JPH04242114A - Vibration type angular velocity sensor - Google Patents

Vibration type angular velocity sensor

Info

Publication number
JPH04242114A
JPH04242114A JP3003301A JP330191A JPH04242114A JP H04242114 A JPH04242114 A JP H04242114A JP 3003301 A JP3003301 A JP 3003301A JP 330191 A JP330191 A JP 330191A JP H04242114 A JPH04242114 A JP H04242114A
Authority
JP
Japan
Prior art keywords
substrate
vibrating body
vibration
vibrating
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3003301A
Other languages
Japanese (ja)
Other versions
JP2899664B2 (en
Inventor
Tomishige Tai
富茂 田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP3003301A priority Critical patent/JP2899664B2/en
Publication of JPH04242114A publication Critical patent/JPH04242114A/en
Application granted granted Critical
Publication of JP2899664B2 publication Critical patent/JP2899664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To make it possible to achieve a compact configuration and mass production, to make it possible to achieve the large displacement of a vibrating body by an input angular velocity and to obtain the excellent output by forming a sensor by using a semiconductor process technology. CONSTITUTION:A vibrating body 32 which is vibrated in parallel with a substrate 31, flexible supporting bodies 33a, 33b, (33c and 33d) for supporting the vibrating body 32, pairs of vibration driving electrodes 35a and 35b, and 34a and 34b which are attached to the vibrating body 32 and the substrate 31, respectively, and detecting electrodes 36a and 26b for detecting the displacement of the vibrating body 32 are formed of semiconductors made of the same material on the substrate 31. The thickness of the vibration driving electrodes 34a and 34b is made smaller than the thickness of the counter electrodes 35a and 35b. Thus, the electrodes 34a and 34b can be deflected in the vertical direction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は振動体を振動させ、入
力角速度に応じてその振動体にコリオリ力が発生するよ
うにし、そのコリオリ力による振動体の変位から入力角
速度を検出する振動型角速度センサの構造に関するもの
である。
[Industrial Application Field] This invention vibrates a vibrating body, generates a Coriolis force on the vibrating body according to the input angular velocity, and detects the input angular velocity from the displacement of the vibrating body due to the Coriolis force. This relates to the structure of the sensor.

【0002】0002

【従来の技術】従来の振動型角速度センサの構造を図7
及び図8に示す。図7は振動体として四角柱状の振動ビ
ームを用いるものであり、図8は音叉を用いるものであ
る。図7において四角柱状の振動ビーム11は、その長
手方向の互いに平行な二面11a 及び11b におけ
る、固有振動の各二つの節点で支持ワイヤ12によりコ
字状架台13の両側部13a 及び13b 間に支持さ
れている。
[Prior art] Figure 7 shows the structure of a conventional vibration type angular velocity sensor.
and shown in FIG. FIG. 7 shows an example in which a rectangular prism-shaped vibration beam is used as the vibrating body, and FIG. 8 shows an example in which a tuning fork is used. In FIG. 7, the rectangular prism-shaped vibration beam 11 is connected between both sides 13a and 13b of the U-shaped pedestal 13 by the support wire 12 at each two nodes of natural vibration on two mutually parallel surfaces 11a and 11b in the longitudinal direction. Supported.

【0003】振動ビーム11の面11a ,11b に
は、それぞれその長手方向のほぼ中央に検出用圧電素子
14が接着されている。図において面11b 側の検出
用圧電素子14はかくれて見えない。また、振動ビーム
11の長手方向の面11a と垂直な面11c ,11
d には、それぞれその長手方向のほぼ中央に駆動用圧
電素子15が接着されている。図において面11d 側
の駆動用圧電素子15はかくれて見えない。
[0003] A detection piezoelectric element 14 is bonded to each of the surfaces 11a and 11b of the vibrating beam 11 approximately at the center thereof in the longitudinal direction. In the figure, the detection piezoelectric element 14 on the surface 11b side is hidden and cannot be seen. Also, surfaces 11c, 11 perpendicular to the longitudinal surface 11a of the vibration beam 11
A drive piezoelectric element 15 is bonded to each of the drive piezoelectric elements 15 at substantially the center in the longitudinal direction. In the figure, the driving piezoelectric element 15 on the surface 11d side is hidden and cannot be seen.

【0004】両駆動用圧電素子15に交流電圧を印加し
、振動ビーム11を屈曲振動させる。この状態で、振動
ビーム11にその長手方向を軸心とする角速度が入力さ
れると、振動ビーム11に発生するコリオリ力により振
動ビーム11が駆動用圧電素子15による屈曲振動方向
と垂直な方向に振動する。この振動成分を検出用圧電素
子14により出力電圧として検出して振動ビーム11の
コリオリ力による歪みを求め、入力角速度を算出する。
[0004] An alternating current voltage is applied to both drive piezoelectric elements 15 to cause the vibration beam 11 to bend and vibrate. In this state, when an angular velocity with the longitudinal direction as the axis is input to the vibrating beam 11, the Coriolis force generated in the vibrating beam 11 causes the vibrating beam 11 to move in a direction perpendicular to the bending vibration direction of the driving piezoelectric element 15. Vibrate. This vibration component is detected as an output voltage by the detection piezoelectric element 14, the distortion of the vibration beam 11 due to the Coriolis force is determined, and the input angular velocity is calculated.

【0005】図8においては音叉21のU字状の両外側
面21a ,21b にそれぞれ駆動用圧電素子22が
接着され(面21b 側はかくれて見えない)、音叉2
1のU字状の外側面21a と垂直な端面21c にお
けるU字状の中心線上にねじれ検出部23が端面21c
 から垂直に突設されている。ねじれ検出部23は金属
板で形成されており、その自由端部24は一対の検出用
電極25a 及び25b の間に位置している。
In FIG. 8, drive piezoelectric elements 22 are bonded to both U-shaped outer surfaces 21a and 21b of the tuning fork 21 (the surface 21b side is hidden and cannot be seen), and the tuning fork 2
The twist detection unit 23 is located on the center line of the U-shape on the end surface 21c perpendicular to the U-shaped outer surface 21a of the U-shape 1.
It protrudes vertically from the The twist detection section 23 is formed of a metal plate, and its free end 24 is located between a pair of detection electrodes 25a and 25b.

【0006】この構造では駆動用圧電素子22に交流電
圧を印加し、音叉21を屈曲振動させ、音叉21にその
両振片の中心で、長さ方向を軸心とする角速度の入力に
より音叉21に発生するねじれ振動をねじれ検出部23
及び検出用電極25a ,25b により静電容量の変
化として検出して音叉21のコリオリ力による変位を求
め、入力角速度を算出する。なお、図7及び図8におい
ては駆動用圧電素子15,22の駆動手段、検出用圧電
素子14,ねじれ検出部23及び検出用電極25a,2
5b からの検出手段の図示は省略している。
In this structure, an alternating current voltage is applied to the driving piezoelectric element 22 to cause the tuning fork 21 to bend and vibrate, and an angular velocity is input to the tuning fork 21 at the center of both vibrating pieces with the longitudinal direction as the axis. The torsion detection unit 23 detects torsional vibrations generated in the
Then, the detection electrodes 25a and 25b detect the change in capacitance, determine the displacement of the tuning fork 21 due to the Coriolis force, and calculate the input angular velocity. 7 and 8, driving means for driving piezoelectric elements 15 and 22, detection piezoelectric element 14, torsion detection section 23, and detection electrodes 25a and 2 are shown.
5b and the detection means are omitted from illustration.

