JPH04241475A - Epitaxial wafer - Google Patents

Epitaxial wafer

Info

Publication number
JPH04241475A
JPH04241475A JP3002582A JP258291A JPH04241475A JP H04241475 A JPH04241475 A JP H04241475A JP 3002582 A JP3002582 A JP 3002582A JP 258291 A JP258291 A JP 258291A JP H04241475 A JPH04241475 A JP H04241475A
Authority
JP
Japan
Prior art keywords
type
layer
epitaxial wafer
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3002582A
Other languages
Japanese (ja)
Other versions
JP2642782B2 (en
Inventor
Akio Kawabata
川端 章生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP258291A priority Critical patent/JP2642782B2/en
Publication of JPH04241475A publication Critical patent/JPH04241475A/en
Application granted granted Critical
Publication of JP2642782B2 publication Critical patent/JP2642782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a novel AlGaAs epitaxial wafer used for manufacturing a high output infrared ray emitting diode to be used as a light emitting source of a photo coupler, an infrared ray remote controller, etc. CONSTITUTION:An epitaxial wafer comprises n-type AlxGa1-xAs (0.01<=x<=0.4) with Si added, p-type AlyGa1-yAs (0<y<=0.05) with Si added and p-type AlzGa1-zAS (0.1<=z<=0.3) as thick as 5mum to 30mum, which are laminated in this sequence. Use of the invented epitaxial wafer allows a light emission diode which emits light of short wavelength of 940nm or less with high efficiency to be obtained easily.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、フォトカプラや赤外
線リモートコントローラなどの発光源として用いられる
高出力の赤外線発光ダイオードの製造に使用する、Al
GaAsエピタキシャルウエーハに関する。
[Industrial Application Field] This invention is an Aluminum light emitting diode used in the manufacture of high output infrared light emitting diodes used as light sources for photocouplers, infrared remote controllers, etc.
This invention relates to GaAs epitaxial wafers.

【0002】0002

【従来の技術】高出力の赤外線発光ダイオード用エピタ
キシャルウエーハは、従来図2のような断面構造を有す
るものが使用されていた。図2において、n型のGaA
s基板7の上に、Siを添加したn型GaAsエピタキ
シャル層6およびSiを添加したp型GaAsエピタキ
シャル層5が積層され、さらにその上にSiを添加した
p型AlGaAsエピタキシャル層4が設けられている
。(例えば特開昭59−171116号公報)
2. Description of the Related Art Epitaxial wafers for high-output infrared light emitting diodes have conventionally had a cross-sectional structure as shown in FIG. In FIG. 2, n-type GaA
An n-type GaAs epitaxial layer 6 doped with Si and a p-type GaAs epitaxial layer 5 doped with Si are laminated on the s-substrate 7, and a p-type AlGaAs epitaxial layer 4 doped with Si is further provided thereon. There is. (For example, Japanese Patent Application Laid-open No. 171116/1983)

【000
3】この従来のエピタキシャルウエーハにおいては、p
型AlGaAsエピタキシャル層4は次のような機能を
持つとされている。すなわち、p型AlGaAsエピタ
キシャル層4とp型GaAsエピタキシャル層5の境界
面にヘテロ接合のポテンシャル障壁が存在するために、
p型GaAsエピタキシャル層5に注入された電子が有
効に発光に寄与する。また、発生した光に対してp型A
lGaAsエピタキシャル層4が透明であるので、光が
有効に外部に取り出される。この結果全体として発光効
率が高くなり、高出力の赤外線発光ダイオードが得られ
る。
000
3] In this conventional epitaxial wafer, p
The type AlGaAs epitaxial layer 4 is said to have the following functions. That is, since a heterojunction potential barrier exists at the interface between the p-type AlGaAs epitaxial layer 4 and the p-type GaAs epitaxial layer 5,
Electrons injected into the p-type GaAs epitaxial layer 5 effectively contribute to light emission. Also, for the generated light, p-type A
Since the lGaAs epitaxial layer 4 is transparent, light can be effectively extracted to the outside. As a result, the luminous efficiency is increased as a whole, and a high-output infrared light emitting diode can be obtained.

