JPH04240534A - Measuring method and measuring apparatus of aspheric surface - Google Patents

Measuring method and measuring apparatus of aspheric surface

Info

Publication number
JPH04240534A
JPH04240534A JP8543991A JP8543991A JPH04240534A JP H04240534 A JPH04240534 A JP H04240534A JP 8543991 A JP8543991 A JP 8543991A JP 8543991 A JP8543991 A JP 8543991A JP H04240534 A JPH04240534 A JP H04240534A
Authority
JP
Japan
Prior art keywords
light
hologram
interference fringes
lens
aspherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8543991A
Other languages
Japanese (ja)
Other versions
JP3061653B2 (en
Inventor
Masahiro Ono
大野 政博
Makoto Iki
壹岐 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP3085439A priority Critical patent/JP3061653B2/en
Publication of JPH04240534A publication Critical patent/JPH04240534A/en
Application granted granted Critical
Publication of JP3061653B2 publication Critical patent/JP3061653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure a deep aspheric surface without contacting the same in a short time by arranging a recorded hologram at a specific position, passing the light from a member to be inspected and a reference light able to interfere with the light through the hologram, and forming interference fringes at an observation surface. CONSTITUTION:Parallel luminous fluxes are allowed to pass through a half mirror 51 and a condensing lens 53 to be reflected on an aspheric surface 57 of an aspheric lens prototype 55 manufactured as designed. The reflecting light is moved backward to the mirror 51 and reflected towards a photosensitive material 59. On the other hand, as a reference light enters from above, the luminous flux reflected by the aspheric surface interferes with the reference light and the interference fringes are recorded to the photosensitive material 59 as a hologram 23. The interference fringes are formed on the observation surface by the reflecting light passing through the hologram 23 from the lens to be inspected and the reference light if the hologram 23 is placed at the recording surface and the aspheric lens to be inspected is placed at the position of the prototype 55. It is made clear how much the aspheric surface of the lens shifts from the design by observing the interference fringes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非球面の形状をホログ
ラフィー技術を利用して測定する非球面の測定方法およ
び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical surface measuring method and a measuring device for measuring the shape of an aspherical surface using holographic technology.

【0002】0002

【従来技術およびその問題点】近年、光学装置、例えば
カメラの撮影レンズなどに、非球面レンズを使用したも
のが増加している。特に、光学的なプラスチック材料に
関する技術の進歩により、非球面レンズが比較的容易に
安価に作成できるようになったので、プラスチック製非
球面レンズが多用されるようになってきた。また、非球
面レンズは、製作工程の最終段階で、非球面が設計値通
り形成されているかどうかなどの検査、測定が行なわれ
る。ここで、非球面レンズの非球面形状を測定する測定
方法においては、■非接触であること、■短時間に面(
二次元)情報の測定が可能であること、■深い非球面(
非球面量が大きい非球面)の測定が可能であること、■
測定光学系の収差の影響を受けないこと、などの条件が
特に重要である。しかし、非球面レンズの光学的特性を
測定するのは、球面レンズの場合と比較して困難であり
、以上の条件をすべて満足できる適切な測定方法が無か
った。
BACKGROUND OF THE INVENTION In recent years, aspheric lenses have been increasingly used in optical devices, such as camera lenses. In particular, advances in technology regarding optical plastic materials have made it possible to produce aspherical lenses relatively easily and at low cost, so plastic aspherical lenses have come into widespread use. Furthermore, at the final stage of the manufacturing process, aspherical lenses are inspected and measured to see if the aspherical surface is formed as designed. Here, in the measurement method for measuring the aspherical shape of an aspherical lens, ■ it is non-contact, and ■ the surface (
It is possible to measure two-dimensional (two-dimensional) information, ■ deep aspherical (
It is possible to measure aspherical surfaces with a large amount of aspherical surface, ■
Conditions such as not being affected by aberrations of the measurement optical system are particularly important. However, it is more difficult to measure the optical characteristics of an aspherical lens than that of a spherical lens, and there has been no suitable measuring method that satisfies all of the above conditions.

