JPH04243598A - Controlling method for active sludge treatment - Google Patents

Controlling method for active sludge treatment

Info

Publication number
JPH04243598A
JPH04243598A JP3006044A JP604491A JPH04243598A JP H04243598 A JPH04243598 A JP H04243598A JP 3006044 A JP3006044 A JP 3006044A JP 604491 A JP604491 A JP 604491A JP H04243598 A JPH04243598 A JP H04243598A
Authority
JP
Japan
Prior art keywords
codcr
atp
load
value
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3006044A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
松永 旭
Masayoshi Fukuoka
正芳 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3006044A priority Critical patent/JPH04243598A/en
Publication of JPH04243598A publication Critical patent/JPH04243598A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To achieve high performance in the treatment of an active sludge by estimating a F/M ratio (organic substance/active sludge in waste water) which is operated on the basis of estimated values with respect to a water inflow, an ORP, a MLSS and an ATU-Rr (arylthiourea respiratory ratio) and an ATP (adenosine-3-phosphate) in an aeration tank. CONSTITUTION:A CODCR.ATP load is estimated with an ORP meter 5 (oxidation-reduction potentiometer) and a first determined data operating apparatus 3a. An ATP value then is estimated with an ATU-Rr meter 6, said CODCR.ATP load estimated value and a second determined data operating apparatus 3b. Furthermore, at an estimation part 4, a CODCR.MLSS load, a CODCR volume load, a CODCR of an inflowing water and a CODCR of a water to be treated are estimated by using said ATP estimated value, said CODCR.ATP load estimated value, a MLSS meter 8 (sludge concentration meter), an inflowing water meter 7 and a third determined data operating apparatus 3c, to produce an estimated F/M ratio. As the result, high performance can be achieved in the treatment of an active sludge.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は下水等の活性汚泥処理に
用いて有効な活性汚泥処理制御方法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated sludge treatment control method that is effective for use in activated sludge treatment of sewage, etc.

【0002】0002

【従来の技術】近年、下水の活性汚泥処理システムの自
動化,最適化に関する研究が進み、実用化されてきてい
る。この対象は主として酸素消費量の管理と汚泥レベル
の管理に大別される。前者は送風量を操作因子とした制
御であり、後者は余剰汚泥量あるいは返送汚泥量を操作
因子とした制御である。
BACKGROUND OF THE INVENTION In recent years, research on automation and optimization of sewage activated sludge treatment systems has progressed and has been put into practical use. The targets are mainly divided into oxygen consumption control and sludge level control. The former is control using the amount of air blown as an operating factor, and the latter is control using the amount of surplus sludge or the amount of returned sludge as an operating factor.

【0003】これらの制御を行うための水質センサーと
してDO計(溶存酸素濃度計),MLSS計(混液浮遊
物濃度計)などが一般的に用いられている。さらに最近
では酸素消費量を測定するセンサーとしてRr計(呼吸
速度計),ATU−Rr計(アリルチオ尿素呼吸速度計
)が開発されている。ATU−Rr計はATU(アリル
リチオ尿素)を添加して硝化菌の活性を阻害して硝化を
抑制することにより有機物基質の酸化のみに関係する酸
素消費速度(呼吸速度)を測定するものである。
DO meters (dissolved oxygen concentration meters), MLSS meters (mixed liquid suspended solids concentration meters), and the like are generally used as water quality sensors for performing these controls. Furthermore, recently, an Rr meter (respirometer) and an ATU-Rr meter (allylthiourea respirator) have been developed as sensors for measuring oxygen consumption. The ATU-Rr meter measures the oxygen consumption rate (respiration rate), which is related only to the oxidation of organic substrates, by adding ATU (allylic lithiourea) to inhibit the activity of nitrifying bacteria and suppressing nitrification.

【0004】一方、活性汚泥中のATP(アデノミン−
3−リン酸)を生物発光法により測定する技術が開発さ
れてきており他の水質因子との相関関係を論じた報告が
なされている。ATPの低下は曝気槽の処理性能の低下
に関連づけられるが、ATPの水質指標としての有用性
はまだ認識されていないのが現状である。
On the other hand, ATP (adenomine-
A technique for measuring 3-phosphate (3-phosphate) using a bioluminescence method has been developed, and reports have been published discussing the correlation with other water quality factors. Although a decrease in ATP is associated with a decrease in the processing performance of the aeration tank, the usefulness of ATP as a water quality indicator is not yet recognized.