【0004】0004

【発明が解決しようとする課題】しかし、上記の従来の
赤外線発光ダイオード用エピタキシャルウエーハは、発
光領域の材料がn型GaAsエピタキシャル層6および
p型GaAsエピタキシャル層5であったために、光の
波長が950〜960nm程度の範囲に限られていた。 より短い波長を必要とする場合、発光領域をAlGaA
sに変更すれば、940nm以下の波長の光を出すこと
が出来ることは周知である。しかしこのように波長を短
くすると、AlGaAsからなる発光領域から発した光
のうちn型GaAs基板7の側へ向かうものはn型Ga
As基板7の中で吸収されてしまう。したがって、全体
として発光効率はGaAs発光領域を有するものに比べ
て低くなり、結局短い波長で高い出力を有する赤外線発
光ダイオードを得ることは難しかった。
However, in the conventional epitaxial wafer for infrared light emitting diodes described above, since the materials of the light emitting region are the n-type GaAs epitaxial layer 6 and the p-type GaAs epitaxial layer 5, the wavelength of the light is It was limited to a range of about 950 to 960 nm. If shorter wavelengths are required, the light emitting region can be replaced with AlGaA
It is well known that if the wavelength is changed to s, it is possible to emit light with a wavelength of 940 nm or less. However, when the wavelength is shortened in this way, the light emitted from the light emitting region made of AlGaAs and directed toward the n-type GaAs substrate 7 is
It is absorbed in the As substrate 7. Therefore, the overall luminous efficiency is lower than that of a diode having a GaAs light emitting region, and it has been difficult to obtain an infrared light emitting diode that has a high output at a short wavelength.

【0005】この発明は上記のような従来の技術の問題
点を解消し、AlGaAsからなる発光領域を有する高
出力の赤外線発光ダイオード用エピタキシャルウエーハ
を提供することを目的とする。
An object of the present invention is to solve the problems of the prior art as described above and to provide an epitaxial wafer for a high-output infrared light emitting diode having a light emitting region made of AlGaAs.

【0006】[0006]

【課題を解決するための手段】この発明のエピタキシャ
ルウエーハは、Siを添加したn型AlxGa1−xA
sと、Siを添加したp型AlyGa1−yAsと、S
iを添加した、厚みが5μmないし30μmのp型Al
zGa1−zAsとがこの順に積層されてなることを特
徴としている。
[Means for Solving the Problems] The epitaxial wafer of the present invention has Si-doped n-type AlxGa1-xA
s, p-type AlyGa1-yAs added with Si, and S
p-type Al with a thickness of 5 μm to 30 μm doped with i
It is characterized in that zGa1-zAs are stacked in this order.

【0007】[0007]

【作用】この発明のエピタキシャルウエーハは、発光領
域がn型AlxGa1−xAsおよびp型AlyGa1
−yAsからなるため、Alの組成比xおよびyを適切
に選ぶことにより、860nm〜940nmの範囲の発
光波長を得ることができる。また、この発光領域の上に
p型AlzGa1−zAsが積層されているので、p型
AlzGa1−zAs層とp型AlyGa1−yAs層
のAl組成の違いに起因するポテンシャル障壁により、
発光領域中に注入された電子が発光領域外に拡散するこ
とがなく、有効に発光に寄与する。すなわちこの発明の
エピタキシャルウエーハは全体として、940nm以下
の短い波長の光を高い効率で発生する機能を有する。
[Function] The epitaxial wafer of the present invention has a light emitting region of n-type AlxGa1-xAs and p-type AlyGa1.
-yAs, by appropriately selecting the Al composition ratios x and y, it is possible to obtain an emission wavelength in the range of 860 nm to 940 nm. In addition, since p-type AlzGa1-zAs is stacked on top of this light emitting region, a potential barrier due to the difference in Al composition between the p-type AlzGa1-zAs layer and the p-type AlyGa1-yAs layer
Electrons injected into the light emitting region do not diffuse outside the light emitting region and effectively contribute to light emission. That is, the epitaxial wafer of the present invention as a whole has a function of generating light with a short wavelength of 940 nm or less with high efficiency.