【0003】0003

【発明の目的】本発明は、非接触で短時間に行なえ、深
い非球面の測定が可能であり、しかも測定光学系の収差
の影響を受けない、非球面の測定方法および測定装置を
提供することを目的とする。
OBJECTS OF THE INVENTION The present invention provides a method and apparatus for measuring an aspheric surface, which can be carried out in a short time without contact, can measure a deep aspheric surface, and is not affected by aberrations of the measurement optical system. The purpose is to

【0004】0004

【発明の概要】この目的を達成するために本発明は、被
検位置に置いた、設計形状の非球面を有する原器の該非
球面からの光と参照光とを重ねて、特定位置に置いた感
光材料に記録してホログラムを形成し、この記録された
ホログラムを上記特定位置に配設するとともに、上記被
検位置に被検部材を配設し、該被検部材からの光および
該光と可干渉な上記参照光を上記ホログラムを透過させ
て干渉縞を観測面に形成させること、に特徴を有する。 さらに本発明は、上記被検位置と上記記録面とを共役に
し、かつ上記被検位置と上記観測面とを共役にすること
が好ましい。
SUMMARY OF THE INVENTION In order to achieve this object, the present invention superimposes the light from the aspheric surface of a prototype having an aspheric surface of a designed shape, which is placed at a test position, on a reference light, and places it at a specific position. A hologram is formed by recording on a photosensitive material, and the recorded hologram is placed at the specific position, and a member to be tested is placed at the test position, and the light from the member to be tested and the light are The present invention is characterized in that the reference light coherent with the hologram is transmitted through the hologram to form interference fringes on the observation surface. Further, in the present invention, it is preferable that the test position and the recording surface are conjugate, and the test position and the observation surface are conjugate.

【0005】[0005]

【実施例】以下本発明について、添付図面に示した実施
例に基づいて説明する。図1は、本発明の測定方法に使
用する非球面レンズ測定装置の一実施例の光学系の要部
を示す構成図、図2は、本測定方法に使用するホログラ
ムを記録するための光学系の概要を示す構成図である。 先ず、本測定方法に使用するホログラムの記録について
、図2を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on embodiments shown in the accompanying drawings. FIG. 1 is a configuration diagram showing the main parts of an optical system of an embodiment of an aspheric lens measuring device used in the measurement method of the present invention, and FIG. 2 is an optical system for recording a hologram used in the measurement method of the present invention. FIG. First, recording of a hologram used in this measurement method will be explained with reference to FIG.

【0006】平行光束を、ハーフミラー51および集光
レンズ53を透過させて、集光レンズ53の焦点よりも
後方の被検位置に配設された、設計値通りに製作された
非球面原器55の非球面57で反射させる。そして、こ
の非球面57から反射してきた光をハーフミラー51ま
で逆行させ、ハーフミラー51で、特定位置(記録面)
に置いた高解像力感光材料59に向かって反射させる。 なお、上記被検位置と上記記録面とは集光レンズ53に
より共役である。
[0006] A parallel light beam is transmitted through a half mirror 51 and a condensing lens 53, and an aspherical prototype manufactured according to the design value is placed at a test position behind the focal point of the condensing lens 53. It is reflected by the aspherical surface 57 of 55. Then, the light reflected from this aspherical surface 57 is made to travel backwards to the half mirror 51, and the half mirror 51 moves the light to a specific position (recording surface).
The light is reflected toward a high-resolution photosensitive material 59 placed on the surface. Note that the above-mentioned test position and the above-mentioned recording surface are conjugate due to the condensing lens 53.

【0007】一方、上記平行光束と同一光源から発せれ
た、上記平行光束と可干渉の参照光を、斜め方向から上
記高解像力感光材料59に入射させる。従って、上記非
球面57で反射した平行光束と参照光とが干渉し、この
干渉縞が高解像力感光材料59に記録される。この高解
像力感光材料59を現像処理すれば、ホログラム23と
なる。
On the other hand, a reference beam that is coherent with the parallel light beam and is emitted from the same light source as the parallel light beam is made to enter the high-resolution photosensitive material 59 from an oblique direction. Therefore, the parallel light beam reflected by the aspherical surface 57 interferes with the reference light, and this interference pattern is recorded on the high-resolution photosensitive material 59. When this high-resolution photosensitive material 59 is developed, it becomes a hologram 23.