【0007】[0007]

【発明が解決しようとする課題】以上述べたように、従
来の振動型角速度センサは振動ビーム11や音叉21の
微小な歪みや変位を測定し、この測定値により角速度を
求めるものであり、性能上各部品の寸法及び組み立てに
おいて高い精度を必要とするものである。しかしながら
、図7の振動ビーム11を用いるものにおいては、支持
ワイヤ12によって振動ビーム11を支持する組み立て
を高精度で行うことは困難であり、図8の音叉21を用
いるものにおいては、ねじれ検出部23の、音叉21へ
の取付け及び一対の検出用電極25a ,25b との
組み立てを高精度で行うことは困難である。
[Problems to be Solved by the Invention] As described above, the conventional vibrating angular velocity sensor measures minute distortions and displacements of the vibrating beam 11 and tuning fork 21, and determines the angular velocity from these measured values. High precision is required in the dimensions and assembly of each component. However, in the device using the vibrating beam 11 shown in FIG. 7, it is difficult to assemble the vibrating beam 11 to be supported by the support wire 12 with high precision, and in the device using the tuning fork 21 in FIG. It is difficult to attach 23 to the tuning fork 21 and assemble it with the pair of detection electrodes 25a and 25b with high precision.

【0008】また、駆動用圧電素子15,22や検出用
圧電素子14の振動ビーム11あるいは音叉21への接
着も高精度で行うことは困難である。さらに、振動ビー
ム11や音叉21は数mm乃至数cm程度の大きさであ
るため、高精度の加工は困難である。従って、従来の振
動型角速度センサは各部品の寸法及び組み立てにおいて
精度が不充分なものであった。
Furthermore, it is difficult to adhere the driving piezoelectric elements 15, 22 and the detection piezoelectric element 14 to the vibrating beam 11 or the tuning fork 21 with high precision. Furthermore, since the vibrating beam 11 and the tuning fork 21 have a size of several mm to several cm, it is difficult to process them with high precision. Therefore, the conventional vibrating angular velocity sensor has insufficient precision in the dimensions and assembly of each component.

【0009】振動ビーム11や音叉21の加工寸法及び
各部の組み立て寸法がばらついたり、各部の材質の違い
から弾性率及び熱膨張係数が異なることにより、振動ビ
ーム11や音叉21の振動数、振動成分及びそれらの温
度特性などの出力特性がそれぞれの振動型角速度センサ
でばらつく。このため角速度の測定を行うに当たって個
々の振動型角速度センサについて個別の調整を必要とす
ることから、従来の振動型角速度センサは量産に適さず
、その使用も簡易ではない。また、振動ビーム11や音
叉21は機械加工により製造されるため小型化は困難で
ある。
The frequency and vibration components of the vibrating beam 11 and tuning fork 21 may vary due to variations in the processing dimensions and assembly dimensions of each part of the vibrating beam 11 and tuning fork 21, and differences in elastic modulus and thermal expansion coefficient due to differences in the materials of each part. And their output characteristics such as temperature characteristics vary depending on each vibrating angular velocity sensor. For this reason, each vibrating angular velocity sensor requires individual adjustment when measuring angular velocity, so conventional vibrating angular velocity sensors are not suitable for mass production and are not easy to use. Further, since the vibrating beam 11 and the tuning fork 21 are manufactured by machining, it is difficult to miniaturize them.

【0010】この発明は従来の欠点を解消するものであ
り、個別の調整を不要としたことから角速度の測定を簡
易にし、かつ量産性に優れた小型の振動型角速度センサ
を提供するものである。
The present invention solves the drawbacks of the conventional sensor, and provides a small vibrating angular velocity sensor that simplifies the measurement of angular velocity by eliminating the need for individual adjustments, and is excellent in mass production. .

【0011】[0011]

【課題を解決するための手段】この発明は、基板上に設
けられ、その基板と平行に振動する振動体と、その振動
体を基板上に支持し、その振動方向及び上記基板に垂直
な方向にたわむことができる支持体と、上記振動体及び
上記基板にそれぞれ取付けられ、上記基板と垂直方向で
互いに対向した一対の振動駆動用電極と、上記基板に垂
直な方向への上記振動体の変位を検出するように設けら
れた検出用電極とよりなり、上記振動体、上記支持体、
上記振動駆動用電極及び上記検出用電極を同一材の半導
体で構成したものである。
[Means for Solving the Problems] The present invention includes a vibrating body that is provided on a substrate and vibrates in parallel with the substrate, and a vibrating body that is supported on the substrate and that vibrates in a direction perpendicular to the substrate. a support body that can be deflected; a pair of vibration driving electrodes that are respectively attached to the vibrating body and the substrate and facing each other in a direction perpendicular to the substrate; and displacement of the vibrating body in a direction perpendicular to the substrate; a detection electrode provided to detect the vibration body, the support body,
The vibration drive electrode and the detection electrode are made of the same semiconductor material.

【0012】0012

【作  用】上記のように構成されたこの発明では、振
動型角速度センサを構成する振動体、支持体、振動駆動
用電極及び検出用電極が同一材の半導体であるため、半
導体プロセス技術を使用して作成することができる。す
なわち、フォトリソグラフィ、エッチング、CVD(気
相成長)及び蒸着という成膜手法を使用して作成するこ
とができるため、従来の機械加工及び組み立て作業によ
って作成するものと比較して寸法精度を高めることがで
き、小型化が実現できる。しかも、従来例における各部
の弾性率及び熱膨張係数の差異に起因する出力特性への
影響は同様の理由により解消される。
[Operation] In the present invention configured as described above, the vibrating body, support body, vibration drive electrode, and detection electrode that constitute the vibrating angular velocity sensor are made of the same semiconductor material, so semiconductor process technology is used. can be created by In other words, since it can be created using film-forming methods such as photolithography, etching, CVD (vapor phase growth), and vapor deposition, it has higher dimensional accuracy compared to those created by conventional machining and assembly operations. It is possible to realize miniaturization. Moreover, the influence on the output characteristics caused by the difference in the elastic modulus and thermal expansion coefficient of each part in the conventional example is eliminated for the same reason.

【0013】[0013]

【実施例】図1はこの発明の第1の実施例の平面図であ
り、そのA−A断面からの斜視図を図2に示す。例えば
シリコンなどの半導体の基板31上に、これと平行に振
動することができるように間隔をおいて振動体32が配
される。振動体32は比較的厚い長方形とされた場合で
、基板31と平行とされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a plan view of a first embodiment of the present invention, and FIG. 2 is a perspective view taken along the line AA. For example, on a semiconductor substrate 31 such as silicon, a vibrating body 32 is arranged at intervals so as to be able to vibrate in parallel thereto. The vibrating body 32 has a relatively thick rectangular shape and is parallel to the substrate 31.

