JPH04242B2 - - Google Patents

Info

Publication number
JPH04242B2
JPH04242B2 JP58126576A JP12657683A JPH04242B2 JP H04242 B2 JPH04242 B2 JP H04242B2 JP 58126576 A JP58126576 A JP 58126576A JP 12657683 A JP12657683 A JP 12657683A JP H04242 B2 JPH04242 B2 JP H04242B2
Authority
JP
Japan
Prior art keywords
light
starlight
wavelength range
field
dark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58126576A
Other languages
Japanese (ja)
Other versions
JPS6017702A (en
Inventor
Kyoshi Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12657683A priority Critical patent/JPS6017702A/en
Priority to US06/629,317 priority patent/US4616902A/en
Priority to DE8484304773T priority patent/DE3485887T2/en
Priority to EP84304773A priority patent/EP0131473B1/en
Publication of JPS6017702A publication Critical patent/JPS6017702A/en
Publication of JPH04242B2 publication Critical patent/JPH04242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、月が出ていない夜などのような、殆
ど暗黒に近い条件で利用される夜間監視システム
(暗視野監視システム)において用いられる光学
フイルタに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an optical system used in a night surveillance system (dark field surveillance system) used in almost dark conditions such as a night when the moon is not out. It is related to filters.

[発明の背景および従来技術の説明] 月が出ていない殆ど暗黒に近い条件において、
星明り光を光源として利用する夜間監視システム
は、マルチチヤンネルプレートの開発と、星明り
光スペクトルに合致した光電面の開発により出現
した電子増倍管の採用により急激に発達した。
[Background of the invention and description of the prior art] Under almost dark conditions when the moon is not out,
Nighttime surveillance systems that use starlight as a light source have rapidly developed with the development of multichannel plates and the adoption of electron multiplier tubes, which emerged with the development of photocathodes that match the starlight spectrum.

約10万個の星の中を地球が通過する際、誕生間
もない星から発する紫外光の大部分は大気等に衝
突して散乱され、実際に地表に到達することは殆
どない。しかし、成長が進んだ星(たとえば、誕
生後500万年程度の星)から発せられる可視長波
長領域と近赤外領域のそれぞれにピークを有する
光は地表に到達する。この地表に到達する星の光
(すなわち、星明り光)のスペクトルを第1図に
示す。すなわち、上記のように地表に到達する星
の光(星明り光)は、600〜900nmの波長領域に
主ピークを有し、400〜600nmの波長領域に副ピ
ークを有している。
When the Earth passes through approximately 100,000 stars, most of the ultraviolet light emitted from the newly born stars collides with the atmosphere and is scattered, and very little actually reaches the Earth's surface. However, light emitted from a star that has progressed in growth (for example, a star that is about 5 million years old) reaches the Earth's surface, with peaks in the visible long wavelength region and near-infrared region. Figure 1 shows the spectrum of starlight (that is, starlight) that reaches the earth's surface. That is, as described above, the starlight (starlight) that reaches the earth's surface has a main peak in the wavelength range of 600 to 900 nm and a subpeak in the wavelength range of 400 to 600 nm.

月の出ていない夜間において、人間、あるいは
物体の存在、移動などを監視するためには、人間
の通常の視力に頼るわけにはいかない。このた
め、通常、上記の星明り光を光源とし、この星明
り光に照射された人間や物体からの反射光を、そ
の波長特性に合致した電子増倍管を利用して検出
して、これを映像化(画像情報化)して目的の監
視システム(暗視野監視システムと呼ばれる)を
機能させている。
At night when the moon is not out, normal human vision cannot be relied upon to monitor the presence or movement of people or objects. For this reason, usually the above-mentioned starlight is used as a light source, and the reflected light from people or objects irradiated by this starlight is detected using an electron multiplier tube that matches the wavelength characteristics of the light, and then this is imaged. (image information) to make the target surveillance system (called a dark field surveillance system) function.

一方、暗視野監視システムの実施現場において
は、監視者の周囲には、計器のリードアウトや各
種デイスプレーなどの人工光源から発せられる近
赤外領域において強い発光強度を示す様々な人工
の光が存在するとの問題がある。これらの光は、
その近赤外領域において星明り光の数百倍乃至数
千万倍の強さを持つているため、それらの光が電
子増倍管の受光面に入るとノイズの発生のみなら
ず、光電面の焼き付きが発生し、特に電子増倍管
を双眼鏡、望遠鏡などの器具に組み込み、監視者
が目に当てて夜間監視に使用していた場合には、
その監視者の目の網膜の損傷といつた重大な問題
も発生する。
On the other hand, in the field where a dark-field monitoring system is implemented, the supervisor is surrounded by various types of artificial light emitted from artificial light sources such as instrument readouts and various displays, which exhibit strong emission intensity in the near-infrared region. There is a problem with existence. These lights are
In the near-infrared region, the intensity is hundreds to tens of millions of times that of starlight, so when that light enters the receiving surface of an electron multiplier tube, it not only generates noise but also damages the photocathode. Burn-in occurs, especially when an electron multiplier tube is installed in binoculars, a telescope, or other equipment and is used for night surveillance by holding it up to the observer's eyes.
Serious problems such as damage to the retina of the observer's eye also occur.

[発明の要旨] 本発明は、星明り光を利用する夜間監視システ
ムにおいて使用される、上記のようなトラブルの
発生の回避に有用な光学フイルタを提供するもの
である。
[Summary of the Invention] The present invention provides an optical filter that is used in a night surveillance system that utilizes starlight and is useful for avoiding the occurrence of the troubles described above.

本発明は、実質的に星明り光のみが存在する暗
黒状態の夜間において、視野内の監視対象物によ
る星明り光の反射光を電子増倍管により増幅して
映像化することからなる暗視野監視システムにお
いて、視野周辺に存在する人工光源から発射され
る光のうちの600〜900nmの波長範囲の光を遮断
するための、着色した有機樹脂フイルムとガラス
フイルタとの複合体からなり、600〜900nmの波
長範囲の光の透過を実質的に遮断する光学フイル
タにある。
The present invention provides a dark field monitoring system that uses an electron multiplier to amplify the reflected light of starlight from an object within the visual field and visualizes it during a dark night when only starlight exists. It consists of a composite of a colored organic resin film and a glass filter to block light in the wavelength range of 600 to 900 nm from the light emitted from artificial light sources that exist around the visual field. It consists in an optical filter that substantially blocks the transmission of light in a wavelength range.

[発明の作用効果] 本発明の光学フイルタを、星明り光を利用する
暗視野監視システムの実施現場において設置され
ている計器のリードアウトや各種デイスプレーな
どの人工光源の発光面あるいは光通過面に配置す
ることにより、該人工光源からの発光される光の
うちの600〜900nmの波長範囲の光は遮断され
て、電子増倍管の受光面に入射しないため、星明
り光を利用する夜間監視システムが、重大なトラ
ブルの発生、危険の発生を心配することなく実施
できる。
[Operations and Effects of the Invention] The optical filter of the present invention can be applied to the light-emitting surface or light-passing surface of an artificial light source such as an instrument readout or various displays installed at the implementation site of a dark-field monitoring system that uses starlight. By placing the light in the wavelength range of 600 to 900 nm among the light emitted from the artificial light source, the light in the wavelength range of 600 to 900 nm is blocked and does not enter the light receiving surface of the electron multiplier tube. However, this can be done without worrying about serious trouble or danger.

[発明の構成の説明] 本発明の従来知られていない特性を有する光学
フイルタは、通常、第2図に示すような、着色し
た有機樹脂フイルム21とガラスフイルタ22と
の複合体(複合フイルタ)23として製造するこ
とが有利である。
[Description of the structure of the invention] The optical filter of the present invention having hitherto unknown characteristics is usually a composite of a colored organic resin film 21 and a glass filter 22 (composite filter) as shown in FIG. It is advantageous to manufacture it as 23.

着色有機樹脂フイルムは、たとえば、ベースと
なる樹脂材料の酢酸綿、ジブチルフタレート(可
塑剤)、そして適当な染料を酢酸ブチルに加えて
フイルム形成溶液を調製し、これを適当な仮支持
体の表面に塗布したのち、乾燥する方法などの公
知の製膜技術を利用することにより製造すること
ができる。染料としては、たとえば、バデイシユ
社のザポンBGフアーストなどが利用できる。こ
のザポンBGフアーストを利用して調製した着色
有機樹脂フイルムは、第3図に示すように、600
〜700nmの波長領域において光の透過を実質的
に遮断するような光透過スペクトルを示す。な
お、樹脂材料、染料等の構成成分は上記の例に限
られるものではない。
Colored organic resin films can be produced, for example, by adding acetic acid cotton as a base resin material, dibutyl phthalate (plasticizer), and a suitable dye to butyl acetate to prepare a film-forming solution, and applying this to the surface of a suitable temporary support. It can be manufactured by using a known film forming technique such as coating and drying. As the dye, for example, Zapon BG First manufactured by Vadiceille can be used. The colored organic resin film prepared using this Zapon BG Fast was 600 ml as shown in Figure 3.
It exhibits a light transmission spectrum that substantially blocks light transmission in the wavelength region of ~700 nm. Note that the constituent components such as resin materials and dyes are not limited to the above examples.

ガラスフイルタの例としては、燐酸ガラスをベ
ースとして、これにコバルトイオン、鉛イオンな
どを導入した着色ガラスフイルタを挙げることが
できる。この着色ガラスフイルタは、第4図に示
すように、700〜900nmの波長領域において光の
透過を実質的に遮断するような光透過スペクトル
を示す。なお、ガラス材料、着色材等の構成成分
は上記の例に限られるものではない。
Examples of glass filters include colored glass filters that are based on phosphoric acid glass and into which cobalt ions, lead ions, etc. are introduced. As shown in FIG. 4, this colored glass filter exhibits a light transmission spectrum that substantially blocks light transmission in the wavelength range of 700 to 900 nm. Note that the constituent components such as the glass material and the coloring material are not limited to the above examples.

本発明の好ましい態様である複合フイルタは、
たとえば、上記のような着色有機樹脂フイルムと
ガラスフイルタとを、エポキシ形接着剤のような
適当な接着剤を用い貼り合せて製造する。このよ
うにして製造した本発明に従う複合フイルタの光
透過スペクトルを第5図に示す。第5図の光透過
スペクトルは、600〜900nmの波長範囲の光(星
明り光の主ピーク光)の透過を実質的に遮断して
おり(透過率0.001以下)、一方、可視光は透過す
る性質を示す。この第5図の吸収スペクトルを示
す光学フイルタは、たとえば、第3図の光吸収ス
ペクトルを示す着色有機樹脂フイルムと第4図の
光吸収スペクトルを示す着色ガラスフイルタをエ
ポキシ系接着剤にて接着することにより容易に得
ることができる。
A composite filter that is a preferred embodiment of the present invention is
For example, a colored organic resin film and a glass filter as described above are bonded together using a suitable adhesive such as an epoxy adhesive. FIG. 5 shows the light transmission spectrum of the composite filter according to the present invention manufactured in this manner. The light transmission spectrum in Figure 5 shows that transmission of light in the wavelength range of 600 to 900 nm (main peak light of starlight) is substantially blocked (transmittance 0.001 or less), while visible light is transmitted. shows. The optical filter showing the absorption spectrum shown in FIG. 5 can be obtained, for example, by bonding a colored organic resin film showing the light absorption spectrum shown in FIG. 3 and a colored glass filter showing the light absorption spectrum shown in FIG. 4 using an epoxy adhesive. It can be easily obtained by

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、星明り光のスペクトルを示す。第2
図は、本発明に従う光学フイルタの構成の例(着
色有機樹脂フイルムと着色ガラスフイルタとから
なる複合フイルタ)を示す。第3図は、本発明に
従う複合フイルタの構成要素の一方である着色有
機樹脂フイルムの光吸収スペクトルの例を示す。
第4図は、本発明に従う複合フイルタの構成要素
の一方である着色ガラスフイルタの光吸収スペク
トルの例を示す。第5図は、本発明に従う光学フ
イルタの光吸収スペクトルの例を示す。 21:着色有機樹脂フイルム、22:着色ガラ
スフイルタ、23:複合フイルタ。
FIG. 1 shows the spectrum of starlight light. Second
The figure shows an example of the configuration of an optical filter according to the present invention (a composite filter consisting of a colored organic resin film and a colored glass filter). FIG. 3 shows an example of the light absorption spectrum of a colored organic resin film, which is one of the components of the composite filter according to the present invention.
FIG. 4 shows an example of the light absorption spectrum of a colored glass filter, which is one of the components of the composite filter according to the present invention. FIG. 5 shows an example of a light absorption spectrum of an optical filter according to the present invention. 21: Colored organic resin film, 22: Colored glass filter, 23: Composite filter.

Claims (1)

【特許請求の範囲】[Claims] 1 実質的に星明り光のみが存在する暗黒状態の
夜間に、視野内の監視対象物による星明り光の反
射光を電子増倍管により増幅して映像化すること
からなる暗視野監視システムにおいて、視野周辺
に存在する人工光源から発射される光のうちの
600〜900nmの波長範囲の光を遮断するために用
いる、着色した有機樹脂フイルムとガラスフイル
タとの複合体からなり600〜900nmの波長範囲の
光の透過を実質的に遮断する光学フイルタ。
1. In a dark field surveillance system that uses an electron multiplier tube to amplify and visualize the reflected starlight from an object within the field of view during a dark night when only starlight exists, the field of view is Of the light emitted from surrounding artificial light sources
An optical filter that is used to block light in the wavelength range of 600 to 900 nm and is made of a composite of a colored organic resin film and a glass filter and substantially blocks transmission of light in the wavelength range of 600 to 900 nm.
JP12657683A 1983-07-12 1983-07-12 Composite filter Granted JPS6017702A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12657683A JPS6017702A (en) 1983-07-12 1983-07-12 Composite filter
US06/629,317 US4616902A (en) 1983-07-12 1984-07-10 Composite filter, observation system and filamentary display device
DE8484304773T DE3485887T2 (en) 1983-07-12 1984-07-12 COMPOSITE FILTER AND USE OF SUCH A FILTER.
EP84304773A EP0131473B1 (en) 1983-07-12 1984-07-12 Composite filter and the use of such a filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12657683A JPS6017702A (en) 1983-07-12 1983-07-12 Composite filter

Publications (2)

Publication Number Publication Date
JPS6017702A JPS6017702A (en) 1985-01-29
JPH04242B2 true JPH04242B2 (en) 1992-01-06

Family

ID=14938583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12657683A Granted JPS6017702A (en) 1983-07-12 1983-07-12 Composite filter

Country Status (1)

Country Link
JP (1) JPS6017702A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515057Y2 (en) * 1985-08-27 1993-04-21
JPS62157003A (en) * 1985-12-28 1987-07-13 Kiyoshi Nagai Composite filter
JPH0594801U (en) * 1991-11-08 1993-12-24 株式会社アドバンテスト Composite optical filter
JP2006078519A (en) * 2004-09-07 2006-03-23 Canon Electronics Inc Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830131A (en) * 1971-08-20 1973-04-20
JPS59189688A (en) * 1983-04-13 1984-10-27 Hitachi Ltd Magnetoresistance element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830131A (en) * 1971-08-20 1973-04-20
JPS59189688A (en) * 1983-04-13 1984-10-27 Hitachi Ltd Magnetoresistance element

Also Published As

Publication number Publication date
JPS6017702A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
EP1112459B1 (en) Solar blind uv viewing apparatus and camera
EP0373820A2 (en) Filter device employing a holographic element
JPH01152377A (en) Partial discharge detection method
CN106375742A (en) Device and method of acquiring night vision true color image
US4779942A (en) NVG compatible red light
JPH04242B2 (en)
Keel Dust in backlit galaxies-Properties of the foreground systems in NGC 3314 and NGC 1275
US4616902A (en) Composite filter, observation system and filamentary display device
Sankrit et al. Far Ultraviolet Spectroscopic Explorer Observations of an X-Ray Bright Region in the Vela Supernova Remnant
de Boer Examination by infrared radiation
McLachlan et al. Flight testing of a luminescent surface pressure sensor
RU2133973C1 (en) Method of illumination of instrument panel and lighted signs of aircraft when viewed through pilot's night-vision goggles
RU2754887C1 (en) Night vision goggles for pilot
Fesen A Late-Time Optical Detection of SN 1985L in NGC 5033
GB2101549A (en) Projection screen device for guidance of a helicopter in flight close to the ground at night
DE1462828A1 (en) TV camera with color splitting prism system between the lens and the receiving tubes
RU2302023C2 (en) Method of illuminating instrumental equipment and transparences of light signalization of flying vehicle while watching them through night vision goggles
Ensminger et al. Image Intensifier System Detection Experiment
CN112505871A (en) High-altitude aircraft optical window protection device and use method
Hynek et al. The Corralitos Observatory program for the detection of lunar transient phenomena
Olofsson The compact H II region S235A-Observations and interpretation
AG-SCI Flight Testing of Night Vision Systems in Rotorcraft
September The conference• technical sessions
Meyer et al. Three Emission-Line Galaxies at z~ 2.4
Yates et al. Ultraviolet imaging of hydrogen flames