【0008】非球面原器55としては、プラスチックを
死闘する必要はなく、例えば金属部材を使用してもよい
。またこの非球面原器55の上記非球面57は、測定す
る非球面レンズの非球面と同一の曲面形状に、超精密加
工機により精密に形成したものを使用する。そして加工
された非球面57は、別途精密に測定して設計値通りに
製作されていることを確認すればよい。
[0008] As the aspherical prototype 55, it is not necessary to use plastic, for example, a metal member may be used. The aspheric surface 57 of the aspheric prototype 55 is precisely formed using an ultra-precision processing machine to have the same curved shape as the aspheric surface of the aspheric lens to be measured. Then, the processed aspherical surface 57 may be precisely measured separately to confirm that it is manufactured according to the designed value.

【0009】また、このホログラム23を記録面に置き
(感光材料59と入れ替え)、非球面原器55の位置に
非球面原器55の代わりに被検非球面レンズを置けば、
ホログラム23を透過した、非球面レンズからの反射光
および参照光により干渉縞が観察面に形成される。この
干渉縞を観察することにより、非球面レンズの非球面が
設計値からどの程度ずれているかなどが分かる。
Furthermore, if this hologram 23 is placed on the recording surface (replacing the photosensitive material 59) and a test aspheric lens is placed in place of the aspheric prototype 55 at the position of the aspheric prototype 55,
Interference fringes are formed on the observation surface by the reflected light from the aspherical lens and the reference light that have passed through the hologram 23. By observing these interference fringes, it can be determined how much the aspheric surface of the aspheric lens deviates from the designed value.

【0010】次に、設計値が非球面57と同一の非球面
レンズ21を測定する方法について、図1を参照して説
明する。
Next, a method of measuring the aspherical lens 21 having the same design value as the aspherical surface 57 will be explained with reference to FIG.

【0011】レーザ発振器11から射出されたレーザは
、対物レンズ13およびコリメートレンズ15により太
径の平行光束になる。この平行光束は、第2ハーフミラ
ー33および第1ハーフミラー17を透過し、集光レン
ズ19により集束され、被検位置に配置された被検非球
面レンズ21の非球面22で反射して光路を逆行し、集
光レンズ19を透過して第1ハーフミラー17でほぼ直
角方向に反射される。そして、記録面に配置されたホロ
グラム23を透過し、結像レンズ25によりCCDカメ
ラ27の感光面(観察面)上に結像される。なお、この
ホログラム23は、上記被検位置に非球面レンズ21を
置く前に、上記被検位置に非球面原器55を置き、上記
記録面に置かれた高解像力感光材料に記録されたもので
ある。
A laser beam emitted from the laser oscillator 11 is converted into a large diameter parallel beam by an objective lens 13 and a collimating lens 15. This parallel light beam passes through the second half mirror 33 and the first half mirror 17, is focused by the condenser lens 19, is reflected by the aspheric surface 22 of the test aspheric lens 21 placed at the test position, and passes through the optical path. The light travels backwards, passes through the condensing lens 19, and is reflected by the first half mirror 17 in a substantially perpendicular direction. The light then passes through the hologram 23 placed on the recording surface, and is imaged by the imaging lens 25 onto the photosensitive surface (observation surface) of the CCD camera 27 . Note that this hologram 23 is recorded on a high-resolution photosensitive material placed on the recording surface by placing an aspheric prototype 55 at the test position before placing the aspheric lens 21 at the test position. It is.