【0014】振動体32は支持体33により基板31上
に支持され、この支持体33は基板31と垂直な方向及
び振動体32の振動方向においてそれぞれたわむことが
できるものである。この例では支持体33は長方形振動
体32の四隅をそれぞれ支持する4つの支持体33a 
,33b ,33c ,33d で構成される。図2中
の支持体33a から理解されるように、支持体33a
 の一端は振動体32の基板31と反対の面の1つの隅
と連結され、これより振動体32の短辺と平行に延長さ
れて水平部33a1とされ、その延長端は直角に、基板
31と平行に外側に折り曲げ延長されて水平部33a2
とされ、その延長端は幅広とされて水平部33a2と平
行に外側に延長されて水平部33a3とされ、その延長
端は基板31に達するように直角に折り曲げ延長されて
垂直部33a4とされ、その延長端は基板31に平行に
延長されて基板31に固定された固定部33a5とされ
、水平部33a1,33a2,33a3,固定部33a
5は基板31と平行な板状をしており、垂直部33a4
は振動体32の長辺と平行な板状をしている。
The vibrating body 32 is supported on the substrate 31 by a support 33, which can be bent in a direction perpendicular to the substrate 31 and in the vibration direction of the vibrating body 32. In this example, the supports 33 are four supports 33a that respectively support the four corners of the rectangular vibrating body 32.
, 33b, 33c, and 33d. As understood from the support 33a in FIG.
One end is connected to one corner of the surface of the vibrating body 32 opposite to the substrate 31, and is extended from this in parallel with the short side of the vibrating body 32 to form a horizontal portion 33a1, and the extended end is connected to the substrate 31 at a right angle. The horizontal part 33a2 is bent and extended outward parallel to the horizontal part 33a2.
The extended end is widened and extended outward parallel to the horizontal part 33a2 to form a horizontal part 33a3, and the extended end is bent at a right angle to reach the substrate 31 and extended to form a vertical part 33a4. The extended end is a fixed part 33a5 that extends parallel to the board 31 and is fixed to the board 31, and includes horizontal parts 33a1, 33a2, 33a3, and fixed part 33a.
5 has a plate shape parallel to the substrate 31, and has a vertical portion 33a4.
has a plate shape parallel to the long side of the vibrating body 32.

【0015】他の支持体33b ,33c ,33d 
も支持体33a と同様に構成され、支持体33は、水
平部33a1,33a2と、他の支持体33b ,33
c ,33d のこれらと対応する部分とにより基板3
1と垂直方向にたわむことができ、かつ水平部33a2
,垂直部33a4と、他の支持体33b ,33c ,
33d のこれらと対応する部分とにより振動体32の
振動方向、つまりこの例では振動体32の短辺と平行な
方向にたわむことができるようにされている。
Other supports 33b, 33c, 33d
The support body 33 has horizontal parts 33a1, 33a2 and other supports 33b, 33.
The substrate 3 is formed by the corresponding parts of c and 33d.
1 and can be bent in the vertical direction, and the horizontal portion 33a2
, the vertical portion 33a4 and the other supports 33b, 33c,
These corresponding portions of 33d allow the vibrating body 32 to deflect in the vibration direction of the vibrating body 32, that is, in this example, in a direction parallel to the short side of the vibrating body 32.

【0016】基板31と振動体32とに、それぞれ基板
31と垂直な方向において互いに対向した振動駆動用電
極34,35がそれぞれ取付けられる。すなわち、この
例では振動体32の長手方向と平行な両側面とそれぞれ
対向して基板31上に電極支持部34a1,34b1が
設けられ、電極支持部34a1,34b1から振動体3
2側にそれぞれ基板31と平行な複数の振動駆動用電極
34a ,34b が、基板31と垂直方向に配列され
て一体に形成される。振動体32の長手方向の両側面に
それぞれ基板31と平行な複数の振動駆動用電極35a
 ,35b が、基板31と垂直方向に配列されて一体
に形成されている。複数の振動駆動用電極35a ,3
5b はそれぞれその各一枚が基板31と垂直な方向に
おいて、複数の振動駆動用電極34a ,34b の各
一枚と交互に近接対向して配されるように位置される。
Vibration driving electrodes 34 and 35 are attached to the substrate 31 and the vibrating body 32, respectively, and are opposed to each other in a direction perpendicular to the substrate 31. That is, in this example, electrode supports 34a1 and 34b1 are provided on the substrate 31 to face both side surfaces parallel to the longitudinal direction of the vibrating body 32, and the vibrating body 3 is provided from the electrode supports 34a1 and 34b1.
A plurality of vibration driving electrodes 34a and 34b parallel to the substrate 31 are arranged perpendicularly to the substrate 31 and integrally formed on the second side. A plurality of vibration driving electrodes 35a are provided on both sides of the vibrating body 32 in the longitudinal direction, each parallel to the substrate 31.
, 35b are arranged vertically and integrally formed with the substrate 31. A plurality of vibration driving electrodes 35a, 3
Each of the electrodes 5b is arranged so as to alternately face each of the plurality of vibration drive electrodes 34a and 34b in a direction perpendicular to the substrate 31.

【0017】振動体32の基板31と垂直な方向の変位
を検出するための検出用電極36a,36b が、振動
体32の基板31側の面及びこれと反対の面にそれぞれ
対向して設けられる。検出用電極36a は基板31上
に形成され、検出用電極36b は、振動体32の長手
方向における両端が基板31側に折り曲げ延長され、さ
らにそれぞれ基板31上で互いに外側に延長されて、基
板31上に支持される。
Detection electrodes 36a and 36b for detecting displacement of the vibrating body 32 in a direction perpendicular to the substrate 31 are provided facing each other on the surface of the vibrating body 32 on the substrate 31 side and on the opposite surface. . The detection electrode 36a is formed on the substrate 31, and the detection electrode 36b has both ends of the vibrating body 32 in the longitudinal direction bent toward the substrate 31 and extended outward from each other on the substrate 31. supported above.

【0018】なお、基板31上には検出用電極36a 
,電極支持部34a1,34b1が形成されている部分
の外側に絶縁膜37が形成され、絶縁膜37上に、支持
体33a ,33b ,33c ,33d の各基板3
1側の各固定部、検出用電極36b の固定部が位置さ
れている。  基板31上の一側部において絶縁膜37
上に端子38a ,38b ,38c ,38d ,3
8e が形成され、端子38a ,38b ,38c 
,38d ,38e はそれぞれ配線39a ,39b
 ,39c ,39d ,39eを通じて検出用電極3
6a ,36b ,支持体33c ,電極支持部34a
1,34b1に接続される。振動体32,支持体33a
 〜33d ,電極支持部34a1,34b1,検出用
電極36a ,36b ,端子38a 〜38e ,配
線39a 〜39e はすべて同一材、この例ではシリ
コン半導体で作られる。
Note that a detection electrode 36a is provided on the substrate 31.
, an insulating film 37 is formed on the outside of the portion where the electrode supports 34a1, 34b1 are formed, and each substrate 3 of the supports 33a, 33b, 33c, 33d is formed on the insulating film 37.
Each fixed part on the first side and the fixed part of the detection electrode 36b are located. An insulating film 37 is formed on one side of the substrate 31.
Terminals 38a, 38b, 38c, 38d, 3 on top
8e is formed, and terminals 38a, 38b, 38c
, 38d and 38e are wirings 39a and 39b, respectively.
, 39c, 39d, 39e, the detection electrode 3
6a, 36b, support body 33c, electrode support part 34a
1,34b1. Vibrating body 32, support body 33a
33d, electrode supports 34a1 and 34b1, detection electrodes 36a and 36b, terminals 38a and 38e, and wiring lines 39a and 39e are all made of the same material, in this example silicon semiconductor.

【0019】次に、以上の構成の振動型角速度センサの
動作を説明する。端子38c と端子38d ,38e
 との間に逆位相の交番電圧を印加することにより、振
動体32に形成された振動駆動用電極35a ,35b
 と基板31に配置された振動駆動用電極34a ,3
4b との間に静電気力が発生する。振動体32は可撓
性の支持体33a ,33b,33c ,33d によ
って支持されているため、この静電気力により駆動され
、電極支持部34a1側に近づいたり、電極支持部34
b1側に近づいたり基板31と平行に矢印41で示すよ
うに振動する。
Next, the operation of the vibration type angular velocity sensor having the above configuration will be explained. Terminal 38c and terminals 38d, 38e
Vibration driving electrodes 35a and 35b formed on the vibrating body 32 by applying an alternating voltage of opposite phase between
and vibration drive electrodes 34a, 3 arranged on the substrate 31.
An electrostatic force is generated between 4b and 4b. Since the vibrating body 32 is supported by flexible supports 33a, 33b, 33c, and 33d, it is driven by this electrostatic force and moves closer to the electrode support 34a1 side or moves closer to the electrode support 34a1.
It vibrates as it approaches the b1 side or parallel to the substrate 31 as shown by an arrow 41.