【0008】[0008]

【実施例】図1は、この発明の第1の実施例であるAl
GaAsエピタキシャルウエーハの断面構造を模式的に
示したものである。Siを1×1017cm−3以上添
加した、厚みが150μmのn型AlxGa1−xAs
層1(表面において、x=0.1)と、Siを1×10
18cm−3以上添加した、厚みが150μmのp型A
lyGa1−yAs層2(pn界面において、y=0.
01)と、Siを1×1018cm−3以上添加した、
厚みが10μmのp型AlzGa1−zAs層3(p型
AlyGa1−yAsとの界面において、z=0.3)
とを図1のとおり積層した。
[Embodiment] Figure 1 shows the first embodiment of the present invention.
1 schematically shows a cross-sectional structure of a GaAs epitaxial wafer. N-type AlxGa1-xAs with a thickness of 150 μm and added with Si of 1x1017 cm-3 or more
Layer 1 (at the surface, x=0.1) and 1×10 Si
P-type A with a thickness of 150 μm with addition of 18 cm −3 or more
lyGa1-yAs layer 2 (at the pn interface, y=0.
01) and Si added at 1×1018 cm−3 or more,
p-type AlzGa1-zAs layer 3 with a thickness of 10 μm (z=0.3 at the interface with p-type AlyGa1-yAs)
and were laminated as shown in Figure 1.

【0009】各エピタキシャル層は、通常の液相エピタ
キシャル成長法を用いて、Siを添加したn型GaAs
基板(図示していない)の上にn型AlxGa1−xA
s層1、p型AlyGa1−yAs層2、およびp型A
lzGa1−zAs層3を成長し、その後基板のみを公
知の選択エッチング技術により除去した。
Each epitaxial layer is made of Si-doped n-type GaAs using a normal liquid phase epitaxial growth method.
n-type AlxGa1-xA on a substrate (not shown)
s layer 1, p-type AlyGa1-yAs layer 2, and p-type A
The lzGa1-zAs layer 3 was grown, and then only the substrate was removed by a known selective etching technique.

【0010】このAlGaAsエピタキシャルウエーハ
を用いて、発光ダイオードを作製した。ウエーハの両面
にドット状の電極を形成し、光出力をn型AlxGa1
−xAs層1の表面側から取り出す構造とした。得られ
た発光ダイオードの特性は、発光波長940nmで、光
出力については図2に示す従来の構造のエピタキシャル
ウエーハから作製した発光ダイオードに比べて平均1.
4倍であった。
A light emitting diode was fabricated using this AlGaAs epitaxial wafer. Dot-shaped electrodes are formed on both sides of the wafer, and the light output is changed to n-type AlxGa1.
-xThe structure was such that the As layer 1 was taken out from the surface side. The characteristics of the obtained light-emitting diode are that the light emission wavelength is 940 nm, and the light output is 1.5 nm on average compared to the light-emitting diode manufactured from the epitaxial wafer with the conventional structure shown in FIG.
It was four times as large.

【0011】次に、この発明の第2の実施例について説
明する。第2の実施例のAlGaAsエピタキシャルウ
エーハは、断面構造は第1の実施例と同じく図1に示す
とおりのものである。Siを1×1017cm−3以上
添加した、厚みが80μmのn型AlxGa1−xAs
層1(表面において、x=0.35)と、Siを1×1
018cm−3以上添加した、厚みが180μmのp型
AlyGa1−yAs層2(p型AlzGa1−zAs
層3との界面において、y=0.01)と、Siを1×
1018cm−3以上添加した、厚みが10μmのp型
AlzGa1−zAs層3(p型AlyGa1−yAs
との界面において、z=0.3)とを図1のとおり積層
した。ウエーハの作製方法は第1の実施例の場合と同様
である。
Next, a second embodiment of the invention will be described. The AlGaAs epitaxial wafer of the second embodiment has a cross-sectional structure as shown in FIG. 1, the same as that of the first embodiment. N-type AlxGa1-xAs with a thickness of 80 μm and added with Si of 1x1017 cm-3 or more
Layer 1 (at the surface, x=0.35) and Si 1×1
p-type AlyGa1-yAs layer 2 with a thickness of 180 μm (p-type AlzGa1-zAs
At the interface with layer 3, y=0.01) and Si 1×
A p-type AlzGa1-zAs layer 3 with a thickness of 10 μm (p-type AlyGa1-yAs
z=0.3) were laminated as shown in FIG. The wafer manufacturing method is the same as in the first embodiment.

【0012】このAlGaAsエピタキシャルウエーハ
を用いて、発光ダイオードを作製した。ウエーハの両面
にドット状の電極を形成し、光出力をn型AlxGa1
−xAs層1の表面側から取り出す構造とした。得られ
た発光ダイオードの特性は、発光波長880nmで、光
出力については図2に示す従来の構造のエピタキシャル
ウエーハから作製した発光ダイオードに比べて平均1.
3倍であった。
A light emitting diode was fabricated using this AlGaAs epitaxial wafer. Dot-shaped electrodes are formed on both sides of the wafer, and the light output is changed to n-type AlxGa1.
-xThe structure was such that the As layer 1 was taken out from the surface side. The characteristics of the obtained light-emitting diode were that the light emission wavelength was 880 nm, and the light output was 1.5 nm on average compared to the light-emitting diode manufactured from the epitaxial wafer with the conventional structure shown in FIG.
It was three times as much.

【0013】各エピタキシャル層の厚み、Al組成xお
よびSiの添加量は、上記第1および第2の実施例の値
に限られない。n型AlxGa1−xAs層1の厚みは
80〜220μmとすることが適当である。80μmよ
りも薄いと、pn接合から注入されたホールがn型Al
xGa1−xAs層1の表面まで拡散して表面再結合を
生じるため、発光出力が低下する。220μmよりも厚
いと、光の吸収が大きくなり発光出力が低下し、またエ
ピタキシャル成長に長い時間がかかり実用的でない。A
l組成xは表面から5μmまでの深さの範囲において0
.01以上0.4以下が適当である。0.01未満では
光の吸収が大きくなり、高出力が得られない。0.4を
超えると電極の接触抵抗が大きくなり、発光ダイオード
の順方向電圧降下が大きくなる。Siの添加量は1×1
017cm−3以上が適当である。1×1017cm−
3未満では発光効率が低く、また発光ダイオードの直列
抵抗が大きくなる。
The thickness of each epitaxial layer, the Al composition x and the amount of Si added are not limited to the values of the first and second embodiments. It is appropriate that the thickness of the n-type AlxGa1-xAs layer 1 is 80 to 220 μm. If it is thinner than 80 μm, holes injected from the pn junction will
Since it diffuses to the surface of the xGa1-xAs layer 1 and causes surface recombination, the light emission output decreases. If it is thicker than 220 .mu.m, light absorption increases and light emission output decreases, and epitaxial growth takes a long time, making it impractical. A
The l composition x is 0 in the depth range of 5 μm from the surface.
.. A value of 01 or more and 0.4 or less is appropriate. If it is less than 0.01, light absorption becomes large and high output cannot be obtained. If it exceeds 0.4, the contact resistance of the electrode will increase, and the forward voltage drop of the light emitting diode will increase. The amount of Si added is 1×1
017 cm-3 or more is suitable. 1×1017cm-
If it is less than 3, the luminous efficiency will be low and the series resistance of the light emitting diode will be large.

【0014】p型AlyGa1−yAs層2の厚みは2
0〜220μmとすることが適当である。20μmより
も薄いと、pn接合から注入された電子が有効に発光再
結合に寄与しないため、発光出力が低下する。220μ
mよりも厚いと、光の吸収が大きくなり発光出力が低下
し、またエピタキシャル成長に長い時間がかかるので実
用的でない。Al組成yはp型AlzGa1−zAs層
3との界面付近において0.4以下が適当である。y=
0では光の吸収が大きくなり、高出力が得られない。 0.4を超えると発光ダイオードの直列抵抗が大きくな
る。ここで界面付近とは幾何学的界面から5μmまでの
範囲をいう。Siの添加量は1×1018cm−3以上
が適当である。1×1018cm−3未満では発光効率
が低く、また発光ダイオードの直列抵抗が大きくなる。
The thickness of the p-type AlyGa1-yAs layer 2 is 2
A suitable range is 0 to 220 μm. If it is thinner than 20 μm, electrons injected from the pn junction do not effectively contribute to radiative recombination, resulting in a decrease in light emission output. 220μ
If it is thicker than m, the absorption of light increases, the light emission output decreases, and epitaxial growth takes a long time, which is not practical. The Al composition y in the vicinity of the interface with the p-type AlzGa1-zAs layer 3 is suitably 0.4 or less. y=
When the value is 0, light absorption increases and high output cannot be obtained. If it exceeds 0.4, the series resistance of the light emitting diode will increase. Here, the term "near the interface" refers to the range up to 5 μm from the geometric interface. The amount of Si added is suitably 1×10 18 cm −3 or more. If it is less than 1×10 18 cm −3 , the luminous efficiency will be low and the series resistance of the light emitting diode will be large.

【0015】p型AlzGa1−zAs層3の厚みは5
0〜30μmとすることが適当である。5μmよりも薄
いと、エピタキシャル成長の際、厚みの均一性を確保す
ることが難しくなる。30μmよりも厚いと、光の吸収
が大きくなり発光出力が低下する。また、成長に長い時
間を要する。Al組成zはp型AlyGa1−yAs層
2との界面付近において0.1以上0.3以下が適当で
ある。0.1未満では光の吸収が大きくなり、高出力が
得られない。界面付近の意味は前記と同様である。0.
3を超えると発光ダイオードの直列抵抗が大きくなる。 Siの添加量は1×1018cm−3以上が適当である
。1×1018cm−3未満では発光ダイオードの直列
抵抗が大きくなる。
The thickness of the p-type AlzGa1-zAs layer 3 is 5
It is appropriate to set it to 0-30 micrometers. If it is thinner than 5 μm, it will be difficult to ensure thickness uniformity during epitaxial growth. If it is thicker than 30 μm, light absorption increases and light emission output decreases. It also takes a long time to grow. The Al composition z in the vicinity of the interface with the p-type AlyGa1-yAs layer 2 is suitably 0.1 or more and 0.3 or less. If it is less than 0.1, light absorption becomes large and high output cannot be obtained. The meaning of ``near the interface'' is the same as above. 0.
If it exceeds 3, the series resistance of the light emitting diode becomes large. The amount of Si added is suitably 1×10 18 cm −3 or more. If it is less than 1×10 18 cm −3 , the series resistance of the light emitting diode becomes large.

【0016】上記の実施例においては、n型AlxGa
1−xAs層1とp型AlyGa1−yAs層2とは、
同じ原料溶液から縦型ディッピング法により連続的に成
長した。しかし、この方法に限られるものではなく、ス
ライドボートにより各エピタキシャル層を順次成長する
ことも出来る。ただし、スライドボートによる方法では
同時に成長できるウエーハの枚数が、縦型ディッピング
法に比べて少ないため、経済性に難点がある。
In the above embodiment, n-type AlxGa
The 1-xAs layer 1 and the p-type AlyGa1-yAs layer 2 are:
Continuous growth was performed using the vertical dipping method from the same raw material solution. However, the method is not limited to this, and each epitaxial layer can also be grown sequentially using a slide boat. However, the number of wafers that can be grown simultaneously in the slide boat method is smaller than that in the vertical dipping method, so there is a drawback in terms of economy.

【0017】[0017]

【発明の効果】本発明のエピタキシャルウエーハを使用
すれば、940nm以下の短い波長の光を高い効率で発
生する発光ダイオードを容易に得ることが出来る。
[Effects of the Invention] By using the epitaxial wafer of the present invention, it is possible to easily obtain a light emitting diode that generates light with a short wavelength of 940 nm or less with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のエピタキシャルウエーハの断面模式図
である。
FIG. 1 is a schematic cross-sectional view of an epitaxial wafer of the present invention.

【図2】従来のエピタキシャルウエーハの断面模式図で
ある。
FIG. 2 is a schematic cross-sectional view of a conventional epitaxial wafer.

【符号の説明】[Explanation of symbols]

1:n型AlxGa1−xAs層 2:p型AlyGa1−yAs層 3:p型AlzGa1−zAs層 4:p型AlGaAsエピタキシャル層5:p型GaA
sエピタキシャル層 6:n型GaAsエピタキシャル層 7:n型GaAs基板
1: n-type AlxGa1-xAs layer 2: p-type AlyGa1-yAs layer 3: p-type AlzGa1-zAs layer 4: p-type AlGaAs epitaxial layer 5: p-type GaA
s epitaxial layer 6: n-type GaAs epitaxial layer 7: n-type GaAs substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Siを添加したn型AlxGa1−xAs
と、Siを添加したp型AlyGa1−yAsとSiを
添加した、厚みが5μmないし30μmのp型AlzG
a1−zAsとがこの順に積層されてなることを特徴と
するエピタキシャルウエーハ。
Claim 1: Si-doped n-type AlxGa1-xAs
and p-type AlyGa1-yAs added with Si and p-type AlzG with a thickness of 5 μm to 30 μm added with Si.
An epitaxial wafer characterized in that a1-zAs are stacked in this order.
JP258291A 1991-01-14 1991-01-14 Epitaxial wafer Expired - Lifetime JP2642782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP258291A JP2642782B2 (en) 1991-01-14 1991-01-14 Epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP258291A JP2642782B2 (en) 1991-01-14 1991-01-14 Epitaxial wafer

Publications (2)

Publication Number Publication Date
JPH04241475A true JPH04241475A (en) 1992-08-28
JP2642782B2 JP2642782B2 (en) 1997-08-20

Family

ID=11533371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP258291A Expired - Lifetime JP2642782B2 (en) 1991-01-14 1991-01-14 Epitaxial wafer

Country Status (1)

Country Link
JP (1) JP2642782B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175776A (en) * 1983-03-26 1984-10-04 Toshiba Corp Power boosting processing for semiconductor light emitting element
JPH0220076A (en) * 1988-07-08 1990-01-23 Mitsubishi Kasei Corp Compound-semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175776A (en) * 1983-03-26 1984-10-04 Toshiba Corp Power boosting processing for semiconductor light emitting element
JPH0220076A (en) * 1988-07-08 1990-01-23 Mitsubishi Kasei Corp Compound-semiconductor light emitting device

Also Published As

Publication number Publication date
JP2642782B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JP3643665B2 (en) Semiconductor light emitting device
KR20070068303A (en) Method and structure for improved led light output
JP2004153241A (en) Semiconductor light emitting device and method of manufacturing same
JPH0897468A (en) Semiconductor light emitting device
JPH07147428A (en) Light emitting diode and light emitting diode array
US6222208B1 (en) Light-emitting diode and light-emitting diode array
JP2765256B2 (en) Light emitting diode
JPH04225577A (en) Light emitting diode
US5272362A (en) Semiconductor light emitting device
JP4024463B2 (en) Manufacturing method of semiconductor light emitting device
US7103080B2 (en) Laser diode with a low absorption diode junction
JP2642782B2 (en) Epitaxial wafer
JPH08264825A (en) Optical semiconductor device
JPH05218498A (en) Light emitting diode provided with transverse junction
JPH06314821A (en) Formation of p-type gallium nitride compound semiconductor
KR19980071848A (en) Semiconductor light emitting device and method of manufacturing the same
JP3966962B2 (en) Light emitting diode and manufacturing method thereof
JP2795885B2 (en) Semiconductor light emitting diode
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
Lee et al. AlGaAs‐GaAs double‐heterostructure small‐area light‐emitting diodes by molecular‐beam epitaxy
JP3488783B2 (en) Light emitting diode array
JPH1197741A (en) Light emitting element, its array and manufacture thereof
JPH0467689A (en) Tunnel junction light-emitting element
KR940003437B1 (en) Surface emitting led
JPH10181077A (en) Light emitting diode array