【0012】一方、第2ハーフミラー33を透過した平
行光束は、第1ハーフミラー17においてCCDカメラ
27とは反対方向に反射され、さらに第1ミラー29お
よび第2ミラー31によりホログラム23に向かって照
射される。そして、照射された光は、ホログラム23に
より回折され、非球面レンズ21の反射光と同一方向に
向かい、結像レンズ25によりCCDカメラ27に結像
される。第1、第2ミラー29、31で反射された平行
光束が参照光となる。上記非球面レンズ21で反射され
た被検光と、第1、第2ミラー29、31で反射された
反射光とによる干渉縞がCCDカメラ27により撮像さ
れる。この干渉縞は、非球面原器55の非球面形状から
の差、すなわち設計形状からの差として得られる。した
がって、CCDカメラ27により撮像されたこの干渉縞
をTVモニタ41で再生して観察、測定することにより
、非球面レンズ21の加工精度、状態を知ることができ
る。また、ここで観測される干渉縞は、集光レンズ19
、第1ハーフミラー17による収差は、平面原器記録時
と被検レンズ検査時とで同じため打ち消し合い、測定誤
差を生じない。
On the other hand, the parallel light beam transmitted through the second half mirror 33 is reflected by the first half mirror 17 in the opposite direction to the CCD camera 27, and is further reflected toward the hologram 23 by the first mirror 29 and the second mirror 31. irradiated. The irradiated light is then diffracted by the hologram 23, goes in the same direction as the reflected light from the aspherical lens 21, and is imaged by the imaging lens 25 on the CCD camera 27. The parallel light beam reflected by the first and second mirrors 29 and 31 becomes the reference light. Interference fringes caused by the test light reflected by the aspherical lens 21 and the reflected light reflected by the first and second mirrors 29 and 31 are imaged by the CCD camera 27. These interference fringes are obtained as a difference from the aspherical shape of the aspherical prototype 55, that is, a difference from the designed shape. Therefore, by reproducing, observing and measuring the interference fringes captured by the CCD camera 27 on the TV monitor 41, the processing accuracy and condition of the aspherical lens 21 can be known. In addition, the interference fringes observed here are
Since the aberrations caused by the first half mirror 17 are the same during recording of the flat prototype and during inspection of the lens to be tested, they cancel each other out, and no measurement error occurs.

【0013】上記非球面22(被検面)とホログラム2
3(記録面)とが共役に配設され、かつホログラム23
(記録面)とCCDカメラ27(観測面)とが共役関係
に配設されている。このような共役関係に配設すること
により、集光レンズ19、結像レンズ25、第1ハーフ
ミラー17、第1、第2ミラー29、31等の光学系の
収差、軸ずれなどの影響を受けなくなった。さらに、被
検レンズ測定時に参照光の入射角度を変化させても収差
の影響を受けずに、測定が容易な幅の広い干渉縞を形成
することができる。
The aspherical surface 22 (test surface) and the hologram 2
3 (recording surface) are arranged conjugately, and the hologram 23
(recording surface) and a CCD camera 27 (observation surface) are arranged in a conjugate relationship. By arranging the condenser lens 19, the imaging lens 25, the first half mirror 17, and the first and second mirrors 29 and 31 in such a conjugate relationship, the effects of aberrations, axis misalignments, etc. of the optical system can be reduced. I no longer receive it. Furthermore, even if the incident angle of the reference light is changed when measuring the lens to be tested, it is possible to form wide interference fringes that are easy to measure without being affected by aberrations.

【0014】さらに本実施例は、球面レンズの測定をも
可能にしている。つまり、コリメートレンズ15から射
出された平行光束の一部は、第2ハーフミラー33によ
りほぼ直角方向に反射され、さらに第2の参照光束を作
り出す第3ミラー35で反射されて光路を逆行し、第2
ハーフミラー33を透過して結像レンズ37によりCC
Dカメラ39上に結像される。このCCDカメラ39に
より撮像した干渉縞をTVモニタ42な映し出すことに
より、球面レンズの状態を測定することができる。
Furthermore, this embodiment also makes it possible to measure spherical lenses. In other words, a part of the parallel light beam emitted from the collimating lens 15 is reflected by the second half mirror 33 in a substantially perpendicular direction, further reflected by the third mirror 35 that produces the second reference light beam, and travels backward along the optical path. Second
It passes through the half mirror 33 and is captured by the imaging lens 37.
An image is formed on the D camera 39. By displaying the interference fringes captured by the CCD camera 39 on the TV monitor 42, the state of the spherical lens can be measured.

【0015】また、非球面レンズ21は、図示しないが
、光軸方向に移動可能であり、この移動量をスケールで
測定しつつ、TVモニタ41に映し出した干渉縞を観察
しながら、曲率半径(焦点距離)の測定を行なうことも
できる。
Although not shown, the aspherical lens 21 is movable in the optical axis direction, and the radius of curvature ( It is also possible to measure the focal length (focal length).

【0016】一方、非球面レンズ21からの反射光のう
ち、一部は集束レンズ19、第1ハーフミラー17を透
過して平行光束として第2ハーフミラー33まで光路を
逆行し、第2ハーフミラー33により結像レンズ37方
向に反射され、CCDカメラ39上に結像される。した
がって、第3ミラー35で反射された光と非球面レンズ
21で反射された光とが干渉し、環状の干渉縞が形成さ
れる。この干渉縞を観測することにより、レンズのアラ
イメント状態のチェックが可能である。
On the other hand, a part of the reflected light from the aspherical lens 21 passes through the converging lens 19 and the first half mirror 17 and travels back along the optical path as a parallel light beam to the second half mirror 33. 33 toward the imaging lens 37, and an image is formed on the CCD camera 39. Therefore, the light reflected by the third mirror 35 and the light reflected by the aspherical lens 21 interfere, forming annular interference fringes. By observing these interference fringes, it is possible to check the alignment state of the lens.

【0017】上記測定装置により測定した非球面原器お
よび非球面レンズの干渉縞を、図3ないし図5に示した
The interference fringes of the aspherical prototype and the aspherical lens measured by the above measuring device are shown in FIGS. 3 to 5.

【0018】図3Aは、正確に形成された非球面A(非
球面量約700(λ)、λ=0.6328μ)を有する
非球面原器により記録したホログラムにより該原器自体
を観察した干渉縞の様子であり、図3B、図3Cは、上
記測定装置により観察した、非球面Aを設計値とする実
際に製作されたそれぞれ別個の樹脂レンズAの干渉縞の
様子である。
FIG. 3A shows the interference observed by a hologram recorded by an aspherical prototype having an accurately formed aspherical surface A (aspherical amount approximately 700 (λ), λ=0.6328μ). FIGS. 3B and 3C show the interference fringes of individual resin lenses A that were actually produced with the aspherical surface A as the design value, as observed by the measuring device described above.

【0019】図4Aは、正確に形成された非球面B(非
球面量約1000(λ)、λ=0.6328μ)を有す
る非球面原器により記録したホログラムであり、図4B
はこのホログラムを利用して観察した、非球面Bを設計
値とする実際に製作された樹脂レンズBの干渉縞の様子
である。図4Bより、この樹脂レンズBは、符号61で
示した部分に気泡があることが分かる。
FIG. 4A is a hologram recorded with an aspherical prototype having an accurately formed aspherical surface B (aspherical amount approximately 1000 (λ), λ=0.6328μ), and FIG. 4B
is the appearance of interference fringes of an actually manufactured resin lens B with the aspherical surface B as the design value, observed using this hologram. From FIG. 4B, it can be seen that this resin lens B has air bubbles in the portion indicated by the reference numeral 61.

【0020】図5Aは、正確に形成された非球面C(非
球面量約400(λ)、λ=0.6328μ)を有する
非球面原器により記録したホログラムであり、図5Bは
このホログラムを利用して観察した、非球面Cを設計値
とする実際に製作されたガラスモールド成形により形成
された樹脂レンズCの干渉縞の様子である。図5Bを観
察すると、干渉縞が上下両端部付近で乱れていることが
分かる。これは、例えば、レンズの金型を形成する際に
、旋盤のバイト送りのぶれによって生じたものでは、と
原因を推測できる。
FIG. 5A shows a hologram recorded with an aspherical prototype having an accurately formed aspherical surface C (aspherical amount approximately 400(λ), λ=0.6328μ), and FIG. 5B shows this hologram. This is the appearance of interference fringes of a resin lens C formed by glass molding that was actually manufactured using an aspherical surface C as a design value. Observing FIG. 5B, it can be seen that the interference fringes are disturbed near both the upper and lower ends. It can be assumed that this is caused by, for example, fluctuations in the feed of the cutting tool on the lathe when forming the mold for the lens.