【0005】[0005]

【発明が解決しようとする課題】下水の活性汚泥処理で
は活性汚泥(微生物M)と廃水中の有機物(食物F)の
比、すなわちF/M比を一定範囲に制御することが処理
水質を安定化するのに必要なことである。現在F/M比
の代表的な表現方式として、微生物濃度としてはMLS
S,有機物濃度にはBODを用いたBOD・MLSS負
荷がある。しかしながらBODの測定に長時間を要する
ことから、活性汚泥処理制御に用いるには不便である。
[Problem to be solved by the invention] In activated sludge treatment of sewage, controlling the ratio of activated sludge (microorganisms M) to organic matter (food F) in wastewater, that is, the F/M ratio, within a certain range stabilizes the quality of treated water. This is necessary to make the world a better place. Currently, the typical expression method for F/M ratio is MLS as microbial concentration.
S, organic matter concentration has BOD/MLSS loading using BOD. However, since it takes a long time to measure BOD, it is inconvenient to use for activated sludge treatment control.

【0006】F/M比制御方式として現在実用化されて
いるSRT制御ではSRT(汚泥滞留時間)が定常状態
ではF/M比に依存することからSRTを一定にするこ
とにより、F/M比を制御している。しかしながら、流
入水の水質および流量の短期間の変動に対してはSRT
制御によりF/M比を制御することは困難である。また
現在までF/M比を迅速かつ高精度で直接測定できるセ
ンサーも知られていない。
[0006] In SRT control, which is currently in practical use as an F/M ratio control method, SRT (sludge retention time) depends on the F/M ratio in a steady state. is controlled. However, for short-term fluctuations in influent water quality and flow rate, SRT
It is difficult to control the F/M ratio by control. Further, until now, there is no known sensor that can directly measure the F/M ratio quickly and with high precision.

【0007】RrおよびATU−Rrと有機物容積負荷
(BOD容積負荷,COD容積負荷)との相関関係を利
用してF/M比を測定することは可能であるが、呼吸速
度はF/M比以外に温度などの因子の影響を受け、推定
の精度があまり高くないので、有用性が高いF/M比推
定方法とは言えない。またF/M比から流入水質を推定
できるが、処理水質をも推定する方法は知られていない
Although it is possible to measure the F/M ratio using the correlation between Rr and ATU-Rr and the organic volume load (BOD volume load, COD volume load), the respiration rate is determined by the F/M ratio. In addition, it is affected by factors such as temperature, and the estimation accuracy is not very high, so it cannot be said to be a highly useful F/M ratio estimation method. Furthermore, although the inflow water quality can be estimated from the F/M ratio, there is no known method for estimating the treated water quality as well.

【0008】活性汚泥処理におけるF/M比の表現方式
として従来のBOD・MLSS負荷に代われるものとし
てCODcr・ATP負荷を用いることが考えられる。 これは曝気槽内ATP当量数当たり1日に流入するCO
Dcrをkg数で表したものであるが、CODcrおよ
びATPは現状ではオンライン自動計測が不可能であり
測定に2〜3時間を要するので、まだまだ実用的なF/
M比表現方式とは言えない。
[0008] As a method of expressing the F/M ratio in activated sludge treatment, it is conceivable to use CODcr/ATP load as an alternative to the conventional BOD/MLSS load. This is the CO flowing in per day per ATP equivalent number in the aeration tank.
Dcr is expressed in kg, but CODcr and ATP cannot be measured online automatically at present and it takes 2 to 3 hours to measure, so it is still a practical F/
It cannot be said to be an M-ratio expression method.