【0020】この状態において矢印42で示すように振
動体32の振動方向と直角で基板31と平行した軸心ま
わりの角速度が振動体32に加わると、振動体32に発
生するコリオリ力により、振動体32には基板31と垂
直方向に振動的変位43が生じるようになる。従って、
振動体32と検出用電極36a との間の静電容量及び
振動体32と検出用電極36b との間の静電容量がそ
れぞれ互いに逆に変化する。入力角速度に応じた容量変
化が端子38a ,38b 及び38c 間に得られる
In this state, when an angular velocity about an axis perpendicular to the vibration direction of the vibrating body 32 and parallel to the substrate 31 is applied to the vibrating body 32 as shown by an arrow 42, the Coriolis force generated in the vibrating body 32 causes vibrations. A vibrational displacement 43 is generated in the body 32 in a direction perpendicular to the substrate 31. Therefore,
The capacitance between the vibrating body 32 and the detection electrode 36a and the capacitance between the vibrating body 32 and the detection electrode 36b change in opposite ways. A capacitance change depending on the input angular velocity is obtained between the terminals 38a, 38b and 38c.

【0021】なお、以上のような動作において、振動体
32に形成されている振動駆動用電極35a ,35b
 と基板31に配置されている振動駆動用電極34a 
,34b との空隙は、振動体32を一定に駆動するた
めに静電気力が変化しないように一定に保たれているこ
とが必要である。これに反し、静電容量変化に基づく検
出の感度向上のためには振動体32の基板31と垂直方
向の変位が大きくあるべきである。
[0021] In the above operation, the vibration driving electrodes 35a and 35b formed on the vibrating body 32
and a vibration driving electrode 34a arranged on the substrate 31.
, 34b must be kept constant so that the electrostatic force does not change in order to drive the vibrating body 32 in a constant manner. On the other hand, in order to improve the sensitivity of detection based on capacitance changes, the displacement of the vibrating body 32 in the direction perpendicular to the substrate 31 should be large.

【0022】このため、この実施例においては、基板3
1側の振動駆動用電極34a ,34b の厚さを振動
体32側の振動駆動用電極35a,35b の厚さより
薄くし、振動体32の基板31と垂直方向への変位時に
、基板31側の振動駆動用電極34a ,34b がた
わむようにしている。振動駆動用電極34a ,34b
 と35a ,35b との厚さの比は1:3乃至1:
15,好ましくは1:5乃至1:10に設定する。
Therefore, in this embodiment, the substrate 3
The thickness of the vibration drive electrodes 34a, 34b on the first side is made thinner than the thickness of the vibration drive electrodes 35a, 35b on the vibrator 32 side, so that when the vibrator 32 is displaced in a direction perpendicular to the substrate 31, the vibration drive electrodes 34a, 34b on the substrate 31 side are The vibration drive electrodes 34a and 34b are made to bend. Vibration drive electrodes 34a, 34b
The thickness ratio between 35a and 35b is 1:3 to 1:
15, preferably 1:5 to 1:10.

【0023】この実施例における振動体32の変位状態
を図3に示す。図3において、 (A)は無駆動状態か
つ無入力角速度状態を示す。(B) 乃至(E) は無
入力角速度状態であり、それぞれ振動体32の駆動状態
が異なる。すなわち、(B) は電極34a ,35a
 間に電圧を印加し、図中左側に振動体32を駆動した
時、(c) は電極34a ,35a 間の電圧をゼロ
とし、電極34b ,35b 間に電圧を印加し、振動
体32が左から右へ速度vで運動している時、(D) 
は右側に移動した時、(E) は電極34b ,35b
 間の電圧をゼロとし、電極34a ,35a 間に電
圧を印加し、右から左へ速度vで運動している状態を表
している。
FIG. 3 shows the displacement state of the vibrating body 32 in this embodiment. In FIG. 3, (A) shows a non-driving state and a non-input angular velocity state. (B) to (E) are no-input angular velocity states, and the driving states of the vibrating body 32 are different from each other. That is, (B) is the electrode 34a, 35a
When a voltage is applied between the electrodes 34b and 35b, and the vibrating body 32 is driven to the left in the figure, (c), the voltage between the electrodes 34a and 35a is zero, and a voltage is applied between the electrodes 34b and 35b, and the vibrating body 32 is driven to the left in the figure. When moving to the right from , with velocity v, (D)
When moved to the right, (E) is the electrode 34b, 35b
The voltage between the electrodes 34a and 35a is set to zero, and a voltage is applied between the electrodes 34a and 35a to represent a state where the electrodes are moving from right to left at a speed v.

【0024】(C) 及び(E) の状態において、紙
面に垂直方向の角速度が入力された時の振動体32の変
位状態を(F) 及び(G) に示す。振動体32はそ
の運動方向により変位する方向は異なり、(F) では
振動体32が基板31から遠ざかる方向に、(G) で
は振動体32が基板31に近づく方向に変位している状
態を示している。この変位量は入力角速度の大きさに比
例し、この変位の駆動信号に対する位相は入力角速度の
方向と対応する。基板31側の振動駆動用電極34a 
,34b は、振動体32側の振動駆動用電極35a 
,35b より薄いためにたわむことができる。このた
め、振動体32が基板31と垂直方向に変位しても振動
駆動用電極34a ,34b と35a ,35b と
のそれぞれの対向電極間の所定の空隙は維持され、かつ
振動体32は大きな変位をすることができる。
In the states of (C) and (E), the displacement states of the vibrating body 32 when an angular velocity in a direction perpendicular to the plane of the paper is input are shown in (F) and (G). The direction in which the vibrating body 32 is displaced differs depending on its direction of motion; (F) shows the vibrating body 32 moving away from the substrate 31, and (G) shows the vibrating body 32 displacing toward the substrate 31. ing. This amount of displacement is proportional to the magnitude of the input angular velocity, and the phase of this displacement with respect to the drive signal corresponds to the direction of the input angular velocity. Vibration drive electrode 34a on the substrate 31 side
, 34b are vibration driving electrodes 35a on the vibrating body 32 side.
, 35b, so it can bend. Therefore, even if the vibrating body 32 is displaced in the direction perpendicular to the substrate 31, a predetermined gap between the opposing electrodes of the vibration drive electrodes 34a, 34b and 35a, 35b is maintained, and the vibrating body 32 is displaced in the direction perpendicular to the substrate 31. can do.

