【符号の説明】 1    金属水素化物容器 2    金属水素化物容器 3    金属水素化物容器 4    金属水素化物容器 5a    3方弁 5b    3方弁 5c    3方弁 5d    3方弁 5e    3方弁 5f    3方弁 5g    3方弁 5h    3方弁 6a    管体 6b    管体 6c    管体 6d    管体 7    切り換え手段 8    切り換え手段 9    加熱部 10    放熱部 11    冷却負荷 12    水素導管 13    水素導管 14    ガス3方弁 15    ガス3方弁 16a    開閉弁 16b    開閉弁 17    ガスタービン 18    発電機 19    制御部[Explanation of symbols] 1 Metal hydride container 2 Metal hydride container 3 Metal hydride container 4 Metal hydride container 5a 3-way valve 5b 3-way valve 5c 3-way valve 5d 3-way valve 5e 3-way valve 5f 3-way valve 5g 3-way valve 5h 3-way valve 6a   Pipe body 6b Pipe body 6c   Pipe body 6d Pipe body 7 Switching means 8. Switching means 9 Heating section 10 Heat dissipation part 11 Cooling load 12 Hydrogen pipe 13 Hydrogen pipe 14 Gas 3-way valve 15 Gas 3-way valve 16a On-off valve 16b On-off valve 17 Gas turbine 18 Generator 19 Control section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  平衡水素圧力が高い第1の金属水素化
物と平衡水素圧力が低い第2の金属水素化物を用い、こ
の第2の金属水素化物を加熱するとともに、それによっ
て発生した水素を第1の金属水素化物に吸収させた後、
前記第1の金属水素化物からの水素放出により冷熱を取
り出す熱吸放出機構を複数有した熱駆動型冷熱発生装置
において、前記第1の金属水素化物からの水素の放出時
に冷熱を取り出す冷熱取り出し手段と、上記複数の第2
の金属水素化物間に具備され、これら第2の金属水素化
物間での水素移動により駆動されるタービンを備えた発
電手段と、を設けてなることを特徴とした熱駆動型冷熱
発生装置。
Claim 1: Using a first metal hydride with a high equilibrium hydrogen pressure and a second metal hydride with a low equilibrium hydrogen pressure, the second metal hydride is heated and the hydrogen generated thereby is heated. After absorption into the metal hydride of 1,
In a thermally driven cold heat generating device having a plurality of heat absorbing and releasing mechanisms for extracting cold heat by releasing hydrogen from the first metal hydride, a cold heat extracting means for extracting cold heat when hydrogen is released from the first metal hydride. and the second of the plurality of above
A thermally driven cold heat generating device comprising: a power generation means provided between two metal hydrides, and equipped with a turbine driven by hydrogen transfer between these second metal hydrides.
JP932391A 1991-01-29 1991-01-29 Heat driven cold heat generator Expired - Lifetime JP2840464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP932391A JP2840464B2 (en) 1991-01-29 1991-01-29 Heat driven cold heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP932391A JP2840464B2 (en) 1991-01-29 1991-01-29 Heat driven cold heat generator

Publications (2)

Publication Number Publication Date
JPH04244561A true JPH04244561A (en) 1992-09-01
JP2840464B2 JP2840464B2 (en) 1998-12-24

Family

ID=11717267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP932391A Expired - Lifetime JP2840464B2 (en) 1991-01-29 1991-01-29 Heat driven cold heat generator

Country Status (1)

Country Link
JP (1) JP2840464B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505513A (en) * 2009-09-23 2013-02-14 ザ・ボーイング・カンパニー Energy harvesting and monitoring with a pneumatic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505513A (en) * 2009-09-23 2013-02-14 ザ・ボーイング・カンパニー Energy harvesting and monitoring with a pneumatic system

Also Published As

Publication number Publication date
JP2840464B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US4055962A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JP2001355797A (en) Hydrogen absorption and desorption device
EP2391846A1 (en) Continuously-operated metal hydride hydrogen compressor, and method of operating the same
JPH04244561A (en) Thermal drive cold generator
JP3126086B2 (en) Compression metal hydride heat pump
JPH1054623A (en) Method of managing adsorption and thermochemistry reaction of solid/liquid
JP2642830B2 (en) Cooling device
JP2703360B2 (en) Heat-driven chiller using metal hydride
JPH03267662A (en) Heat drive type cold device using metallic hydrogenide
USRE30840E (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JP2703361B2 (en) Cooling device using metal hydride
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
JPH02259374A (en) Cooling apparatus using metal hydride
JP2840469B2 (en) Heat-driven cold heat generator
JPH0491325A (en) High temperature gas furnace type heat-electricity compound generating system
JPH02259375A (en) Cooling apparatus using metal hydride
JP2623002B2 (en) Heat utilization system using hydrogen storage alloy
JPH04295108A (en) Exhaust heat recovering power generataing device
JP2627332B2 (en) Cooling room equipment
JPS6329184B2 (en)
JPS6222883A (en) Rapid heating device
JPH04165271A (en) Cold-heat generating system
JPH0132401B2 (en)
JPS5822854A (en) Hot-heat cold-heat forming system
JP2858995B2 (en) Cooling device