【0009】また、第1の方法として、活性汚泥処理に
おけるF/M比の表現方式の一つであるCODcr・A
TP負荷と曝気槽のATU−RrおよびATP濃度から
F/M比を推定する方法および流入水CODcrと処理
水CODcrを推定する方法が考えられる。この方法は
実験データの相関解析によりATU−Rr/ATP,C
ODcr・ATP負荷およびCODcr除去速度/AT
Pの三者の間に認められた相関関係を利用するものであ
る。
[0009] In addition, as a first method, CODcr・A, which is one of the expression methods of F/M ratio in activated sludge treatment, is used.
Possible methods include a method of estimating the F/M ratio from the TP load and the ATU-Rr and ATP concentration of the aeration tank, and a method of estimating the inflow water CODcr and the treated water CODcr. This method is based on correlation analysis of experimental data.
ODcr/ATP load and CODcr removal rate/AT
This method utilizes the correlation recognized between the three P.

【0010】また、第2の方法として、曝気槽のORP
(酸化還元電位)からCODcr・ATP負荷を推定す
る方法およびATP濃度を測定して流入水CODcrと
処理水CODcrを推定する方法がある。この方法は実
験データの相関解析により、ORP,CODcr・AT
P負荷およびCODcr除去速度/ATPの三者の間に
認められた相関関係を利用するものである。
[0010] Also, as a second method, ORP of the aeration tank
There is a method of estimating CODcr/ATP load from (oxidation-reduction potential) and a method of estimating inflow water CODcr and treated water CODcr by measuring ATP concentration. This method is based on correlation analysis of experimental data.
It utilizes the correlation found between P load and CODcr removal rate/ATP.

【0011】上記第1と第2の方法では、比較的広い温
度範囲において信頼性が高いF/M比推定が可能である
だけでなく、処理水CODcrの推定が可能であるとい
う特長を有している。しかし、F/M比推定または流入
水CODcrと処理水CODcrの推定を行うために、
曝気槽ATP濃度を測定する必要がある。また、ATP
の測定はオンライン自動計測機が今のところ開発されて
おらず、手分析による測定に頼らざるを得ず測定に1時
間程度を要するという不利がある。また測定用の試薬が
かなり高価であること、化学的に不安定であり、溶液に
した場合、長期間保存できないので取り扱いに注意を要
することも無視できない問題点である。
[0011] The first and second methods described above have the advantage that they not only enable highly reliable F/M ratio estimation over a relatively wide temperature range, but also enable estimation of treated water CODcr. ing. However, in order to estimate the F/M ratio or estimate the inflow water CODcr and treated water CODcr,
It is necessary to measure the ATP concentration in the aeration tank. Also, ATP
To date, no online automatic measuring device has been developed for measuring this, so we have to rely on manual analysis, which has the disadvantage of taking about an hour to complete. Another problem that cannot be ignored is that the reagents for measurement are quite expensive, chemically unstable, and cannot be stored for long periods of time if made into a solution, so they must be handled with care.

【0012】ATPはSRT一定条件下では毒物の流入
などがない限り、急激な変化は観察されないことから1
日1回程度の頻度で測定を行えばF/M比推定システム
の算出用データとして使用可能である。しかしながら、
ATPが急激に変化した場合は、F/M比推定または流
入水CODcrと処理水CODcrの推定が不可能にな
る。したがって、ATPの測定を省略して、オンライン
自動計測機による測定データを用いてF/M比および流
入水CODcrと処理水CODcrの推定が可能となれ
ば、より有効性が高いF/M比推定システムとなる。
[0012] Under constant SRT conditions, ATP does not undergo rapid changes unless there is an influx of toxic substances.
If the measurement is performed at a frequency of about once a day, it can be used as calculation data for the F/M ratio estimation system. however,
If ATP changes rapidly, it becomes impossible to estimate the F/M ratio or estimate the inflow water CODcr and treated water CODcr. Therefore, if it is possible to omit the measurement of ATP and estimate the F/M ratio and the inflow water CODcr and treated water CODcr using the measurement data from an online automatic measuring device, the F/M ratio estimation will be more effective. It becomes a system.

【0013】本発明は上述の問題点に鑑みてなされたも
ので、その目的は、曝気槽に流入される流入水量,曝気
槽内のORP値,MLSS値,ATU−Rr値およびA
TP推定値を基に演算してF/M比を推定することによ
り、高性能な活性汚泥処理制御方法を提供することであ
る。
The present invention was made in view of the above-mentioned problems, and its purpose is to improve the amount of water flowing into the aeration tank, the ORP value, MLSS value, ATU-Rr value, and ATU-Rr value in the aeration tank.
It is an object of the present invention to provide a high-performance activated sludge treatment control method by calculating and estimating the F/M ratio based on the TP estimated value.

【0014】[0014]

【課題を解決するための手段】本発明は上記目的を達成
するために、曝気槽における酸化還元電位であるORP
値を基に演算してCODcr・ATP負荷を推定し、こ
のCODcr・ATP負荷推定値と前記曝気槽における
アリルチオ尿素呼吸速度であるATU−Rr値を基に演
算してアデノミン−3−リン酸であるATPの値を推定
すると共に、該ATP値と前記曝気槽におけるアリルチ
オ尿素呼吸速度であるATU−Rrの値,前記曝気槽に
流入される流入水の流入量および活性汚泥濃度であるM
LSSの値を基に演算してCODcr容積負荷,COD
cr・MLSS負荷,流入水の2クロム酸化カリウムに
よる酸素消費量である流入水CODcrおよび処理水C
ODcrを推定する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides ORP, which is the oxidation-reduction potential in the aeration tank.
The CODcr/ATP load is estimated by calculation based on the CODcr/ATP load, and the CODcr/ATP load is calculated based on this CODcr/ATP load estimate and the ATU-Rr value which is the allylthiourea respiration rate in the aeration tank. While estimating a certain ATP value, the ATP value, the value of ATU-Rr which is the allylthiourea respiration rate in the aeration tank, the inflow amount of inflow water flowing into the aeration tank, and M which is the activated sludge concentration
Calculate the CODcr volumetric load, COD based on the LSS value.
cr・MLSS load, inflow water CODcr which is oxygen consumption amount due to potassium dichromate oxide in inflow water, and treated water C
Estimate ODcr.

【0015】[0015]

【作用】下水活性汚泥処理において曝気槽におけるOR
P(酸化還元電位)を測定し、F/M比の表現方式の一
つであるCODcr・ATP負荷との相関関係を用いて
CODcr・ATP負荷を算出するとともに曝気槽にお
けるATU−Rrを測定し、ATU−Rr/ATPとC
ODcr・ATP負荷との相関関係を用いてATPを算
出する。流入水CODcrはCODcr・ATP負荷と
ATP推定値を基に算出される。次にCODcr除去速
度/ATPとCODcr・ATP負荷の相関関係とAT
P推定値に基づいてCODcr除去速度を算出し、流入
水CODcr推定値とCODcr除去速度推定値より処
理水CODcrが算出される。このようにして、ORP
とATU−Rr測定値よりCODcr・ATP負荷,流
入水CODcr,処理水CODcrを算出してF/M比
を推定する。
[Action] OR in the aeration tank in sewage activated sludge treatment
P (redox potential) is measured, and CODcr/ATP load is calculated using the correlation with CODcr/ATP load, which is one of the expression methods of F/M ratio, and ATU-Rr in the aeration tank is measured. , ATU-Rr/ATP and C
ATP is calculated using the correlation between ODcr and ATP load. The inflow water CODcr is calculated based on the CODcr/ATP load and the estimated ATP value. Next, the correlation between CODcr removal rate/ATP and CODcr/ATP load and AT
The CODcr removal rate is calculated based on the P estimated value, and the treated water CODcr is calculated from the inflow water CODcr estimated value and the CODcr removal rate estimated value. In this way, ORP
The F/M ratio is estimated by calculating CODcr/ATP load, inflow water CODcr, and treated water CODcr from the ATU-Rr measurement value.

【0016】[0016]

【実施例】以下に本発明の実施例を図1から図2を参照
しながら説明する。
Embodiments An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

【0017】図1は本発明の実施例による活性汚泥処理
制御方法を実施するためのF/M比推定システムを示す
もので、図1において1は曝気槽、2は沈澱池、3は演
算装置、4は推定処理部である。
FIG. 1 shows an F/M ratio estimation system for carrying out the activated sludge treatment control method according to an embodiment of the present invention. In FIG. 1, 1 is an aeration tank, 2 is a settling tank, and 3 is a calculation unit. , 4 is an estimation processing unit.

【0018】図1のシステムによれば、流入水が曝気槽
1に導かれ、この曝気槽1で曝気された後に沈澱池2に
導かれる。沈澱池2では汚泥を沈澱させた後に処理水と
して後段に排出される。沈澱した汚泥は曝気槽1に返送
汚泥として返送されると共に余剰汚泥として排出される
According to the system shown in FIG. 1, inflow water is led to an aeration tank 1, aerated in the aeration tank 1, and then led to a settling tank 2. In the sedimentation tank 2, the sludge is settled and then discharged to a subsequent stage as treated water. The precipitated sludge is returned to the aeration tank 1 as return sludge and is also discharged as surplus sludge.

【0019】演算装置3は曝気槽1に流入される以前の
流入水の流量値,曝気槽1内の酸化還元電位であるOR
P値,ATU−Rr(アリルチオ尿素呼吸速度)値およ
びMLSS(活性汚泥濃度)値,および余剰汚泥のAT
P値を入力として所定の演算を実行し、この演算結果に
基づいて推定処理部4が所要の推定を行う。
The arithmetic unit 3 calculates OR which is the flow rate value of the inflow water before it flows into the aeration tank 1 and the oxidation-reduction potential in the aeration tank 1.
P value, ATU-Rr (allylthiourea respiration rate) value and MLSS (activated sludge concentration) value, and AT of excess sludge
A predetermined calculation is performed using the P value as an input, and the estimation processing unit 4 performs the necessary estimation based on the calculation result.

【0020】すなわち、図2に示すように、演算装置3
はORP計5の計測データを入力とする第1の計測デー
タ演算部3aと、ATU−Rr計6の計測データを入力
とする第2の計測データ演算部3b,流入水量計7の計
測データ,MLSS計8の計測データを入力とする第3
の計測データ演算部3cからなり、推定処理部4は第1
の計測データ演算部3aの演算データを基にCODcr
・ATP負荷を推定する第1の推定処理部4aと、AT
U−Rr計6の計測データと第1の推定処理部4aのC
ODcr・ATP負荷の推定結果に基づいて第2の計測
データ演算部3bによる演算結果を基にATPを推定す
る第3の推定処理部4bと、流入水量計7の計測データ
,MLSS計8の計測データおよび第2の推定処理部4
aの推定結果ATPおよび第2の計測データ演算部3b
により演算された演算データを入力としてCODcr容
積負荷,CODcr・MLSS負荷,流入水CODcr
および処理水CODcrを推定処理する第3の推定処理
部4cによって構成される。
That is, as shown in FIG.
are a first measurement data calculation unit 3a that receives the measurement data of the ORP meter 5, a second measurement data calculation unit 3b that receives the measurement data of the ATU-Rr meter 6, measurement data of the inflow water meter 7, The third input is the measurement data of 8 MLSSs.
The estimation processing section 4 consists of a first measurement data calculation section 3c.
CODcr based on the calculation data of the measurement data calculation section 3a.
- The first estimation processing unit 4a that estimates the ATP load, and the AT
Measurement data of the U-Rr meter 6 and C of the first estimation processing section 4a
A third estimation processing unit 4b that estimates ATP based on the calculation result by the second measurement data calculation unit 3b based on the estimation result of the ODcr/ATP load, the measurement data of the inflow water meter 7, and the measurement of the MLSS total 8 Data and second estimation processing unit 4
Estimated result ATP of a and second measurement data calculation unit 3b
CODcr volumetric load, CODcr/MLSS load, inflow water CODcr
and a third estimation processing section 4c that estimates the treated water CODcr.

【0021】人工下水を用いた活性汚泥処理室内連続実
験においてSRT(汚泥滞留時間)一定制御(4日およ
び10日)条件下で流入水CODcr,処理水CODc
r,曝気槽のATPおよびORPなどを測定した結果、
ORP,CODcr・ATP負荷およびCODcr除去
速度/ATPの四者間に相関関係が認められ、関係式(
1)から(3)が得られた。
In a continuous indoor experiment using artificial sewage for activated sludge treatment, influent water CODcr and treated water CODc were measured under constant SRT (sludge retention time) control conditions (4 days and 10 days).
r, the results of measuring ATP and ORP in the aeration tank,
A correlation was found between ORP, CODcr/ATP load, and CODcr removal rate/ATP, and the relational expression (
1) to (3) were obtained.

【0022】ORP=−427.52CODcr・AT
P負荷+182.6……(1) ここで、相関係数r=−0.8977、水温は15から
17℃、SRTは4日,10日、  ATU−Rr/A
TP=19.65CODcr・ATP負荷−0.62…
…(2) ここで、r=0.9927、水温は15から17℃、S
RTは4日,10日、CODcr除去速度/ATP=0
.7704×CODcr・ATP負荷+0.016…(
3) ここで、r=+0.9927、水温は15から17℃、
SRTは4日,10日である。
[0022]ORP=-427.52CODcr・AT
P load +182.6...(1) Here, correlation coefficient r = -0.8977, water temperature is 15 to 17 degrees Celsius, SRT is 4 days and 10 days, ATU-Rr/A
TP=19.65CODcr・ATP load-0.62...
...(2) Here, r=0.9927, water temperature is 15 to 17℃, S
RT is 4 days, 10 days, CODcr removal rate/ATP = 0
.. 7704×CODcr・ATP load+0.016…(
3) Here, r=+0.9927, water temperature is 15 to 17℃,
SRT is 4th and 10th.

【0023】さらに、演算装置3は、ORPを測定して
(1)式よりCODcr・ATP負荷を算出する。次に
、CODcr・ATP負荷とATU−Rr測定値より(
2)式を用いてATP濃度を算出する。
Furthermore, the arithmetic unit 3 measures the ORP and calculates the CODcr/ATP load from equation (1). Next, from the CODcr/ATP load and ATU-Rr measurement values (
2) Calculate ATP concentration using the formula.

【0024】次に、CODcr・ATP負荷,曝気槽A
TP濃度と流入水量より(4)式により流入水CODc
rが算出される。
Next, CODcr/ATP load, aeration tank A
Based on the TP concentration and the amount of inflow water, the inflow water CODc is calculated by equation (4).
r is calculated.

【0025】流入水CODcr(mg/l)={COD
cr・ATP負荷(kg・CODcr/m・mole・
日)×曝気槽ATP濃度(m・mole/m3)×曝気
槽容量(m3)}/{1日当たり流入水量×10−3(
m3/日)}  …(4) 処理水CODcrはCODcr・ATP負荷と曝気槽A
TP濃度の推定値を(3)式に代入してCODcr除去
速度を算出し、CODcr除去速度推定値と流入水CO
Dcrを(5)式に代入して算出される。
[0025] Influent water CODcr (mg/l) = {COD
cr・ATP load (kg・CODcr/m・mole・
days) x aeration tank ATP concentration (m・mole/m3) x aeration tank capacity (m3)}/{inflow water amount per day x 10-3 (
m3/day)} ...(4) Treated water CODcr is CODcr/ATP load and aeration tank A
The estimated value of TP concentration is substituted into equation (3) to calculate the CODcr removal rate, and the estimated value of CODcr removal rate and the influent CO
It is calculated by substituting Dcr into equation (5).

【0026】処理水CODcr(mg/l)=流入水C
ODcr(mg/l)−{CODcr除去速度(kg・
CODcr/m3・日)×曝気槽容量(m3)/{流入
水量×10−3(m3/1日}…(5) また、MLSSの測定値と流入水CODcrより、CO
Dcr容積負荷とCODcr・MLSS負荷は(6),
(7)式により算出される。
[0026] Treated water CODcr (mg/l) = inflow water C
ODcr (mg/l) - {CODcr removal rate (kg・
CODcr/m3/day) x aeration tank capacity (m3)/{inflow water amount x 10-3 (m3/1 day}...(5) Also, from the MLSS measurement value and inflow water CODcr, CO
Dcr volumetric load and CODcr/MLSS load are (6),
Calculated using equation (7).

【0027】CODcr容積負荷(kg・CODcr/
m3・日)={流入水CODcr(mg/l)×流入水
量×10−3(m3/日}/曝気槽容積(m3)…(6
)CODcr・MLSS負荷(kg・CODcr/kg
・MLSS・日)={流入水CODcr(mg/l)×
流入水量(m3/日)}/{曝気槽MLSS(mg/l
)×曝気槽容積×10−3(m3)}…(7)以上のよ
うにして、ORPの計測値より第1の計測データ演算部
3aにおいてCODcr・ATP負荷がまず算出される
。次にCODcr・ATP負荷とATU−Rr値から第
2の計測データ演算部3bにおいてATPが算出される
と共に、流入水量,MLSS値,ATP値およびATP
推定結果から第3の計測データ演算部3cにおいてCO
Dcr容積負荷,CODcr・MLSS負荷,流入水C
ODcrおよび処理水CODcrが算出され、第3の推
定処理部4cによって推定される。
[0027] CODcr volumetric load (kg・CODcr/
m3/day) = {Inflow water CODcr (mg/l) x Inflow water amount x 10-3 (m3/day)/Aeration tank volume (m3)...(6
) CODcr/MLSS load (kg/CODcr/kg
・MLSS・day)={Inflow water CODcr (mg/l)×
Inflow water amount (m3/day)}/{Aeration tank MLSS (mg/l
)×Aeration tank volume×10-3 (m3)}...(7) As described above, the CODcr/ATP load is first calculated in the first measurement data calculation section 3a from the ORP measurement value. Next, ATP is calculated from the CODcr/ATP load and ATU-Rr value in the second measurement data calculation section 3b, and the inflow water amount, MLSS value, ATP value and ATP
Based on the estimation result, the third measurement data calculation unit 3c calculates CO
Dcr volumetric load, CODcr/MLSS load, inflow water C
ODcr and treated water CODcr are calculated and estimated by the third estimation processing section 4c.

【0028】曝気槽のATP濃度を測定する必要がなく
、ORP計およびATU−Rr計という既存のオンライ
ン自動計測機を用いてF/M比,流入水CODcr,処
理水CODcrが比較的広い温度範囲内で推定可能であ
る。また流入水量の短時間内の変化に対して比較的迅速
に応答しうるという利点を有する。また、試薬価格など
のランニングコストが安いこと、ATP測定における煩
雑な手分析操作が省略されるという明らかな利点がある
。さらに、F/M比推定以外に処理水CODcrの推定
が可能であるという特長を有する。またBODとCOD
の相関関係を利用すればBOD容積負荷,BOD・ML
SS負荷,流入水BOD,処理水BODを推定すること
も可能である。
[0028] There is no need to measure the ATP concentration in the aeration tank, and the F/M ratio, inflow water CODcr, and treated water CODcr can be measured over a relatively wide temperature range using existing online automatic measuring devices called ORP meter and ATU-Rr meter. It can be estimated within It also has the advantage of being able to respond relatively quickly to changes in the amount of inflow water within a short period of time. Furthermore, there are clear advantages in that running costs such as reagent prices are low and complicated manual analysis operations in ATP measurement are omitted. Furthermore, it has the feature that it is possible to estimate the CODcr of treated water in addition to estimating the F/M ratio. Also BOD and COD
By using the correlation, BOD volume load, BOD・ML
It is also possible to estimate SS load, inflow water BOD, and treated water BOD.

【0029】[0029]

【発明の効果】本発明は、上述の如くであって、曝気槽
に流入される流入水の流量値,曝気槽内のATU−Rr
値およびORP値を基に演算処理してF/M比を推定す
るものであるから、高性能な活性汚泥処理を実行するこ
とができる。
Effects of the Invention The present invention is as described above, and the flow rate value of the inflow water flowing into the aeration tank, the ATU-Rr in the aeration tank,
Since the F/M ratio is estimated by performing arithmetic processing based on the value and the ORP value, high-performance activated sludge treatment can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例による活性汚泥処理制御方法を
実行するためのブロック図。
FIG. 1 is a block diagram for implementing an activated sludge treatment control method according to an embodiment of the present invention.

【図2】図1の活性汚泥処理方法の説明用ブロック図。FIG. 2 is an explanatory block diagram of the activated sludge treatment method shown in FIG. 1.

【符号の説明】[Explanation of symbols]

1…曝気槽 2…沈澱池 3…演算装置 3a…第1の計測データ演算部 3b…第2の計測データ演算部 3c…第3の計測データ演算部 4…推定処理部 4a…第1の推定部 4b…第2の推定部 4c…第3の推定部 1...Aeration tank 2...Sedimentation pond 3...Arithmetic device 3a...first measurement data calculation section 3b...Second measurement data calculation section 3c...Third measurement data calculation section 4... Estimation processing section 4a...first estimator 4b...Second estimator 4c...Third estimation part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  曝気槽における酸化還元電位であるO
RP値を基に演算してCODcr・ATP負荷を推定し
、このCODcr・ATP負荷推定値と前記曝気槽にお
けるアリルチオ尿素呼吸速度であるATU−Rr値を基
に演算してアデノミン−3−リン酸であるATPの値を
推定すると共に、該ATP値と前記曝気槽におけるアリ
ルチオ尿素呼吸速度であるATU−Rrの値,前記曝気
槽に流入される流入水の流入量および活性汚泥濃度であ
るMLSSの値を基に演算してCODcr容積負荷,C
ODcr・MLSS負荷,流入水の2クロム酸化カリウ
ムによる酸素消費量である流入水CODcrおよび処理
水CODcrを推定することを特徴とする活性汚泥処理
制御方法。
[Claim 1] O which is the oxidation-reduction potential in the aeration tank
The CODcr/ATP load is estimated by calculating based on the RP value, and the CODcr/ATP load is calculated based on this CODcr/ATP load estimate and the ATU-Rr value, which is the allylthiourea respiration rate in the aeration tank. In addition to estimating the value of ATP, which is the ATP value, the value of ATU-Rr, which is the allylthiourea respiration rate in the aeration tank, the amount of inflow water flowing into the aeration tank, and the MLSS, which is the activated sludge concentration. Calculate the CODcr volumetric load, C based on the value.
An activated sludge treatment control method characterized by estimating the ODcr/MLSS load, the inflow water CODcr and the treated water CODcr, which are oxygen consumption amounts due to potassium dichromate oxide in the inflow water.
JP3006044A 1991-01-23 1991-01-23 Controlling method for active sludge treatment Pending JPH04243598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006044A JPH04243598A (en) 1991-01-23 1991-01-23 Controlling method for active sludge treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006044A JPH04243598A (en) 1991-01-23 1991-01-23 Controlling method for active sludge treatment

Publications (1)

Publication Number Publication Date
JPH04243598A true JPH04243598A (en) 1992-08-31

Family

ID=11627631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006044A Pending JPH04243598A (en) 1991-01-23 1991-01-23 Controlling method for active sludge treatment

Country Status (1)

Country Link
JP (1) JPH04243598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125370A (en) * 2008-11-26 2010-06-10 Ogawa Kankyo Kenkyusho:Kk Control method for reducing volume of surplus sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125370A (en) * 2008-11-26 2010-06-10 Ogawa Kankyo Kenkyusho:Kk Control method for reducing volume of surplus sludge

Similar Documents

Publication Publication Date Title
JP5143003B2 (en) Denitrification process and denitrification device
Garrett Kinetics of the removal of soluble substrates by activated sludge
US4130481A (en) Maintaining optimum settling rate of activated sludge
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
JP2001252691A (en) Water quality controlling device for sewage treatment plant
Copp et al. Estimation of the active nitrifying biomass in activated sludge
US5518893A (en) Quick biochemical oxygen demand test and apparatus for the same
US5702951A (en) Continuous RBCOD measurement
JPH04243598A (en) Controlling method for active sludge treatment
JPH07115025B2 (en) Bulking control method using SVI
JPH04235797A (en) Method for controlling treatment of activated sludge
JP2003334582A (en) Air blow amount control method in activated sludge treatment, air blow amount control program and recording medium having program recorded thereon
JP2003260484A (en) Wastewater treatment apparatus
EP0537210B1 (en) Continuous rbcod measurement
JPH04225898A (en) Method for controlling activated sludge treatment
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
JP3072650B2 (en) Activated sludge treatment control device
JPS5999353A (en) Method and apparatus for measuring bod
JP2870906B2 (en) Nitrification activity measurement method
JPS5845913B2 (en) Microbial reaction rate control method in activated sludge method
JP7438484B1 (en) How to obtain activated sludge treated water COD
CA2171473C (en) Quick biochemical oxygen demand test and apparatus for the same
Pohland et al. Aerobic and anaerobic microbial treatment alternatives for shellfish processing wastewaters in continuous culture
JP3111473B2 (en) Activated sludge treatment control method
JPS54127154A (en) Automatic control system for activated sludge process