【0025】なお、この実施例では基板31側の振動駆
動用電極34a ,34b を振動体32側の振動駆動
用電極35a ,35b より薄くしているが、振動駆
動用電極35a ,35b を34a ,34b より
薄くするという逆の構成でも同様の効果が得られる。次
に、この実施例を半導体プロセス技術を使用して作成す
る方法について説明する。図4はこの実施例のうち検出
用電極36a ,36b ,振動体32,振動駆動用電
極34a ,34b ,35a ,35b ,及び電極
支持部34a1, 34b1について作成手順の一例を
示したものである。(1) 乃至(34)は工程順序を
示す。(1)はシリコン基板31の状態であり、(2)
 はそれに熱酸化を施し、表面に酸化膜(Si02)4
4を形成したものである。(3) は酸化膜44のパタ
ーニングであり、フォトリソグラフィとドライエッチン
グを使用する。(4)はボロンの拡散を施したものであ
る。この拡散層45は配線部及び後述の(34)での犠
牲層のエッチング時の過剰エッチングを防止する目的で
製造上の安全のため使用するものである。
In this embodiment, the vibration driving electrodes 34a, 34b on the substrate 31 side are made thinner than the vibration driving electrodes 35a, 35b on the vibrating body 32 side, but the vibration driving electrodes 35a, 35b are made thinner than the vibration driving electrodes 34a, 35b on the vibrating body 32 side. A similar effect can be obtained with the opposite configuration where the thickness is made thinner than 34b. Next, a method for creating this embodiment using semiconductor process technology will be described. FIG. 4 shows an example of the procedure for creating the detection electrodes 36a, 36b, the vibrating body 32, the vibration driving electrodes 34a, 34b, 35a, 35b, and the electrode supports 34a1, 34b1 in this embodiment. (1) to (34) indicate the process order. (1) is the state of the silicon substrate 31, (2)
is subjected to thermal oxidation to form an oxide film (Si02)4 on the surface.
4 was formed. (3) is patterning of the oxide film 44, using photolithography and dry etching. (4) is one in which boron is diffused. This diffusion layer 45 is used for manufacturing safety in order to prevent excessive etching during etching of the wiring portion and the sacrificial layer in (34) described below.

【0026】(5) は酸化膜44除去、(6) はP
型エピタキシャル成長またはポリシリコンの成膜、(7
) は(6) で形成した膜のパターニング、(8) 
はn型エピタキシャル成長またはSi02あるいはPS
Gの成膜、(9)は(8) で形成した膜のパターニン
グであり、(7) の膜で抜けた部分を残す。以下(1
0)〜(33)までP型エピタキシャル成長またはポリ
シリコンの成膜とn型エピタキシャル成長またはSi0
2あるいはPSGの成膜とそれらのパターニングを繰り
返し行い、検出用電極36a ,36b と振動体32
と振動駆動用電極34a ,34b ,35a ,35
b と電極支持部34a1,34b1とをP型エピタキ
シャル成長またはポリシリコンの成膜で形成し、これら
の各間の空間部分をn型エピタキシャル成長またはSi
O2あるいはPSGの成膜で犠牲層として形成する。
(5) is the removal of the oxide film 44, and (6) is the removal of the P
type epitaxial growth or polysilicon film formation, (7
) is patterning of the film formed in (6), (8)
is n-type epitaxial growth or Si02 or PS
G film formation (9) is the patterning of the film formed in (8), leaving the missing part of the film in (7). Below (1
0) to (33) P-type epitaxial growth or polysilicon film formation and n-type epitaxial growth or Si0
2 or PSG film formation and patterning thereof are repeated, and the detection electrodes 36a, 36b and the vibrating body 32 are formed.
and vibration drive electrodes 34a, 34b, 35a, 35
b and the electrode supporting parts 34a1 and 34b1 are formed by P-type epitaxial growth or polysilicon film formation, and the space between them is formed by N-type epitaxial growth or Si
It is formed as a sacrificial layer by film formation of O2 or PSG.

【0027】なお、図4においてはP型エピタキシャル
成長またはポリシリコンの成膜を点を分布させて示し、
n型エピタキシャル成長またはSi02あるいはPSG
の成膜を左上から右下の斜線のハッチングで示している
。(34)は成膜及びパターニングで残していたn型シ
リコン膜またはSiO2あるいはPSGの犠牲層をエッ
チング除去する工程である。以上説明した手順を用いて
シリコン基板31上に、この発明による振動型角速度セ
ンサを作成することができる。
In addition, in FIG. 4, P-type epitaxial growth or polysilicon film formation is shown by distributing points.
N-type epitaxial growth or Si02 or PSG
The film formation is indicated by diagonal hatching from the upper left to the lower right. (34) is a step of etching away the n-type silicon film, SiO2, or PSG sacrificial layer left after film formation and patterning. The vibration type angular velocity sensor according to the present invention can be created on the silicon substrate 31 using the procedure described above.

【0028】図5はこの発明の第2の実施例の平面図で
あり、そのB−B断面を図6に示す。この実施例では、
二つの可動部を平行に配設し、それらの長手方向の両端
部において2つの可動部を可撓性連結体によってそれぞ
れ連結している。また、それぞれの可動部は長手方向の
中央部に振動体を有し、支持体がその両側に設けられ、
この支持体を介して駆動部が配設されている。
FIG. 5 is a plan view of a second embodiment of the present invention, and FIG. 6 shows a cross section taken along line B--B. In this example,
Two movable parts are arranged in parallel, and the two movable parts are connected at both ends in the longitudinal direction by a flexible connecting body. Further, each movable part has a vibrating body in the center part in the longitudinal direction, and supports are provided on both sides of the vibrating body,
A driving section is disposed via this support.

【0029】基板31上にこれと対向して方形板状振動
体51−1がその長手方向に基板31と平行に振動でき
るように設けられる。この振動体51−1の長手方向の
両端にこれらがそれぞれ延長されるように可撓性の方形
枠状支持体52a−1,52b−1が一体に連結され、
その支持体52a−1,52b−1の互いの外端に駆動
部53a−1,53b−1がそれぞれ振動体51−1の
長手方向に、一体に延長され、駆動部53a−1,53
b−1にはそれぞれその両側縁に櫛歯状の振動駆動用電
極54a−1,54b−1が基板31と平行に、一体に
突出されている。駆動部53a−1,53b−1の互い
の外端にこれを延長するように付加質量部55a−1,
55b−1が一体に形成されている。これら振動体51
−1,支持体52a−1,52b−1,駆動部53a−
1,53b−1,振動駆動用電極54a−1,54b−
1,付加質量部55a−1,55b−1は一枚の板体で
可動部として構成されている。
A rectangular plate-shaped vibrating body 51-1 is provided on and opposite to the substrate 31 so as to be able to vibrate parallel to the substrate 31 in its longitudinal direction. Flexible rectangular frame-shaped supports 52a-1 and 52b-1 are integrally connected to both ends of the vibrating body 51-1 in the longitudinal direction so that these extend respectively,
Drive parts 53a-1, 53b-1 are integrally extended in the longitudinal direction of the vibrating body 51-1 at the outer ends of the supports 52a-1, 52b-1, respectively.
On both sides of b-1, comb-shaped vibration drive electrodes 54a-1 and 54b-1 are integrally protruded in parallel with the substrate 31, respectively. Additional mass portions 55a-1 and 55a-1 extend to the outer ends of the drive portions 53a-1 and 53b-1, respectively.
55b-1 is integrally formed. These vibrating bodies 51
-1, support bodies 52a-1, 52b-1, drive part 53a-
1, 53b-1, vibration drive electrode 54a-1, 54b-
1. The additional mass parts 55a-1 and 55b-1 are configured as a movable part using a single plate.

【0030】全く同様に、振動体51−2,支持体52
a−2,52b−2,駆動部53a−2,53b−2,
振動駆動用電極54a−2,54b−2,付加質量部5
5a−2,55b−2が一枚の板体で可動部として構成
され、これら振動体51−1,51−2はその振動方向
を同一とし、横に並んで設けられている。付加質量部5
5a−1,55a−2が可撓性連結体56a で連結さ
れ、付加質量部55b−1,55b−2が可撓性連結体
56b で連結されている。 付加質量部55a−1,55b−1,55a−2,55
b−2がそれぞれ可撓性支持体57a−1,57b−1
,57a−2,57b−2により基板31に支持され、
かつ振動体51−1,51−2が可撓性支持体58−1
,58−2でそれぞれ基板31に支持されている。これ
ら支持体57a−1,57b−1,57a−2,57b
−2,58−1,58−2により前記二つの可動部が基
板31に対し、これに平行に振動可能に支持される。ま
た、支持体52a−1,52b−1及び52a−2,5
2b−2によりそれぞれ振動体51−1,51−2が基
板31と垂直方向に変位可能とされている。
[0030] In exactly the same way, the vibrating body 51-2 and the support body 52
a-2, 52b-2, drive section 53a-2, 53b-2,
Vibration drive electrodes 54a-2, 54b-2, additional mass part 5
5a-2 and 55b-2 are constituted by a single plate as a movable part, and these vibrating bodies 51-1 and 51-2 have the same vibration direction and are arranged side by side. Additional mass part 5
5a-1, 55a-2 are connected by a flexible connecting body 56a, and the additional mass parts 55b-1, 55b-2 are connected by a flexible connecting body 56b. Additional mass parts 55a-1, 55b-1, 55a-2, 55
b-2 are flexible supports 57a-1 and 57b-1, respectively.
, 57a-2, 57b-2, supported by the substrate 31,
And the vibrating bodies 51-1, 51-2 are flexible supports 58-1
, 58-2 are supported by the substrate 31, respectively. These supports 57a-1, 57b-1, 57a-2, 57b
-2, 58-1, 58-2, the two movable parts are supported parallel to the substrate 31 so as to be able to vibrate. In addition, supports 52a-1, 52b-1 and 52a-2, 5
2b-2, the vibrating bodies 51-1 and 51-2 can be displaced in a direction perpendicular to the substrate 31, respectively.

【0031】図6に示すように振動駆動用電極54b−
2の振動面を間隔をおいて挟んでその振動方向に配列さ
れた、振動駆動用電極54b−2と同数の振動駆動用電
極59b−2,60b−2が基板31に支持される。他
の振動駆動用電極54a−1,54b−1,54a−2
に対し同様にそれぞれ振動駆動用電極59a−1,60
a−1,59b−1,60b−1,59a−2,60a
−2が基板31に支持される。これら可動部の振動駆動
用電極と基板31に支持された振動駆動用電極とに対し
、静電リニアモータ駆動方式により振動体51−1,5
1−2がその長手方向に振動駆動される。振動体51−
1,51−2の各基板31側と対向してそれぞれ検出用
電極61a−1,61a−2が設けられ、基板31と反
対側と対向してそれぞれ検出用電極61b−1,61b
−2が設けられる。
As shown in FIG. 6, the vibration driving electrode 54b-
The substrate 31 supports the same number of vibration drive electrodes 59b-2 and 60b-2 as the vibration drive electrode 54b-2, which are arranged in the vibration direction with the two vibration surfaces spaced apart from each other. Other vibration drive electrodes 54a-1, 54b-1, 54a-2
Similarly, the vibration driving electrodes 59a-1 and 60
a-1, 59b-1, 60b-1, 59a-2, 60a
-2 is supported by the substrate 31. The vibration drive electrodes of these movable parts and the vibration drive electrodes supported by the substrate 31 are connected to the vibration bodies 51-1 and 5 by an electrostatic linear motor drive method.
1-2 is vibrated in its longitudinal direction. Vibrating body 51-
Detection electrodes 61a-1 and 61a-2 are provided facing the substrate 31 side of each of the substrates 1 and 51-2, respectively, and detection electrodes 61b-1 and 61b are provided facing the opposite side of the substrate 31, respectively.
-2 is provided.

【0032】この第2の実施例においては、振動駆動用
電極54a−1と59a−1,60a−1との間、54
b−1と59b−1,60b−1との間に静電リニアモ
ータ方式で交番駆動電圧を印加すると同時に、この交番
駆動電圧と逆位相で振動駆動用電極54a−2と59a
−2,60a−2との間、54b−2と59b−2,6
0b−2との間に静電リニアモータ方式で交番駆動電圧
を印加する。従って、振動体51−1と振動体51−2
とはそれぞれその長手方向に互いに逆向きに振動する。 この振動方向と平行した軸心まわりの角速度が振動体5
1−1,51−2に同時に入力されると、振動体51−
1,51−2はそれぞれ基板31と垂直方向に互いに逆
向きに振動的に変位する。 この変位に基づく振動体51−1と検出用電極61a−
1及び61b−1との間の各容量変化と、振動体51−
2と検出用電極61a−2及び61b−2との各容量変
化とを加算的に検出することにより入力角速度を検出す
ることができる。
In this second embodiment, between the vibration drive electrode 54a-1 and 59a-1, 60a-1, 54
At the same time, an alternating driving voltage is applied between b-1 and 59b-1, 60b-1 using an electrostatic linear motor method, and at the same time, the vibration driving electrodes 54a-2 and 59a are applied in opposite phase to this alternating driving voltage.
-2,60a-2, between 54b-2 and 59b-2,6
0b-2, an alternating driving voltage is applied using an electrostatic linear motor method. Therefore, the vibrating body 51-1 and the vibrating body 51-2
vibrate in opposite directions in their longitudinal directions. The angular velocity around the axis parallel to this vibration direction is the vibrating body 5
When input to 1-1 and 51-2 simultaneously, the vibrating body 51-
1 and 51-2 are each vibratedly displaced in opposite directions perpendicular to the substrate 31. Based on this displacement, the vibrating body 51-1 and the detection electrode 61a-
1 and 61b-1, and the vibrating body 51-
The input angular velocity can be detected by additively detecting each capacitance change of 2 and the detection electrodes 61a-2 and 61b-2.

【0033】上述のような第2の実施例においては、振
動駆動用電極54a−1,54b−1,54a−2,5
4b−2は、基板31に支持された振動駆動用電極59
a−1,60a−1,59b−1,60b−1,59a
−2,60a−2,59b−2,60b−2でそれぞれ
挟まれるよう構成されている。従って、角速度の入力に
よる基板31と垂直方向の振動駆動用電極54a−1,
54b−1,54a−2,54b−2の変位は静電的に
抑制される。しかし、振動体51−1,51−2と駆動
部53a−1,53b−1,53a−2,53b−2と
は、基板31と垂直方向にたわむことができる、支持体
52a−1,52b−1,52a−2,52b−2を介
して結合されているため、角速度の入力時に駆動部53
a−1,53b−1,53a−2,53b−2に比べて
振動体51−1,51−2は基板31と垂直方向に大き
な変位をすることができる。
In the second embodiment as described above, the vibration driving electrodes 54a-1, 54b-1, 54a-2, 5
4b-2 is a vibration driving electrode 59 supported by the substrate 31.
a-1, 60a-1, 59b-1, 60b-1, 59a
-2, 60a-2, 59b-2, and 60b-2, respectively. Therefore, the electrode 54a-1 for vibration driving in the vertical direction with respect to the substrate 31 by inputting the angular velocity,
Displacement of 54b-1, 54a-2, and 54b-2 is electrostatically suppressed. However, the vibrating bodies 51-1, 51-2 and the driving parts 53a-1, 53b-1, 53a-2, 53b-2 are supported by supports 52a-1, 52b, which can be bent in a direction perpendicular to the substrate 31. -1, 52a-2, 52b-2, so when the angular velocity is input, the drive unit 53
Compared to a-1, 53b-1, 53a-2, and 53b-2, the vibrating bodies 51-1 and 51-2 can be displaced to a greater extent in the direction perpendicular to the substrate 31.

【0034】さらに、付加質量部55a−1,55b−
1,55a−2,55b−2は、駆動部53a−1,5
3b−1,53a−2,53b−2における駆動振動を
安定させるため設けているものであるが、可撓性連結体
56a ,56b により付加質量部55a−1,55
a−2,55b−1,55b−2が互いに結合されてい
て、入力角速度により付加質量部55a−1,55a−
2,55b−1,55b−2とが受ける基板31と垂直
方向の変位が逆であって互いに変位を抑制し合うよう作
用し、振動駆動用電極54a−1,54b−1,54a
−2,54b−2の基板31と垂直方向の変位はさらに
抑制される。付加質量部55a−1,55b−1,55
a−2,55b−2を省略して駆動部53a−1と53
a−2とを可撓性連結体56a で直接結合し、駆動部
53b−1と53b−2とを可撓性連結体56b で直
接結合してもよい。
Furthermore, additional mass parts 55a-1, 55b-
1, 55a-2, 55b-2 are driving parts 53a-1, 5
3b-1, 53a-2, 53b-2, the additional mass portions 55a-1, 55
a-2, 55b-1, 55b-2 are coupled to each other, and the additional mass parts 55a-1, 55a-
2, 55b-1, 55b-2 receive vertical displacement opposite to that of the substrate 31, and act to suppress each other's displacement, and the vibration driving electrodes 54a-1, 54b-1, 54a
-2, 54b-2 in the direction perpendicular to the substrate 31 is further suppressed. Additional mass parts 55a-1, 55b-1, 55
a-2 and 55b-2 are omitted, and drive parts 53a-1 and 53
a-2 may be directly coupled with the flexible coupling body 56a, and the drive parts 53b-1 and 53b-2 may be directly coupled with the flexible coupling body 56b.

【0035】[0035]

【発明の効果】以上説明したように、この発明は振動型
角速度センサを半導体プロセス技術を使用して作成でき
るものであり、小型化が可能であり、量産性に優れると
いう効果がある。また、高い寸法精度で作成できるため
安定した性能が得られ、使用に当たって個別の調整は不
要であり、角速度の測定の簡易化を図ることができる。
As explained above, according to the present invention, a vibration type angular velocity sensor can be manufactured using semiconductor process technology, and has the advantage of being miniaturized and excellent in mass production. In addition, since it can be manufactured with high dimensional accuracy, stable performance can be obtained, no individual adjustment is required during use, and angular velocity measurement can be simplified.

【0036】さらに、互いに対向する一対の振動駆動用
電極の一方を他方より厚さを小とし可撓性とすること、
あるいは振動体と駆動部との間に可撓性の支持体を介す
ること、あるいは振動体を2つ設けてこれらを可撓性連
結体で相互に結合すること及びこれらを併用することに
より、入力角速度による変位を、駆動部では小さくして
安定な駆動を実現し、振動体では大きくして出力感度を
向上することができる。従って、優れた性能の振動型角
速度センサを得ることができる。
Furthermore, one of the pair of vibration drive electrodes facing each other is made thinner and more flexible than the other;
Alternatively, input can be achieved by interposing a flexible support between the vibrating body and the drive unit, or by providing two vibrating bodies and connecting them with a flexible connecting body, or by using these together. Displacement due to angular velocity can be reduced in the drive section to achieve stable driving, and increased in the vibrator to improve output sensitivity. Therefore, a vibration type angular velocity sensor with excellent performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による振動型角速度センサの第1の実施
例の平面図。
FIG. 1 is a plan view of a first embodiment of a vibrating angular velocity sensor according to the present invention.

【図2】図1のA−A断面からの斜視図。FIG. 2 is a perspective view taken along the line AA in FIG. 1;

【図3】本発明による振動型角速度センサの第1の実施
例における振動体の変位状態を示す図。
FIG. 3 is a diagram showing the displacement state of the vibrating body in the first embodiment of the vibrating angular velocity sensor according to the present invention.

【図4】本発明による振動型角速度センサの第1の実施
例の作成手順の一例を示す図。
FIG. 4 is a diagram showing an example of the procedure for creating the first embodiment of the vibration type angular velocity sensor according to the present invention.

【図5】本発明による振動型角速度センサの第2の実施
例の平面図。
FIG. 5 is a plan view of a second embodiment of the vibration type angular velocity sensor according to the present invention.

【図6】図5のB−B断面図。FIG. 6 is a sectional view taken along line BB in FIG. 5;

【図7】従来の振動型角速度センサの一例の斜視図。FIG. 7 is a perspective view of an example of a conventional vibration type angular velocity sensor.

【図8】従来の振動型角速度センサの他の例の斜視図。FIG. 8 is a perspective view of another example of a conventional vibration type angular velocity sensor.

【符号の説明】[Explanation of symbols]

11  振動ビーム 14  検出用圧電素子 15  駆動用圧電素子 21  音叉 22  駆動用圧電素子 23  ねじれ検出部 31  基板 32  振動体 33a,33b,33c,33d   支持体34a,
34b   振動駆動用電極 35a,35b   振動駆動用電極 36a,36b   検出用電極 51−1,51−2    振動体 52a−1,52a−2,52b−1,52b−2  
  支持体53a−1,53a−2,53b−1,53
b−2    駆動部54a−1,54a−2,54b
−1,54b−2    振動駆動用電極 55a−1,55a−2,55b−1,55b−2  
  付加質量部 56a,56b     連結体 57a−1,57a−2,57b−1,57b−2  
  支持体58−1,58−2    支持体 59a−1,59a−2,59b−1,59b−2  
  振動駆動用電極 60a−1,60a−2,60b−1,60b−2  
  振動駆動用電極 61a−1,61a−2,61b−1,61b−2  
  検出用電極
11 Vibration beam 14 Piezoelectric element for detection 15 Piezoelectric element for drive 21 Tuning fork 22 Piezoelectric element for drive 23 Torsion detection part 31 Substrate 32 Vibrating body 33a, 33b, 33c, 33d Support body 34a,
34b Vibration drive electrodes 35a, 35b Vibration drive electrodes 36a, 36b Detection electrodes 51-1, 51-2 Vibrating bodies 52a-1, 52a-2, 52b-1, 52b-2
Supports 53a-1, 53a-2, 53b-1, 53
b-2 Drive section 54a-1, 54a-2, 54b
-1, 54b-2 Vibration drive electrode 55a-1, 55a-2, 55b-1, 55b-2
Additional mass parts 56a, 56b Connecting bodies 57a-1, 57a-2, 57b-1, 57b-2
Supports 58-1, 58-2 Supports 59a-1, 59a-2, 59b-1, 59b-2
Vibration drive electrodes 60a-1, 60a-2, 60b-1, 60b-2
Vibration drive electrodes 61a-1, 61a-2, 61b-1, 61b-2
Detection electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  基板と、その基板上に配され、その基
板と平行に振動する振動体と、その振動体を上記基板上
に支持し、その振動方向及び上記基板に垂直な方向にた
わむことができる支持体と、上記振動体及び上記基板に
それぞれ取付けられ、上記基板と垂直方向で互いに対向
した一対の振動駆動用電極と、上記基板に垂直な方向へ
の上記振動体の変位を検出するように設けられた検出用
電極とよりなり、上記振動体、上記支持体、上記振動駆
動用電極及び上記検出用電極は同一材の半導体よりなる
ことを特徴とする振動型角速度センサ。
[Claim 1] A substrate, a vibrating body disposed on the substrate and vibrating parallel to the substrate, the vibrating body being supported on the substrate and deflecting in the vibration direction and in a direction perpendicular to the substrate. a pair of vibration drive electrodes each attached to the vibrating body and the substrate and facing each other in a direction perpendicular to the substrate; and detecting displacement of the vibrating body in a direction perpendicular to the substrate. 1. A vibrating angular velocity sensor comprising: a detection electrode provided as shown in FIG.
【請求項2】  上記一対の振動駆動用電極の一方は他
方より厚さが小とされていることを特徴とする請求項1
記載の振動型角速度センサ。
2. Claim 1, wherein one of the pair of vibration drive electrodes is thinner than the other.
The vibration type angular velocity sensor described.
【請求項3】  上記振動駆動用電極と検出用電極との
間に可撓性支持体を介して上記振動体が設けられている
ことを特徴とする請求項1記載の振動型角速度センサ。
3. The vibration type angular velocity sensor according to claim 1, wherein the vibrating body is provided between the vibration drive electrode and the detection electrode with a flexible support interposed therebetween.
【請求項4】  上記振動体が二つ設けられ、これら振
動体が可撓性連結体で相互に結合されていることを特徴
とする請求項1記載の振動型角速度センサ。
4. The vibrating angular velocity sensor according to claim 1, wherein two of the vibrating bodies are provided, and these vibrating bodies are mutually coupled by a flexible connecting body.
JP3003301A 1991-01-16 1991-01-16 Vibration type angular velocity sensor Expired - Fee Related JP2899664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3003301A JP2899664B2 (en) 1991-01-16 1991-01-16 Vibration type angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3003301A JP2899664B2 (en) 1991-01-16 1991-01-16 Vibration type angular velocity sensor

Publications (2)

Publication Number Publication Date
JPH04242114A true JPH04242114A (en) 1992-08-28
JP2899664B2 JP2899664B2 (en) 1999-06-02

Family

ID=11553547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3003301A Expired - Fee Related JP2899664B2 (en) 1991-01-16 1991-01-16 Vibration type angular velocity sensor

Country Status (1)

Country Link
JP (1) JP2899664B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017363A1 (en) * 1993-01-29 1994-08-04 Murata Manufacturing Co., Ltd. Angular velocity sensor
JPH07218268A (en) * 1994-01-28 1995-08-18 Charles Stark Draper Lab Inc:The Inertia-rate sensor
EP0717262A1 (en) * 1994-12-16 1996-06-19 Murata Manufacturing Co., Ltd. Vibrating gyroscope
US5731229A (en) * 1994-06-28 1998-03-24 Nissan Motor Co., Ltd. Method of producing device having minute structure
JP2000329561A (en) * 1999-05-24 2000-11-30 Matsushita Electric Ind Co Ltd Angular speed sensor
US6267008B1 (en) 1998-10-23 2001-07-31 Toyota Jidosha Kabushiki Kaisha Angular rate detecting device
US6422078B2 (en) 1992-08-21 2002-07-23 Denso Corporation Semiconductor mechanical sensor
JP2008281586A (en) * 2008-08-29 2008-11-20 Seiko Epson Corp Support mechanism of oscillator and oscillator unit
JP2009075135A (en) * 2009-01-09 2009-04-09 Wacoh Corp Angular velocity sensor
JP2009294225A (en) * 2009-09-17 2009-12-17 Denso Corp Semiconductor dynamic quantity sensor
USRE42359E1 (en) 1992-10-13 2011-05-17 Denso Corporation Dynamical quantity sensor
JP2011191318A (en) * 2011-05-30 2011-09-29 Wacoh Corp Angular velocity sensor
JP2011203086A (en) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc Laminated structure with movable section

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868727B2 (en) 1992-08-21 2005-03-22 Denso Corporation Semiconductor mechanical sensor
US6550331B2 (en) 1992-08-21 2003-04-22 Denso Corporation Semiconductor mechanical sensor
US7866210B2 (en) 1992-08-21 2011-01-11 Denso Corporation Semiconductor mechanical sensor
US7407827B2 (en) 1992-08-21 2008-08-05 Denso Corporation Semiconductor mechanical sensor
US7040165B2 (en) 1992-08-21 2006-05-09 Denso Corporation Semiconductor mechanical sensor
US6463803B2 (en) 1992-08-21 2002-10-15 Nippon Denso Co., Ltd. Semiconductor mechanical sensor
US7685877B2 (en) 1992-08-21 2010-03-30 Denso Corporation Semiconductor mechanical sensor
US6422078B2 (en) 1992-08-21 2002-07-23 Denso Corporation Semiconductor mechanical sensor
US6938486B2 (en) 1992-08-21 2005-09-06 Denso Corporation Semiconductor mechanical sensor
USRE42359E1 (en) 1992-10-13 2011-05-17 Denso Corporation Dynamical quantity sensor
WO1994017363A1 (en) * 1993-01-29 1994-08-04 Murata Manufacturing Co., Ltd. Angular velocity sensor
JPH07218268A (en) * 1994-01-28 1995-08-18 Charles Stark Draper Lab Inc:The Inertia-rate sensor
US5731229A (en) * 1994-06-28 1998-03-24 Nissan Motor Co., Ltd. Method of producing device having minute structure
EP0717262A1 (en) * 1994-12-16 1996-06-19 Murata Manufacturing Co., Ltd. Vibrating gyroscope
US6267008B1 (en) 1998-10-23 2001-07-31 Toyota Jidosha Kabushiki Kaisha Angular rate detecting device
JP2000329561A (en) * 1999-05-24 2000-11-30 Matsushita Electric Ind Co Ltd Angular speed sensor
JP2008281586A (en) * 2008-08-29 2008-11-20 Seiko Epson Corp Support mechanism of oscillator and oscillator unit
JP4692598B2 (en) * 2008-08-29 2011-06-01 セイコーエプソン株式会社 Vibrator support mechanism and vibrator unit
JP2009075135A (en) * 2009-01-09 2009-04-09 Wacoh Corp Angular velocity sensor
JP2009294225A (en) * 2009-09-17 2009-12-17 Denso Corp Semiconductor dynamic quantity sensor
JP2011203086A (en) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc Laminated structure with movable section
JP2011191318A (en) * 2011-05-30 2011-09-29 Wacoh Corp Angular velocity sensor

Also Published As

Publication number Publication date
JP2899664B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US6128953A (en) Dynamical quantity sensor
JP3659160B2 (en) Angular velocity sensor
US7546768B2 (en) Mounting structure of angular rate sensor
JPH04242114A (en) Vibration type angular velocity sensor
JPH11337345A (en) Vibratory microgyrometer
JP2000002539A (en) Parallel flat board type vibration gyro and parallel flat board type vibration gyro device
WO1994017363A1 (en) Angular velocity sensor
JP3307200B2 (en) Angular velocity sensor
JP2000046560A (en) Angular velocity sensor
JP4362877B2 (en) Angular velocity sensor
JPH06123632A (en) Dynamic quantity sensor
JPH0791958A (en) Angular velocity sensor
JPH08159776A (en) Angular velocity sensor
JP7166371B2 (en) Angular rate sensor and sensor element
JP2000074673A (en) Compound movement sensor
US20210041475A1 (en) Electrostatic actuator and physical quantity sensor
JP4126826B2 (en) Angular velocity sensor
JPH1019577A (en) Angular velocity sensor
JP2012149961A (en) Vibration gyro
JP3262082B2 (en) Vibrating angular velocity detector
JP3265792B2 (en) Angular velocity sensor
JPH10267663A (en) Angular velocity sensor
JPH10267658A (en) Vibration-type angular velocity sensor
JPS62188975A (en) Piezoelectric angular velocity sensor
JPH09325031A (en) Vibration type angular velocity sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990126

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees