JPH0424417Y2 - - Google Patents

Info

Publication number
JPH0424417Y2
JPH0424417Y2 JP1986001149U JP114986U JPH0424417Y2 JP H0424417 Y2 JPH0424417 Y2 JP H0424417Y2 JP 1986001149 U JP1986001149 U JP 1986001149U JP 114986 U JP114986 U JP 114986U JP H0424417 Y2 JPH0424417 Y2 JP H0424417Y2
Authority
JP
Japan
Prior art keywords
electrode
resin
carbon
phenol
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986001149U
Other languages
Japanese (ja)
Other versions
JPS62114320U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986001149U priority Critical patent/JPH0424417Y2/ja
Publication of JPS62114320U publication Critical patent/JPS62114320U/ja
Application granted granted Critical
Publication of JPH0424417Y2 publication Critical patent/JPH0424417Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は、たとえば強酸、強アルカリあるいは
電食性の激しいイオン性溶液の液面計として、ま
た飲料充填機械の定量供給タンク、自動販売機の
飲料液体タンクなどの液面計として使用される電
極に関するものである。 〔従来技術およびその課題〕 強酸、強アルカリあるいは電食性の激しいイオ
ン性溶液の液面検出に使用される電極用材料とし
て多くのものが従来から提案されている。 たとえば、実開昭49−28056号、実開昭49−
29953号にはカーボン電極の使用が、実開昭51−
4906号には、炭素に樹脂を含浸させた樹脂成形カ
ーボン(不浸透カーボン)を使用した電極が、ま
た実開昭53−54052号には、鋼棒の外周にカーボ
ンブラツク粉末とフエノール樹脂粉末との混合粉
末を加熱成形被覆した電極を使用する等が知られ
ている。 しかしながらこれらの電極は長期間使用した場
合、あるいは高温の場合に特に耐蝕性に問題があ
つた。 また、飲食物に接触する電極は衛生上害のない
材料が使用されており、金属材料としてはアルミ
ニウムと鉄が一般である。しかしこれらの材料は
腐食されやすく用途が限定される。また無機材料
としては黒鉛電極が使用さているが、長期間の使
用中に黒い粉が落ちる欠点があつた。この欠点を
改良するものとして実開昭50−31959号公報に黒
鉛化炭素繊維を導電材とし、該繊維の多数を合成
樹脂あるいはゴムにて固定した材料からなる電極
が開示さている。 しかしながら、この電極は黒鉛化炭素繊維がゴ
ムや合成樹脂に分散さているので導電性が劣り、
またゴムや合成樹脂に飲食物の成分が付着し易い
欠点がある。 本考案は、上記のごとき事情に鑑み、長期間に
亘る使用が可能であり、高温下でも十分な耐蝕性
を示すと共に、飲食物に対しても無害で導電性に
優れた液面検出用電極を提供することにある。 〔課題を解決しようとする手段〕 本考案者らは、腐食性溶液や飲食物に接する液
面計に使用される電極用材料について種々の観点
から鋭意検討を重ねた結果、ガラス状炭素が、炭
素系材料のなかで極めて耐蝕性に優れ、かつ良好
な導電性を有し、その上優れた不透気性であり、
表面硬度が高く表面が平滑で他の物質が付着し難
い特性があり、腐食性溶液や飲食物に接する液面
計の電極材料として好適であることを見出した。 すなわち、本考案はフエノール系樹脂、フラン
系樹脂またはフエノール変性キシレン樹脂の単独
またはこれらの混合物からなる熱硬化性樹脂を、
所要の電極形状に成形し、真空または不活性気体
中で900〜1200℃で焼成して得られるガラス状炭
素からなる液面検出用電極に関する。 本考案における熱硬化性樹脂としては、たとえ
ばフエノールホルムアルデヒド樹脂、フエノー
ル・フルフラール共縮合樹脂などのフエノール系
樹脂、フルフラールまたはフルフリールアルコー
ルを酸性下で自己縮合させたフラン系樹脂または
フエノール変性キシレン樹脂のようなキシレン樹
脂などが挙げられ、これらは単独でまたは混合し
て使用される。これらの樹脂を電極形状に成形す
るには、たとえば、次の方法による。すなわち、
液状樹脂の場合にはシリコンラバー等の型で注形
して加熱硬化させる。また固形樹脂の場合はそれ
自体公知の硬化剤、硬化助剤と共に混合して粉枠
する。その際必要に応じて炭素粉、黒鉛粉、炭素
繊維、黒鉛繊維等の充填剤を混入することができ
る。混合された粉体を120〜160℃のロールで加熱
しながら混練し、冷却後粉枠して成形材料を得
る。この成形材料を150〜160℃に加熱した電極成
形用型に投入して圧縮成形を行い、所要の形に成
形した電極は窒素、ヘリウム、アルゴン等の不活
性気体雰囲気中で10℃/時間の昇温速度で900〜
2000℃まで昇温し、所要到達温度で3時間保持し
て焼成炭化することにより目的とするガラス状炭
素よりなる電極が得られる。 このようにして得られた電極を構成するガラス
状炭素は、曲げ強さ6〜11Kgf/mm2、衝撃強さ2
〜4Kgf/mm2、電気比抵抗3〜5×10-3Ωcm、気
孔率0.09%以下、灰分0.1%以下、気体透過度10-9
cm2/secであり、このガラス状炭素からなる電極
を、市販の電極を比較材として98℃の硫酸/硝酸
(1/1vo1%)混酸液による浸漬試験を行つた結
果、後述の第1表に示すように極めてすぐれた耐
蝕性を示した。 このように、ガラス状炭素は黒鉛材料、一般の
炭素材料に比較して強度が大であり、硬度が高く
気孔率や気体透過度が極めて小さく、耐薬品性に
すぐれているので電極材料として用いた場合長期
間の使用中、高温であつても腐食されることがな
く、摩擦や電食および飲食物の浸食により黒い粉
が発生したり消耗することがない。その上表面硬
度が高く平滑な表面を有するので飲食物成分が表
面に付着したり沈着したりすることがない。 次に本考案の実施例を示す。 実施例 1 フエノール樹脂(ノボラツク) 70部 フエノールフルフラール樹脂(ノボラツク)30部 ヘキサメチレンテトラミン 10部 酸化マグネシウム 2部 上記材料を混合し粉枠する。粉枠した粉を150
℃に加熱した二軸ミキシングロールで混和してシ
ート状とし、冷却後粉枠して成形材料とした。 この材料を150℃に加熱した棒状電極成形用型
に投入し、圧縮プレスで200Kg/cm2の圧力下、10
分間成形し、棒状電極成形品を得た。この成形品
を黒鉛製のルツボに入れ黒鉛粉で充填し、電気炉
内で窒素気流中で10℃/時間で1200℃に昇温し、
1200℃で3時間保持後冷却してガラス状炭素から
なる棒状電極を作成した。 実施例 2 フルフリールアルコール70mol、フエノール
3mol、ホルムアルデヒド10molを縮合してなる
フラン−フエノール共縮合液状樹脂に4%パラト
ルエンスルホン酸溶液を1%添加して、棒状電極
成形用シリコンゴム型に注入し常温で24時間静置
した後、80℃で3時間、150℃で3時間加熱硬化
後脱型して棒状電極成形品を得た。 この棒状電極成形品を実施例1に準じて電気炉
内で窒素気流下に10℃/時間の昇温速度で1200℃
に昇温し1200℃で3時間保持後冷却してガラス状
炭素からなる棒状電極を作成した。 実施例 3 実施例1および実施例2の電極の耐蝕性試験を
行つた。比較として市販の黒鉛材電極および炭素
材電極についても試験を行つた。試験は濃硫酸と
濃硝酸の1/1(vo1%)の混酸を98℃に保持して
上記4種の電極を浸漬して100時間後の重量変化
を測定した。この結果を第1表に示す。
[Industrial Application Fields] The present invention can be used as a liquid level gauge for strong acids, strong alkalis, or highly electrolytic ionic solutions, as well as liquid level gauges for quantitative supply tanks of beverage filling machines, beverage liquid tanks of vending machines, etc. The invention relates to electrodes used as meters. [Prior Art and its Problems] Many materials have been proposed in the past as electrode materials used to detect the liquid level of strong acids, strong alkalis, or ionic solutions with severe electrolytic corrosion properties. For example, Utility Model No. 49-28056, Utility Model Application No. 49-
No. 29953 describes the use of carbon electrodes,
No. 4906 has an electrode that uses resin-molded carbon (impermeable carbon), which is carbon impregnated with resin, and Utility Model Application No. 54052 uses carbon black powder and phenol resin powder on the outer periphery of a steel rod. It is known to use an electrode coated with a mixed powder of However, these electrodes had problems with corrosion resistance, especially when used for long periods of time or at high temperatures. Furthermore, the electrodes that come into contact with food and drink are made of materials that are not harmful from a sanitary standpoint, and the metal materials are generally aluminum and iron. However, these materials are susceptible to corrosion and have limited applications. Furthermore, graphite electrodes are used as the inorganic material, but they have the disadvantage that black powder falls off during long-term use. In order to improve this drawback, Japanese Utility Model Application Publication No. 50-31959 discloses an electrode made of graphitized carbon fibers as a conductive material, many of which are fixed with synthetic resin or rubber. However, this electrode has poor conductivity because graphitized carbon fibers are dispersed in rubber or synthetic resin.
Another drawback is that ingredients of food and drink tend to adhere to rubber and synthetic resin. In view of the above circumstances, the present invention is a liquid level detection electrode that can be used for a long period of time, exhibits sufficient corrosion resistance even at high temperatures, is harmless to food and drink, and has excellent conductivity. Our goal is to provide the following. [Means for solving the problem] As a result of intensive studies from various viewpoints on electrode materials used in liquid level gauges that come into contact with corrosive solutions and food and drink, the present inventors found that glassy carbon Among carbon-based materials, it has excellent corrosion resistance, good electrical conductivity, and excellent air impermeability.
It has been found that it has a high surface hardness and a smooth surface that makes it difficult for other substances to adhere to it, making it suitable as an electrode material for liquid level gauges that come into contact with corrosive solutions and food and drink. That is, the present invention uses a thermosetting resin consisting of a phenolic resin, a furan resin, or a phenol-modified xylene resin alone or a mixture thereof.
This invention relates to a liquid level detection electrode made of glassy carbon that is formed into a desired electrode shape and fired at 900 to 1200°C in vacuum or inert gas. Examples of the thermosetting resin in the present invention include phenol-based resins such as phenol formaldehyde resin, phenol-furfural co-condensed resin, furan-based resins obtained by self-condensing furfural or furfuryl alcohol under acidic conditions, and phenol-modified xylene resins. Examples include xylene resins such as, and these may be used alone or in combination. For example, the following method can be used to mold these resins into an electrode shape. That is,
In the case of liquid resin, it is cast in a mold made of silicone rubber or the like and cured by heating. In the case of a solid resin, it is mixed together with a known curing agent and curing aid and powdered. At that time, fillers such as carbon powder, graphite powder, carbon fiber, graphite fiber, etc. can be mixed as necessary. The mixed powder is kneaded while being heated with a roll at 120 to 160°C, and after cooling, it is molded into a powder frame to obtain a molding material. This molding material is put into an electrode mold heated to 150-160℃ and compression molded.The electrode molded into the desired shape is heated at 10℃/hour in an inert gas atmosphere such as nitrogen, helium, or argon. 900~ at heating rate
The desired electrode made of glassy carbon can be obtained by raising the temperature to 2000° C. and holding it at the required temperature for 3 hours for firing and carbonization. The glassy carbon constituting the electrode thus obtained has a bending strength of 6 to 11 Kgf/mm 2 and an impact strength of 2.
~4Kgf/ mm2 , electrical resistivity 3~5× 10-3 Ωcm, porosity 0.09% or less, ash content 0.1% or less, gas permeability 10-9
cm 2 /sec, and as a result of an immersion test using a commercially available electrode as a comparison material in a 98°C sulfuric acid/nitric acid (1/1vo 1 %) mixed acid solution, As shown in the table, it exhibited extremely excellent corrosion resistance. In this way, glassy carbon has greater strength than graphite materials and general carbon materials, has high hardness, has extremely low porosity and gas permeability, and has excellent chemical resistance, so it is used as an electrode material. When used for a long period of time, it will not corrode even at high temperatures, and will not produce black powder or wear out due to friction, electrolytic corrosion, or food and drink erosion. Moreover, since it has a high surface hardness and a smooth surface, food and drink components will not adhere to or settle on the surface. Next, an example of the present invention will be shown. Example 1 Phenol resin (Novolac) 70 parts Phenolfurfural resin (Novolac) 30 parts Hexamethylenetetramine 10 parts Magnesium oxide 2 parts The above materials were mixed and powdered. 150 powdered powder
The mixture was mixed with a twin-screw mixing roll heated to ℃ to form a sheet, and after cooling, it was formed into a powder frame to obtain a molding material. This material was put into a mold for rod-shaped electrodes heated to 150℃, and compressed under a pressure of 200Kg/cm 2 for 10 minutes.
The product was molded for minutes to obtain a rod-shaped electrode molded product. This molded product was placed in a graphite crucible, filled with graphite powder, and heated to 1200°C at a rate of 10°C/hour in a nitrogen stream in an electric furnace.
After being held at 1200°C for 3 hours, it was cooled to produce a rod-shaped electrode made of glassy carbon. Example 2 Furfuryl alcohol 70mol, phenol
1% of 4% para-toluene sulfonic acid solution was added to a furan-phenol cocondensation liquid resin obtained by condensing 3 mol of formaldehyde and 10 mol of formaldehyde, and the mixture was poured into a silicone rubber mold for molding a rod-shaped electrode and allowed to stand at room temperature for 24 hours. After heating and curing at 80°C for 3 hours and 150°C for 3 hours, the mold was removed to obtain a rod-shaped electrode molded product. This rod-shaped electrode molded product was heated to 1200°C at a heating rate of 10°C/hour in an electric furnace under a nitrogen stream according to Example 1.
The temperature was raised to 1200°C, held for 3 hours, and then cooled to produce a rod-shaped electrode made of glassy carbon. Example 3 The electrodes of Example 1 and Example 2 were tested for corrosion resistance. For comparison, tests were also conducted on commercially available graphite material electrodes and carbon material electrodes. In the test, the above four types of electrodes were immersed in a mixed acid containing 1/1 (vo 1 %) of concentrated sulfuric acid and concentrated nitric acid at 98°C, and the weight change was measured after 100 hours. The results are shown in Table 1.

〔考案の効果〕[Effect of idea]

本考案の電極は、(1)ガラス状炭素で構成されて
おり、通常の炭素材料に比較して極めて耐蝕性に
すぐれており、腐食性液体の液面検出用電極とし
て好適である。(2)従来の炭素材料や黒鉛材料から
なる電極のように切削加工の工程を必要としない
から生産性がよい。(3)硬度が高く、材料が緻密で
表面が平滑であり、表面に他の成分が付着あるい
は沈着し難い。等の効果を有する。
The electrode of the present invention is (1) made of glassy carbon, has extremely superior corrosion resistance compared to ordinary carbon materials, and is suitable as an electrode for detecting the level of corrosive liquids. (2) Productivity is high because it does not require a cutting process unlike conventional electrodes made of carbon or graphite materials. (3) High hardness, dense material, and smooth surface, making it difficult for other components to adhere or deposit on the surface. It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の棒状電極を示し、第2図は本
考案の棒状電極を電極取付装置に設置した図を示
す。 1……電極、2……電極上端、3……電極取付
部、4……外ねじ、5……導電性樹脂層、6……
内ねじ、7……端子、8……端子の先端、9……
端子のねじ、10……タンクの電極取付孔、11
……パツキング、12……液面、13……タンク
蓋。
FIG. 1 shows the rod-shaped electrode of the present invention, and FIG. 2 shows the rod-shaped electrode of the present invention installed in an electrode mounting device. DESCRIPTION OF SYMBOLS 1... Electrode, 2... Electrode upper end, 3... Electrode mounting part, 4... External screw, 5... Conductive resin layer, 6...
Internal screw, 7...Terminal, 8...Tip of terminal, 9...
Terminal screw, 10...Tank electrode mounting hole, 11
... Packing, 12 ... Liquid level, 13 ... Tank lid.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] フエノール系樹脂、フラン系樹脂またはフエノ
ール変性キシレン樹脂の単独またはこれらの混合
物からなる熱硬化性樹脂を電極の形状に成形し
て、真空または不活性気体中で900〜1200℃で焼
成して得られるガラス状炭素からなる液面検出用
電極。
Obtained by molding a thermosetting resin consisting of a phenolic resin, a furan resin, or a phenol-modified xylene resin alone or a mixture thereof into an electrode shape, and baking it at 900 to 1200°C in vacuum or inert gas. Liquid level detection electrode made of glassy carbon.
JP1986001149U 1986-01-10 1986-01-10 Expired JPH0424417Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986001149U JPH0424417Y2 (en) 1986-01-10 1986-01-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986001149U JPH0424417Y2 (en) 1986-01-10 1986-01-10

Publications (2)

Publication Number Publication Date
JPS62114320U JPS62114320U (en) 1987-07-21
JPH0424417Y2 true JPH0424417Y2 (en) 1992-06-09

Family

ID=30778782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986001149U Expired JPH0424417Y2 (en) 1986-01-10 1986-01-10

Country Status (1)

Country Link
JP (1) JPH0424417Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731240B2 (en) * 1989-05-25 1998-03-25 富士重工業株式会社 Oil sensor
JP2731239B2 (en) * 1989-05-25 1998-03-25 富士重工業株式会社 Oil sensor
DE112013006797B4 (en) * 2013-04-04 2016-10-27 Mitsubishi Electric Corporation Noise determiner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319135A (en) * 1976-08-06 1978-02-22 Denki Kagaku Kogyo Kk Electrode for detecting surface of molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319135A (en) * 1976-08-06 1978-02-22 Denki Kagaku Kogyo Kk Electrode for detecting surface of molten metal

Also Published As

Publication number Publication date
JPS62114320U (en) 1987-07-21

Similar Documents

Publication Publication Date Title
CN105523761B (en) A kind of sewage sludge processing corrosion-resistant conductive ceramic electrode material and preparation method thereof
CN114538928B (en) Graphite carbon-based sagger
JPH0424417Y2 (en)
CN112272658A (en) Method for manufacturing ceramic component
RU2371523C1 (en) Composite material for moistened cathode of aluminium electrolytic cell
CN1854340A (en) Heat resistant and corrosion resistant compound lining and method for making same
US4915874A (en) Cement for collector bar-carbon block joints of electrolytic cells
CN112143384B (en) Graphite crucible repairing paste and graphite crucible repairing method
SU1554769A3 (en) Electrolyzer for ekectrolytic reduction of aluminium from alumina
CN109486266A (en) It is a kind of for corrosion-inhibiting coating can self-healing graphene composite material and preparation method thereof
WO2021061014A1 (en) Method for protecting cathode blocks of aluminium electrolyzers having prebaked anodes, protective composition and coating
US3251786A (en) Corrosion resistant epoxy resin aggregate compositions and porous article made therefrom
CN111892833B (en) Superconductive graphite electrode nano antioxidant and preparation method thereof
RU2412284C1 (en) Material of moistened cathode of aluminium electrolyser
CN103788808A (en) High temperature resistant anticorrosive coating, and making method of coat based on it
Kakishita et al. Electrical response of woodceramics to humidity
CN103788809A (en) High-temperature-resistant corrosion-resistant coating material and preparation method of coating based on the coating material
KR100908704B1 (en) Carbon-containing acid neutral refractory composition
KR100477942B1 (en) Composition of bulk carbon material with good oxidation resistance
JPS6128631B2 (en)
JPH0793141B2 (en) Fuel cell separator
JP3462386B2 (en) Slide gate plate
JPS6362472B2 (en)
JP2940900B2 (en) Electrode for electrolysis
JPS6137738B2 (en)