【0021】以上の通り本実施例によれば、深い非球面
の測定が可能であり、しかも二次元的情報(平面的情報
)を瞬時に得ることができる。非球面原器面からの反射
光と被検面からの反射光が測定光学系のほぼ同じ光路を
通るため、途中の光学系の収差の影響は受けない。さら
に、被検面とホログラムと観測面が共役に設けられてい
るので、被検面の座標と観測面の座標との対応が一対一
となり、かつアライメントが非常に容易になる。
As described above, according to this embodiment, it is possible to measure a deep aspherical surface, and moreover, two-dimensional information (planar information) can be obtained instantaneously. Since the reflected light from the aspherical prototype surface and the reflected light from the test surface pass through almost the same optical path in the measurement optical system, they are not affected by aberrations in the optical system along the way. Furthermore, since the test surface, the hologram, and the observation surface are provided conjugately, the coordinates of the test surface and the coordinates of the observation surface have a one-to-one correspondence, and alignment is extremely easy.

【0022】さらに本実施例によれば、1種類のレンズ
に対して1個の原器を精密に作成するだけでよいので、
簡単かつ低コストである。しかも、ホログラムを取り替
えるだけで簡単に測定できるので、少量多種類の非球面
レンズであってもそれぞれを簡単に測定できる。
Furthermore, according to this embodiment, it is only necessary to precisely prepare one prototype for one type of lens.
It is simple and low cost. Furthermore, measurement can be easily performed by simply replacing the hologram, so even if a large number of different types of aspherical lenses are produced in small quantities, each can be easily measured.

【0023】以上本発明について添付図面に示した実施
例に基づいて説明したが、本実施例はこれに限定されな
い。例えば、本実施例では被検面からの反射光を利用し
たが、被検面を透過する光を利用してもよい。また、ピ
ント調節のためのモニタ光学系を設けてもよい。
Although the present invention has been described above based on the embodiments shown in the accompanying drawings, the present embodiments are not limited thereto. For example, although the present embodiment uses reflected light from the surface to be inspected, light that passes through the surface to be inspected may also be used. Furthermore, a monitor optical system for focus adjustment may be provided.

【0024】[0024]

【発明の効果】以上の通り本発明は、配設した、設計形
状の非球面を有する原器からの光と参照光とを重ねて特
定位置に置いた感光材料に記録して形成したホログラム
を上記特定位置に置き、上記被検位置に被検部材を置き
、該被検部材からの光および参照光を上記ホログラムを
透過させて干渉縞を観測面に形成させるので、非球面量
の大きい非球面レンズの測定も可能である。
[Effects of the Invention] As described above, the present invention creates a hologram formed by superimposing light from a prototype having an aspheric surface of a designed shape and a reference light and recording it on a photosensitive material placed at a specific position. The hologram is placed at the specific position, the member to be tested is placed at the test position, and the light from the member to be tested and the reference light are transmitted through the hologram to form interference fringes on the observation surface. Measurement of spherical lenses is also possible.

【0025】また、非球面原器面からの反射光と被検面
からの反射光が測定光学系のほぼ同じ光路を通るため、
途中の光学系の収差の影響は受けない。さらに、被検面
とホログラムと観測面を共役に設ければ、被検面の座標
と観測面の座標との対応が一対一となり、アライメイト
が非常に容易になる。
Furthermore, since the reflected light from the aspherical standard surface and the reflected light from the test surface pass through almost the same optical path of the measurement optical system,
It is not affected by aberrations in the optical system along the way. Furthermore, if the test surface, the hologram, and the observation surface are provided conjugately, the coordinates of the test surface and the coordinates of the observation surface will have a one-to-one correspondence, making alignment very easy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の非球面の測定装置の一実施例の光学系
の要部を示す構成図である。
FIG. 1 is a configuration diagram showing a main part of an optical system of an embodiment of an aspherical surface measuring apparatus according to the present invention.

【図2】本発明の非球面の測定装置において使用するホ
ログラムを記録する光学系の要部を示す構成図である。
FIG. 2 is a configuration diagram showing the main parts of an optical system for recording a hologram used in the aspheric surface measuring device of the present invention.

【図3A、図3B、図3C】本実施例の測定装置により
測定した、非球面Aを有する非球面原器、樹脂レンズお
よび別の樹脂レンズの干渉縞である。
3A, 3B, and 3C are interference fringes of an aspherical prototype having an aspherical surface A, a resin lens, and another resin lens measured by the measuring device of this example.

【図4A、図4B】本実施例の測定装置により測定した
、非球面Bを有する非球面原器、樹脂レンズの干渉縞で
ある。
4A and 4B are interference fringes of a resin lens, an aspheric prototype having an aspheric surface B, measured by the measuring device of this example.

【図5A、図5B】本実施例の測定装置により測定した
、非球面Cを有する非球面原器、樹脂レンズの干渉縞で
ある。
5A and 5B are interference fringes of a resin lens, an aspherical prototype having an aspherical surface C, measured by the measuring device of this example.

【符号の説明】[Explanation of symbols]

11  レーザ発振器 13  対物レンズ 15  コリメートレンズ 17  第1ハーフミラー 19  集光レンズ 21  被検レンズ(非球面レンズ) 23  ホログラム 25  結像レンズ 27  CCDカメラ 29  第1ミラー 31  第2ミラー 33  第2ハーフミラー 35  第3ミラー 37  CCDカメラ 41  TVモニタ 42  TVモニタ 51  ハーフミラー 53  集光レンズ 55  非球面原器 59  高解像度感光材料 11 Laser oscillator 13 Objective lens 15 Collimating lens 17 First half mirror 19 Condensing lens 21 Test lens (aspherical lens) 23 Hologram 25 Imaging lens 27 CCD camera 29 First mirror 31 Second mirror 33 Second half mirror 35 Third mirror 37 CCD camera 41 TV monitor 42 TV monitor 51 Half mirror 53 Condensing lens 55 Aspheric prototype 59 High resolution photosensitive material

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  被検位置に置いた、設計形状の非球面
を有する原器の該非球面からの光と参照光とを重ねて、
特定位置に置いた感光材料に記録してホログラムを形成
し、この記録されたホログラムを上記特定位置に配置す
るとともに、上記被検位置に被検部材を配置し、該被検
部材からの光および該光と可干渉な上記参照光を上記ホ
ログラムを透過させて干渉縞を観測面に形成させること
、を特徴とする非球面の測定方法。
Claim 1: Superimposing light from an aspherical surface of a prototype having an aspherical surface of a designed shape placed at a test position and a reference light,
A hologram is formed by recording on a photosensitive material placed at a specific position, the recorded hologram is placed at the specific position, a member to be tested is placed at the test position, and light from the member to be tested and A method for measuring an aspheric surface, comprising transmitting the reference light coherent with the reference light through the hologram to form interference fringes on an observation surface.
【請求項2】  請求項1において、上記被検位置と上
記特定位置のホログラムとは共役であり、かつこの被検
位置と上記観測面とは共役であることを特徴とする非球
面の測定方法。
2. A method for measuring an aspheric surface according to claim 1, wherein the test position and the hologram at the specific position are conjugate, and the test position and the observation surface are conjugate. .
【請求項3】  請求項1において、上記被検部材の被
検面からの光は、この被検面で反射した光であることを
特徴とする非球面の測定方法。
3. A method for measuring an aspherical surface according to claim 1, wherein the light from the surface to be measured of the member to be measured is light reflected by the surface to be measured.
【請求項4】  請求項1において、上記被検部材の被
検面からの光は、この被検面を透過した光であることを
特徴とする非球面の測定方法。
4. A method for measuring an aspherical surface according to claim 1, wherein the light from the surface to be measured of the member to be measured is light that has passed through the surface to be measured.
【請求項5】  請求項1において、上記干渉縞を、上
記観測面に配設したCCDカメラにより撮像する非球面
の測定方法。
5. The aspheric surface measuring method according to claim 1, wherein the interference fringes are imaged by a CCD camera disposed on the observation surface.
【請求項6】  被検位置に置かれた被検面からの光と
、この光と可干渉の参照光とによる干渉縞を一定の記録
面に形成するホログラム形成光学系と、上記被検位置に
置かれた設計形状の非球面を有する原器の該非球面から
の光と上記参照光とによる干渉縞を上記記録面において
予め記録した、上記記録面に置かれたホログラムと、上
記ホログラムを透過した、上記被検位置に置かれた被検
部材からの光および上記参照光により形成された干渉縞
を観察する観察光学系と、を備えていることを特徴とす
る非球面の測定装置。
6. A hologram forming optical system that forms interference fringes on a certain recording surface by light from a surface to be measured placed at a test position and a reference beam that is coherent with the light, and A hologram placed on the recording surface, in which interference fringes caused by light from the aspherical surface of the prototype having an aspherical surface of a designed shape and the reference beam are recorded in advance on the recording surface, and a hologram transmitted through the hologram. An aspheric surface measuring device comprising: an observation optical system for observing interference fringes formed by the light from the test member placed at the test position and the reference light.
【請求項7】  請求項6に記載の測定装置はさらに、
上記被検位置を照射する、上記被検位置を照射する前の
光と上記被検位置からの光とを重ね合わせて干渉縞を形
成するモニタ光学系を備えていることを特徴とする非球
面の測定装置。
7. The measuring device according to claim 6 further comprises:
An aspherical surface characterized by comprising a monitor optical system that irradiates the test position and forms interference fringes by superimposing the light before the test position is irradiated and the light from the test position. measuring device.
JP3085439A 1991-01-23 1991-01-23 Aspherical surface measuring method and measuring device Expired - Fee Related JP3061653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085439A JP3061653B2 (en) 1991-01-23 1991-01-23 Aspherical surface measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085439A JP3061653B2 (en) 1991-01-23 1991-01-23 Aspherical surface measuring method and measuring device

Publications (2)

Publication Number Publication Date
JPH04240534A true JPH04240534A (en) 1992-08-27
JP3061653B2 JP3061653B2 (en) 2000-07-10

Family

ID=13858896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085439A Expired - Fee Related JP3061653B2 (en) 1991-01-23 1991-01-23 Aspherical surface measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP3061653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449711B1 (en) * 2001-12-21 2004-09-22 삼성전자주식회사 Apparatus and method for measurement of aspheric surface with hologram and concave surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449711B1 (en) * 2001-12-21 2004-09-22 삼성전자주식회사 Apparatus and method for measurement of aspheric surface with hologram and concave surface

Also Published As

Publication number Publication date
JP3061653B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US10245683B2 (en) Apparatus and method for beam diagnosis on laser processing optics
US6771375B2 (en) Apparatus and method for measuring aspherical optical surfaces and wavefronts
US5991034A (en) Interferometer which varies a position to be detected based on inclination of surface to be measured
CN109975820B (en) Linnik type interference microscope-based synchronous polarization phase shift focus detection system
US4758089A (en) Holographic interferometer
EP2538170A1 (en) Method and device for measuring multiple parameters of differential confocal interference component
JPH028297B2 (en)
US5313272A (en) Method and apparatus for measuring deviation between patterns on a semiconductor wafer
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
US6965435B2 (en) Interferometer system for measuring surface shape
JPH0224504A (en) Interferometer for measuring shape of aspheric surface utilizing computer hologram
JP2005201703A (en) Interference measuring method and system
JPH04240534A (en) Measuring method and measuring apparatus of aspheric surface
JPH07311117A (en) Apparatus for measuring position of multiple lens
JP2005017127A (en) Interferometer and shape measuring system
JP3385082B2 (en) Aspherical surface measuring device
JPH07229721A (en) Device for generating aspherical wave and method for measuring aspherical shape
CN114486198B (en) Large-caliber reflector detection system
JP2000097633A (en) Device for detecting mark location and method for detecting mark location using the device
JP2949179B2 (en) Non-contact type shape measuring device and shape measuring method
JPH0814854A (en) Flat plate with computer hologram and measurement using the plate
JPH0540025A (en) Shape measuring instrument
JP2005147703A (en) Device and method for measuring surface distance
JP2733914B2 (en) Optical parts inspection equipment
JPH03276044A (en) Method and instrument for measuring radius of curvature of curved surface

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees