JPH04240110A - Production of celled silica particles - Google Patents

Production of celled silica particles

Info

Publication number
JPH04240110A
JPH04240110A JP398691A JP398691A JPH04240110A JP H04240110 A JPH04240110 A JP H04240110A JP 398691 A JP398691 A JP 398691A JP 398691 A JP398691 A JP 398691A JP H04240110 A JPH04240110 A JP H04240110A
Authority
JP
Japan
Prior art keywords
particles
silica
silica gel
water
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP398691A
Other languages
Japanese (ja)
Inventor
Eiji Hattori
英次 服部
Toshitaka Nishiyama
西山 敏孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP398691A priority Critical patent/JPH04240110A/en
Publication of JPH04240110A publication Critical patent/JPH04240110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To control particle diameters and particle diameter distribution of spherical silica gel with good packing property and non-agglomerate by specifying agitation power required and retention time in a suspension process in obtaining powder silica by the wet method. CONSTITUTION:When mixed liquid of ester silicate and water is made to be suspended in an organic liquid non compatible with it in the presence of a disperse stabilizer, ester silicate is hydrolyzed to produce gelled silica particles. In this method, the suspension process is performed with >=0.1A/m<3> agitation required and <=10min retension time. Particle diameters and particle diameter distribution are controlled within very small particle diameters, especially within the range of <=20mum particle diameters to obtain silica gel particle which have high purity and sphericity without agglomerate and consequently have good packing property, and silica gel particles formed by sintering the former. Since agitation is insufficient to form uniform emulsion at <0.1A/m<3> agitation power required and the gelation of liquid drops suspended starts at >10min retention time, part of the gel particles are crushed or agglomerated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は凝集がなく、したがって
分散性が良好であり、しかも高純度である球状のシリカ
ゲル粒子ならびにシリカ粒子を得る方法に関する。本発
明によって得られるシリカゲル粒子ならびにシリカ粒子
はセラミックス原料及びIC,LSIなど半導体素子樹
脂封止の充填材など各種分野の充填材及び触媒担体等と
して利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to spherical silica gel particles that are free from agglomeration, have good dispersibility, and are highly pure, as well as a method for obtaining silica particles. The silica gel particles and silica particles obtained by the present invention are used as fillers and catalyst carriers in various fields such as ceramic raw materials and fillers for resin sealing of semiconductor elements such as ICs and LSIs.

【0002】0002

【従来の技術】シリカ粒子の一つの用途としてIC、L
SIなど半導体素子のプラスチック封止の充填材がある
。これは、集積度の高い半導体素子では加熱成型された
封止材が冷却時に収縮して応力が素子にかかると有害な
作用が生じるので、熱膨張率の小さなシリカを封止材に
混入して封止材全体の熱膨張率を下げることが行なわれ
ているためである。従来は主に天然ケイ石を粉砕、分級
したシリカ粒子が使用されているが、集積度が高くなる
と封止材、とくにシリカ粒子からの放射線によりメモリ
ーが破壊され誤動作を生じる問題があり、そのためウラ
ン、トリウムなどの放射性不純物の少ない充填材が要望
されている。また、高品質の天然ケイ石は少なくなって
きており、増加する需要に対して、高品質の充填材を安
定供給するために高純度合成シリカ粒子の製造法の開発
が望まれている。
[Prior Art] One use of silica particles is IC, L
There are fillers for plastic encapsulation of semiconductor devices such as SI. This is because in highly integrated semiconductor devices, the heat-molded encapsulant contracts when cooled, causing harmful effects if stress is applied to the device, so silica with a small coefficient of thermal expansion is mixed into the encapsulant. This is because the coefficient of thermal expansion of the entire sealing material is lowered. Conventionally, silica particles made by crushing and classifying natural silica stone have been mainly used, but when the degree of accumulation becomes high, the sealing material, especially the radiation from the silica particles, can destroy the memory and cause malfunctions, so uranium There is a demand for fillers that contain less radioactive impurities such as thorium. Furthermore, high-quality natural silica stone is becoming scarce, and in order to meet the increasing demand and provide a stable supply of high-quality fillers, it is desired to develop a method for producing high-purity synthetic silica particles.

【0003】従来、高純度のシリカ粒子の合成法には高
純度のハロゲン化ケイ素を酸素・水素炎で分解する乾式
法や特開昭58−176136号公報等に記載されたケ
イ酸エステルと水の混合溶液を当該溶液と相溶性のない
液体中に分散、懸濁させ、ケイ酸エステルを加水分解重
合させることにより粉粒状ゲルを合成し、さらにこれを
焼成して粉粒状シリカを得る湿式法がある。しかしなが
ら、前記乾式法で得られシリカ粒子は平均粒径が0.1
μm以下と細かいためそのままでは封止材樹脂への充填
性が悪く、造粒、焼成等の工程が必要であるという問題
点があった。また、前記湿式法では液体中に分散、懸濁
したケイ酸エステルと水の混合溶液の懸濁粒子をゲル化
させる過程で、当該懸濁粒子はケイ酸エステルの加水分
解、重合反応の進行に伴い粘稠な状態を経由するため、
この過程で粘着による粒子の合体が起こり、必ず凝集し
たゲル粒子が発生する。当該凝集ゲル粒子は焼成後もそ
の形態を保っており、当該粒子は形が歪であるため樹脂
などのマトリックスへの充填性が悪く充填材としては不
適当である。
Conventionally, methods for synthesizing high-purity silica particles include a dry method in which high-purity silicon halide is decomposed with an oxygen/hydrogen flame, and a method using silicate ester and water as described in JP-A-58-176136. A wet method in which a mixed solution of is dispersed and suspended in a liquid that is incompatible with the solution, a silicic acid ester is hydrolyzed and polymerized to synthesize a granular gel, and this is further calcined to obtain granular silica. There is. However, the silica particles obtained by the dry method have an average particle size of 0.1
Since it is as fine as micrometers or less, it has poor filling properties into the encapsulant resin as it is, and there is a problem that steps such as granulation and firing are required. In addition, in the wet method, in the process of gelling suspended particles of a mixed solution of silicate ester and water dispersed or suspended in a liquid, the suspended particles are subject to the progress of the hydrolysis and polymerization reaction of the silicate ester. In order to pass through a viscous state,
During this process, particles coalesce due to adhesion, and aggregated gel particles are inevitably generated. The agglomerated gel particles maintain their shape even after firing, and since the particles have a distorted shape, they have poor filling properties into a matrix such as a resin, and are therefore unsuitable as a filler.

【0004】そこで、これらの問題を解決するものとし
て、本発明者等は先に、ケイ酸エステルと水の混合溶液
を当該混合溶液と相溶性のない溶媒液体中で懸濁重合さ
せるにあたり、溶媒液体中に特定のエチルセルロースを
存在させておくならば、懸濁粒子の粘着による合体を防
ぐことができて凝集が全くない球状のシリカゲル粒子が
得られることを見出し、特許出願した(特開平1−69
508号公報)。
Therefore, in order to solve these problems, the present inventors first carried out suspension polymerization of a mixed solution of silicate ester and water in a solvent liquid that is incompatible with the mixed solution. It was discovered that if a specific ethyl cellulose is present in the liquid, it is possible to prevent the suspended particles from coalescing due to adhesion, and it is possible to obtain spherical silica gel particles with no agglomeration, and has filed a patent application (Japanese Patent Application Laid-Open No. 1999-1-1992). 69
508 Publication).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法においてもケイ酸エステルと水の混合溶液を当該溶液
と相溶性のない溶媒液体中で懸濁重合させて球状粒子を
製造することは出来るものの、微小粒径、特に20μm
以下の粒径範囲で粒径および粒径分布を制御することが
非常に困難であった。そこで、本発明者等は更に検討を
重ねた結果、ケイ酸エステルと水の混合溶液を当該混合
溶液と相溶性のない溶媒液体中でかつ特定の有機高分子
を存在させて懸濁重合させるにあたり、特定の条件下で
懸濁重合させるなならば、懸濁粒子の粘着による合体を
防ぐことができて凝集が全くない球状のシリカゲル粒子
が得られることを見出し本発明に到達した。すなわち、
本発明の目的は凝集が全くなくしたがって充填材が良好
でありしかも高純度である球状のシリカゲル粒子をその
粒径および粒径分布を高度に制御して製造する方法を提
供することにある。
[Problems to be Solved by the Invention] However, even in this method, spherical particles can be produced by suspension polymerizing a mixed solution of silicate ester and water in a solvent liquid that is incompatible with the solution. Small particle size, especially 20μm
It was very difficult to control the particle size and particle size distribution in the following particle size range. Therefore, as a result of further studies, the present inventors found that suspension polymerization of a mixed solution of silicate ester and water was carried out in a solvent liquid that was incompatible with the mixed solution and in the presence of a specific organic polymer. The present invention was achieved by discovering that if suspension polymerization is not carried out under specific conditions, it is possible to prevent the suspended particles from coalescing due to adhesion and to obtain spherical silica gel particles with no agglomeration. That is,
An object of the present invention is to provide a method for producing spherical silica gel particles having no agglomeration and therefore having good filler properties and high purity, with highly controlled particle size and particle size distribution.

【0006】[0006]

【課題を解決するための手段】本発明の目的は珪酸エス
テルと水との混合液を、分散安定剤の存在下、該混合液
と実質的に相溶性のない有機液体中に懸濁させ、珪酸エ
ステルを加水分解してゲル状シリカ粒子を製造する方法
において、該懸濁工程を、攪拌所要動力0.1kW/m
3 以上、且つ滞留時間10分以下の条件下で行なうこ
とにより達成される。以下、本発明を詳細に説明する。
[Means for Solving the Problems] The object of the present invention is to suspend a mixture of a silicate ester and water in an organic liquid that is substantially incompatible with the mixture in the presence of a dispersion stabilizer, In a method for producing gel-like silica particles by hydrolyzing a silicate ester, the suspension step is performed using a stirring power of 0.1 kW/m.
This can be achieved by carrying out the reaction under conditions of 3 or more and a residence time of 10 minutes or less. The present invention will be explained in detail below.

【0007】本発明に使用されるケイ酸エステルはテト
ラメトキシシラン、テトラエトキシシラン、テトラプロ
ポキシシラン、テトラブトキシシラン等のオルトケイ酸
の低級アルキルエステルおよびその縮合物が代表的な化
合物である。その他、トリメトキシメチルシラン、ジメ
トキシジメチルシラン、トリエトキジエチルシラン、ジ
エトキシジエチルシラン等のアルコキシアルキルシラン
およびその縮合物でもよい。
Typical examples of the silicic acid ester used in the present invention include lower alkyl esters of orthosilicic acid such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and condensates thereof. In addition, alkoxyalkylsilanes such as trimethoxymethylsilane, dimethoxydimethylsilane, triethoxydiethylsilane, diethoxydiethylsilane, and condensates thereof may be used.

【0008】また、分散媒として用いる有機液体はケイ
酸エステルと水の混合溶液に対して実質的に相溶性がな
くかつ後述するセルロースエステル、セルロースエーテ
ルを溶解するものであればいかなるものでも良いが通常
は炭化水素またはハロゲン化芳香族炭化水素が用いられ
る。炭化水素としては炭素数6〜10の芳香族炭化水素
、脂環族炭化水素もしくは脂肪族炭化水素が好ましい。 ハロゲン化芳香族炭化水素としては塩素化ベンゼンが好
ましい。とくに好適な有機溶媒はベンゼン、トルエン、
キシレン、シクロヘキサン、メチルシクロヘキサン、シ
クロオクタン、デカリン、n−ヘキサン、n−ヘプタン
、n−オクタン、n−デカン、クロルベンゼン、ジクロ
ルベンゼン、シメン、クメンなどである。
[0008] The organic liquid used as the dispersion medium may be any organic liquid as long as it is substantially incompatible with the mixed solution of silicate ester and water and can dissolve the cellulose ester and cellulose ether described below. Usually hydrocarbons or halogenated aromatic hydrocarbons are used. The hydrocarbons are preferably aromatic hydrocarbons, alicyclic hydrocarbons, or aliphatic hydrocarbons having 6 to 10 carbon atoms. Chlorinated benzene is preferred as the halogenated aromatic hydrocarbon. Particularly suitable organic solvents are benzene, toluene,
These include xylene, cyclohexane, methylcyclohexane, cyclooctane, decalin, n-hexane, n-heptane, n-octane, n-decane, chlorobenzene, dichlorobenzene, cymene, and cumene.

【0009】本発明に用いられるセルロースエステルま
たはエーテルは分散安定剤として作用するものであって
、水に不溶で前記有機溶媒に可溶なセルロースアセテー
トブチレート、エチルセルロース、エチルヒドロキシエ
チルセルロースなどの油溶性セルロースエステルまたは
セルロースエーテルを挙げることができる。本発明方法
ではまず前記有機液体に分散安定剤を溶解しこれを分散
媒として用いる。分散安定剤の添加量は分散媒の総量に
対して0.05〜10重量%好ましくは0.2〜5重量
%の範囲で使用される。分散安定剤の添加量が0.05
重量%より少ないと凝集防止効果が不十分であり、10
重量%より多いと一部が未溶解のまま残存する傾向を生
じ非効率的である。
The cellulose ester or ether used in the present invention acts as a dispersion stabilizer, and is an oil-soluble cellulose such as cellulose acetate butyrate, ethyl cellulose, or ethyl hydroxyethyl cellulose, which is insoluble in water and soluble in the organic solvent. Mention may be made of esters or cellulose ethers. In the method of the present invention, a dispersion stabilizer is first dissolved in the organic liquid and used as a dispersion medium. The amount of the dispersion stabilizer added is in the range of 0.05 to 10% by weight, preferably 0.2 to 5% by weight, based on the total amount of the dispersion medium. The amount of dispersion stabilizer added is 0.05
If it is less than 10% by weight, the agglomeration prevention effect is insufficient.
If it exceeds % by weight, a portion tends to remain undissolved, which is inefficient.

【0010】別にケイ酸エステルと水を混合して原料溶
液を調製する。このときのケイ酸エステルと水の配合比
は特に限定されないがケイ酸エステルが完全に加水分解
・重合するのに必要な水の理論量の1〜10倍の範囲で
配合することが好ましい。例えば1モルのケイ酸テトラ
アルキルエステルの場合の水の理論量は2モルである。 ケイ酸エステルに対する水の配合量がケイ酸エステルが
完全に加水分解・重合するのに必要な水の理論量の1倍
より少ないとケイ酸エステルが十分に加水分解・重合せ
ずシリカの収率が低下する。逆にケイ酸エステルに対す
る水の配合量がケイ酸エステルが完全に加水分解・重合
するのに必要な水の理論量の10倍より多いと生成する
ゲルの強度が低く乾燥や焼成の過程で粒子が破壊されや
すい。また、ケイ酸エステルに対する水の配合量が上記
の範囲でも、ケイ酸エステルと水を混合すると均一混合
せず2相分離を起こす場合があるが、混合溶液の攪拌を
継続するか、アルコールを添加することによって均一溶
液とすることができる。混合溶液の攪拌を継続するなら
ばケイ酸エステルの加水分解反応が進行してアルコール
が生成する。該アルコールはケイ酸エステルおよび水と
各々均一溶液を形成する共通溶媒である。すなわち前記
ケイ酸エステルと水の混合溶液はアルコールの生成また
はアルコールの添加によって均一溶液となるので、該均
一溶液をもって原料溶液とする。
Separately, a raw material solution is prepared by mixing silicate ester and water. The blending ratio of silicate ester and water at this time is not particularly limited, but it is preferably blended in a range of 1 to 10 times the theoretical amount of water required for complete hydrolysis and polymerization of the silicate ester. For example, the theoretical amount of water for 1 mole of silicate tetraalkyl ester is 2 moles. If the amount of water added to the silicate ester is less than 1 times the theoretical amount of water required for complete hydrolysis and polymerization of the silicate ester, the silicate ester will not be sufficiently hydrolyzed and polymerized, resulting in a low yield of silica. decreases. Conversely, if the amount of water added to the silicate ester is more than 10 times the theoretical amount of water required for complete hydrolysis and polymerization of the silicate ester, the strength of the gel formed will be low and particles will form during the drying and baking process. is easily destroyed. In addition, even if the amount of water to silicate ester is within the above range, mixing silicate ester and water may not mix uniformly and cause two-phase separation, but continue stirring the mixed solution or add alcohol. By doing so, a homogeneous solution can be obtained. If the mixed solution is continued to be stirred, the hydrolysis reaction of the silicate ester proceeds and alcohol is produced. The alcohol is a common solvent with the silicate ester and water, each forming a homogeneous solution. That is, since the mixed solution of silicate ester and water becomes a homogeneous solution by the production of alcohol or the addition of alcohol, this homogeneous solution is used as the raw material solution.

【0011】なお、原料溶液の調製および次の懸濁工程
に要する時間を短縮するために触媒を添加することもで
きる。触媒には塩酸、硝酸、硫酸、酢酸、蓚酸等の酸性
触媒やアンモニア、アミン、苛性アルカリ等の塩基性触
媒が使用できるが、通常は、塩酸またはアンモニウムが
最も普通に用いられる。次に前記のように調製した原料
溶液と、前記分散安定剤を溶解した分散媒を0.1kW
/m3 以上好ましくは0.2〜2000kW/m3 
の攪拌所要動力で、混合攪拌し、原料溶液が懸濁液滴と
して分散したエマルジョンを形成させる。この懸濁工程
での滞留時間は10分以下好ましくは0.1〜5分であ
る。本発明方法に於ては、懸濁工程における攪拌所要動
力が0.1kW/m3 より小さいと攪拌が十分に行な
われず、原料溶液と分散媒が分離して均一なエマルジョ
ンにならないため好ましくない。また、懸濁工程での滞
留時間が10分より長いと懸濁液滴のゲル化が始まるた
め、一部ゲル粒子の破砕や凝集が発生するので好ましく
ない。
[0011] A catalyst may also be added in order to shorten the time required for the preparation of the raw material solution and the subsequent suspension step. As the catalyst, acidic catalysts such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, and oxalic acid, and basic catalysts such as ammonia, amine, and caustic alkali can be used, but hydrochloric acid or ammonium is usually used most commonly. Next, the raw material solution prepared as described above and the dispersion medium in which the dispersion stabilizer was dissolved were heated at 0.1 kW.
/m3 or more preferably 0.2 to 2000kW/m3
The mixture is mixed and stirred with the required stirring power to form an emulsion in which the raw material solution is dispersed as suspended droplets. The residence time in this suspension step is 10 minutes or less, preferably 0.1 to 5 minutes. In the method of the present invention, it is not preferable that the power required for stirring in the suspension step is less than 0.1 kW/m3 because stirring will not be performed sufficiently and the raw material solution and dispersion medium will separate and a uniform emulsion will not be obtained. Further, if the residence time in the suspension step is longer than 10 minutes, gelation of the suspension droplets will begin, which is not preferable, as some gel particles will be crushed or aggregated.

【0012】本発明方法においては、懸濁工程を上記条
件で実施できればいかなる方法でも良いが、本発明を工
業的に実施する際は連続式混合分散器を用いるのが特に
有利である。なお連続式混合分散器としては例えば混合
用や乳化重合用のパイプラインミキサー等の様に均質な
微小間隙に生ずる強力な剪断力によって、分散媒と分散
質を微細かつ均質に混合、乳化させる連続式容器が用い
られる。懸濁工程終了後、引き続いて懸濁液滴のゲル化
を行なって、球状ゲル粒子を生成させる。ゲル化は通常
、分散媒の融点以上、好ましくは30℃以上分散媒の沸
点以下の温度に維持することにより行なわれる。この際
、必要に応じゆるやかな攪拌を行なってもよく、また、
加圧条件下、分散媒の沸点以上に維持することもできる
In the method of the present invention, any method may be used as long as the suspension step can be carried out under the above conditions, but when the present invention is carried out industrially, it is particularly advantageous to use a continuous mixing and dispersing device. Continuous mixing and dispersing devices are, for example, pipeline mixers for mixing and emulsion polymerization, which mix and emulsify the dispersion medium and dispersoid finely and homogeneously using strong shearing force generated in homogeneous minute gaps. A type container is used. After the suspension step is completed, the suspension droplets are subsequently gelled to produce spherical gel particles. Gelation is usually carried out by maintaining the temperature at a temperature above the melting point of the dispersion medium, preferably above 30° C. and below the boiling point of the dispersion medium. At this time, gentle stirring may be performed if necessary, and
It is also possible to maintain the temperature above the boiling point of the dispersion medium under pressurized conditions.

【0013】生成したゲル粒子はデカンテーションか濾
過等により反応液から分離することができ、粒子表面に
付着している分散安定剤を有機溶媒で溶解洗浄後乾燥す
るか、又はそのまま300〜400℃程度に加熱して分
散安定剤を燃焼分解させることによってシリカゲル粒子
を得る。該シリカゲル粒子は凝集のない球状粒子として
得られ、そのままでも触媒担体等として利用することが
できるが、通常は1000℃程度の温度で焼成してシリ
カガラスとする。焼成した場合も、凝集は発生せず、球
状のシリカ粒子を得ることができる。
The generated gel particles can be separated from the reaction solution by decantation or filtration, and the dispersion stabilizer attached to the particle surface can be dissolved and washed with an organic solvent, followed by drying, or directly heated at 300 to 400°C. Silica gel particles are obtained by heating to a certain degree to burn and decompose the dispersion stabilizer. The silica gel particles are obtained as spherical particles without agglomeration, and can be used as catalyst carriers as they are, but are usually fired at a temperature of about 1000° C. to form silica glass. Even when fired, no aggregation occurs and spherical silica particles can be obtained.

【0014】本発明方法では、蒸溜等により高純度化が
容易なケイ酸エステルを原料に用いており、さらに、シ
リカゲル粒子を合成した後これを焼成して直接シリカ粒
子を得ることができるので、粉砕などの不純物が混入し
やすい工程を必要とせず、したがって高純度のシリカ粒
子を容易に得ることができる。
[0014] In the method of the present invention, a silicate ester that can be easily purified by distillation or the like is used as a raw material, and furthermore, silica particles can be directly obtained by synthesizing silica gel particles and then firing them. There is no need for processes such as pulverization that can easily introduce impurities, and therefore highly pure silica particles can be easily obtained.

【0015】[0015]

【実施例】以下実施例を挙げて本発明を具体的に説明す
るが、本発明でいう攪拌所要動力および懸濁工程での滞
留時間は以下のようにして求めた。
EXAMPLES The present invention will be explained in detail with reference to Examples. The required stirring power and the residence time in the suspension step as used in the present invention were determined as follows.

【0016】(1)  単位容積当たりの攪拌所要動力
攪拌所要動力は次式から求めることができる。
(1) Power required for stirring per unit volume The power required for stirring can be determined from the following equation.

【0017】 p=Np ・ρ/gc ・n3 ・d5 p  :攪拌
所要動力  〔kg・m/sec 〕Np :攪拌翼の
形状で決まる定数 ρ  :液の密度      〔kg/m3 〕gc 
:重力換算係数  〔kg・m/kg・sec 2〕n
  :攪拌速度      〔1/sec 2 〕d 
 :攪拌翼の翼長  〔m〕 単位容積当たりの攪拌所要動力は、上式より求めたpを
攪拌機内容積vで除することによって求められる。
p=Np ・ρ/gc ・n3 ・d5 p: Required power for stirring [kg・m/sec] Np: Constant determined by the shape of the stirring blade ρ: Density of liquid [kg/m3] gc
:Gravity conversion factor [kg・m/kg・sec 2]n
: Stirring speed [1/sec2]d
: Blade length of stirring blade [m] The required power for stirring per unit volume is obtained by dividing p obtained from the above formula by the internal volume of the stirrer v.

【0018】P=p/v/101.972P  :単位
容積当たりの攪拌所要動力〔kW/m3 〕p  :攪
拌所要動力  〔kg・m/sec 〕v  :攪拌機
内容積  〔m3 〕 ただし1kW=101.972kg・m/sec (2
)  懸濁工程での滞留時間 T=v/m v  :攪拌機内容積  〔m3 〕 m  :被攪拌液体が攪拌機に送り込まれる流速〔m3
 /min 〕 なお、以下の比較例1で示すようなバッチ式攪拌におけ
る懸濁工程での滞留時間は攪拌が継続された時間をいう
。また、製造されたシリカ粒子の粒度分布は、粒径に対
する累積重量曲線図で最小粒径からの累積重量が75%
の点の粒径を、最小粒径からの累積重量が25%の点で
粒径で除した値(d75/d25)で示した。すなわち
、d75/d25が小さいほど粒径が揃っていることを
示す。
P=p/v/101.972P: Required stirring power per unit volume [kW/m3]p: Required stirring power [kg・m/sec]v: Stirrer internal volume [m3] However, 1kW=101. 972kg・m/sec (2
) Residence time in the suspension process T=v/m v: Internal volume of the stirrer [m3] m: Flow rate at which the liquid to be stirred is fed into the stirrer [m3]
/min] Note that the residence time in the suspension step in batch-type stirring as shown in Comparative Example 1 below refers to the time during which stirring is continued. In addition, the particle size distribution of the manufactured silica particles shows that the cumulative weight from the minimum particle size is 75% in the cumulative weight curve diagram against particle size.
The particle size at the point is divided by the particle size at the point where the cumulative weight from the minimum particle size is 25% (d75/d25). In other words, the smaller d75/d25 is, the more uniform the particle diameters are.

【0019】比較例1 錨型攪拌翼が付いた内容積0.6m3 の反応容器に、
分散安定剤としてエトキシ基が全重量に対して49%で
あるエチルセルロース0.7kgとシクロヘキサン24
3kgを加え60℃で1時間加熱攪拌(27rpm)し
てエチルセルロースを十分に溶解した溶液を準備し分散
媒体とした。次にテトラメトキシシラン12.5kgと
蒸留水7.5kgを40℃にて75分攪拌してテトラメ
トキシシランと蒸留水が均一溶解した原料溶液を得た。 該原料溶液を前記分散媒体に27rpm で攪拌しなが
ら添加し、さらに60℃で2時間攪拌を継続することに
よりテトラメトキシシランの加水分解・重合によるゲル
化を行なってゲル粒子分散スラリーを得た。次いでデカ
ンテーションによりゲル粒子を分離しアセトンで洗浄し
た後200℃で24時間乾燥して粉末状シリカゲルを得
た。さらに該シリカゲルを空気中1000℃で2時間焼
成して粉末状シリカとした。該シリカの形状、凝集状態
と平均粒径、粒径分布を表1に示した。
Comparative Example 1 In a reaction vessel with an internal volume of 0.6 m3 equipped with an anchor-type stirring blade,
As a dispersion stabilizer, 0.7 kg of ethyl cellulose containing 49% of ethoxy groups based on the total weight and 24 kg of cyclohexane were used as dispersion stabilizers.
3 kg was added thereto and heated and stirred (27 rpm) at 60° C. for 1 hour to prepare a solution in which ethyl cellulose was sufficiently dissolved and used as a dispersion medium. Next, 12.5 kg of tetramethoxysilane and 7.5 kg of distilled water were stirred at 40° C. for 75 minutes to obtain a raw material solution in which tetramethoxysilane and distilled water were uniformly dissolved. The raw material solution was added to the dispersion medium with stirring at 27 rpm, and the stirring was continued at 60° C. for 2 hours to effect gelation by hydrolysis and polymerization of tetramethoxysilane to obtain a gel particle-dispersed slurry. Next, the gel particles were separated by decantation, washed with acetone, and dried at 200° C. for 24 hours to obtain powdered silica gel. Further, the silica gel was fired in air at 1000° C. for 2 hours to obtain powdered silica. Table 1 shows the shape, agglomeration state, average particle size, and particle size distribution of the silica.

【0020】実施例1〜4、比較例2〜3分散安定剤と
してエトキシ基が全重量に対して49%であるエチルセ
ルロース97gをp−シメン(p−イソプロピルトルエ
ン)23.19kgに加え60℃で15分加熱してエチ
ルセルロースを十分に溶解し分散媒体とした。別にテト
ラメトキシシラン4.26kgと蒸留水2.02kgを
40℃にて75分攪拌してテトラメトキシシランと蒸留
水が均一溶解した原料溶液を得た。次に該原料溶液1に
対し前記分散媒体が4.5の体積割合になるようにそれ
ぞれパイプラインホモミキサー(特殊機化工業株式会社
製)に導入し、表1に記載の攪拌所要動力、滞留時間の
条件で混合することにより原料溶液が懸濁液滴として分
散したエマルジョンを得た。得られたエマルジョンは、
さらに60℃で30分加熱することによりテトラメトキ
シシランの加水分解・重合によるゲル化を行なってゲル
粒子分散スラリーを得た。次いでデカンテーションによ
りゲル粒子を分離し、アセトンで洗浄した後200℃で
24時間乾燥して粉末状シリカゲルを得た。さらに該シ
リカゲルを空気中1000℃で2時間焼成して粉末状シ
リカとした。該シリカの形状、凝集状態と平均粒径、粒
径分布を表1に示した。
Examples 1 to 4, Comparative Examples 2 to 3 As a dispersion stabilizer, 97 g of ethylcellulose containing 49% of ethoxy groups based on the total weight was added to 23.19 kg of p-cymene (p-isopropyltoluene) at 60°C. The mixture was heated for 15 minutes to sufficiently dissolve the ethyl cellulose and use it as a dispersion medium. Separately, 4.26 kg of tetramethoxysilane and 2.02 kg of distilled water were stirred at 40° C. for 75 minutes to obtain a raw material solution in which tetramethoxysilane and distilled water were uniformly dissolved. Next, the dispersion medium was introduced into a pipeline homo mixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) so that the volume ratio of the dispersion medium to the raw material solution 1 was 4.5. By mixing under certain conditions, an emulsion in which the raw material solution was dispersed as suspended droplets was obtained. The obtained emulsion is
Further, by heating at 60° C. for 30 minutes, tetramethoxysilane was gelled by hydrolysis and polymerization to obtain a gel particle dispersion slurry. Next, the gel particles were separated by decantation, washed with acetone, and then dried at 200° C. for 24 hours to obtain powdered silica gel. Further, the silica gel was fired in air at 1000° C. for 2 hours to obtain powdered silica. Table 1 shows the shape, agglomeration state, average particle size, and particle size distribution of the silica.

【0021】実施例5〜7 分散安定剤としてエトキシ基が全重量に対して49%で
あるエチルセルロース97gをp−シメン(p−イソプ
ロピルトルエン)23.19kgに加え、60℃で15
分加熱してエチルセルロースを十分に溶解し分散媒体と
した。別にテトラメトキシシランを部分加水分解して得
た縮合物(SiO2 含有量51重量%)3.30kg
と蒸留水1.27kgとメタノール1.12kgを40
℃にて20分攪拌してテトラメトキシシランの縮合物と
蒸留水とメタノールが均一溶解した原料溶液を得た。次
に該原料溶液1に対し前記分散媒体が4.3の体積割合
になるようにそれぞれパイプラインホモミキサー(特殊
機化工業株式会社製)に導入し、表1に記載の攪拌所要
動力、滞留時間の条件で混合することにより原料溶液が
懸濁液滴として分散したエマルジョンを得、さらに60
℃で30分加熱することによりゲル粒子分散スラリーを
得た。該ゲル粒子分散スラリー中には凝集が全くない球
状のゲル粒子が生成していた。次いでデカンテーション
によりゲル粒子を分離しアセトンで洗浄した後200℃
で24時間乾燥して凝集の全くない球状シリカゲルを得
た。さらに該シリカゲル粒子を空気中1000℃で2時
間焼成してシリカ粒子を得た。該シリカ粒子は凝集が全
くなく真球状であった。平均粒径を表1に示した。
Examples 5 to 7 97 g of ethylcellulose containing 49% of ethoxy groups based on the total weight as a dispersion stabilizer was added to 23.19 kg of p-cymene (p-isopropyltoluene), and the mixture was heated at 60°C for 15 minutes.
The mixture was heated for 1 minute to fully dissolve the ethyl cellulose and use it as a dispersion medium. Separately, 3.30 kg of condensate obtained by partially hydrolyzing tetramethoxysilane (SiO2 content 51% by weight)
and 1.27 kg of distilled water and 1.12 kg of methanol at 40
The mixture was stirred at ℃ for 20 minutes to obtain a raw material solution in which the tetramethoxysilane condensate, distilled water, and methanol were uniformly dissolved. Next, the dispersion medium was introduced into a pipeline homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) so that the volume ratio of the dispersion medium to the raw material solution 1 was 4.3. By mixing under the condition of 60 hours, an emulsion in which the raw material solution is dispersed as suspended droplets is obtained.
A gel particle dispersion slurry was obtained by heating at ℃ for 30 minutes. Spherical gel particles with no agglomeration were produced in the gel particle dispersion slurry. Next, the gel particles were separated by decantation, washed with acetone, and then heated at 200°C.
After drying for 24 hours, a spherical silica gel with no agglomeration was obtained. Furthermore, the silica gel particles were calcined in air at 1000° C. for 2 hours to obtain silica particles. The silica particles had no agglomeration and were perfectly spherical. The average particle size is shown in Table 1.

【0022】実施例8、9 分散安定剤としてエトキシ基が全重量に対して49%で
あるエチルセルロース63gをシクロヘキサン21.0
7kgに加え60℃で1時間加熱してエチルセルロース
を十分に溶解した溶液を分散媒体としたこと以外は実施
例1〜4に同じとした。結果を表1に示した。
Examples 8 and 9 As a dispersion stabilizer, 63 g of ethyl cellulose containing 49% of ethoxy groups based on the total weight was mixed with 21.0 g of cyclohexane.
The procedure was the same as in Examples 1 to 4 except that the dispersion medium was a solution in which 7 kg of ethyl cellulose was sufficiently dissolved by heating at 60° C. for 1 hour. The results are shown in Table 1.

【0023】[0023]

【表1】[Table 1]

【0024】[0024]

【発明の効果】本発明により得られたシリカゲル粒子お
よび該シリカゲル粒子を焼成して得られるシリカ粒子は
高純度で、凝集が全くなく、真球状であり、したがって
充填性が良く、高純度のIC封止剤用の充填材や高純度
セラミックス原料及び触媒担体等として使用することが
でき、その工業的価値は大である。
Effects of the Invention: The silica gel particles obtained by the present invention and the silica particles obtained by firing the silica gel particles have high purity, have no agglomeration, are perfectly spherical, and therefore have good filling properties, and can be used for high-purity ICs. It can be used as a filler for sealants, a raw material for high-purity ceramics, a catalyst carrier, etc., and has great industrial value.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ケイ酸エステルと水との混合液を分散
安定剤の存在下、該混合液と実質的に相溶性のない有機
液体中に懸濁させ、ケイ酸エステルを加水分解してゲル
状シリカ粒子を製造する方法において、該懸濁工程を、
攪拌所要動力0.1kW/m3 以上且つ滞留時間10
分以下の条件下で行なうことを特徴とするゲル状シリカ
粒子の製造方法
Claim 1: A mixture of a silicate ester and water is suspended in an organic liquid that is substantially incompatible with the mixture in the presence of a dispersion stabilizer, and the silicate is hydrolyzed to form a gel. In the method for producing shaped silica particles, the suspension step comprises:
Required stirring power: 0.1kW/m3 or more and residence time: 10
A method for producing gel-like silica particles characterized by carrying out under conditions of less than 10 minutes.
【請求項2】  ケイ酸エステルと水との混合液、該混
合液と実質的に相溶性のない有機液体及び分散安定剤を
連続式混合分散器に連続的に供給し、請求項1記載の懸
濁工程を実施することを特徴とするゲル状シリカ粒子の
連続的製造方法
2. The method according to claim 1, wherein a mixed solution of a silicate ester and water, an organic liquid that is substantially incompatible with the mixed solution, and a dispersion stabilizer are continuously supplied to a continuous mixing and dispersing device. Continuous production method of gel-like silica particles, characterized by carrying out a suspension step
JP398691A 1991-01-17 1991-01-17 Production of celled silica particles Pending JPH04240110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP398691A JPH04240110A (en) 1991-01-17 1991-01-17 Production of celled silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP398691A JPH04240110A (en) 1991-01-17 1991-01-17 Production of celled silica particles

Publications (1)

Publication Number Publication Date
JPH04240110A true JPH04240110A (en) 1992-08-27

Family

ID=11572349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP398691A Pending JPH04240110A (en) 1991-01-17 1991-01-17 Production of celled silica particles

Country Status (1)

Country Link
JP (1) JPH04240110A (en)

Similar Documents

Publication Publication Date Title
JP6676479B2 (en) Hexagonal boron nitride powder and method for producing the same
JP2008508169A (en) Highly filled aqueous metal oxide dispersion
CN109762013B (en) Melamine cyanurate with silane structure, preparation method and application thereof
CN107298446B (en) Preparation method of high-purity micron-sized spherical silicon dioxide micropowder
US5070049A (en) Starting composition for the production of silicon carbide and method of producing the same
JP2533563B2 (en) Method for producing gel-like silica particles
JP6516553B2 (en) Hexagonal boron nitride powder
CN113666380B (en) Preparation method of spherical silicon dioxide
CN113321219B (en) Preparation method of spherical silicon micropowder
JPS62176928A (en) Production of quartz glass powder
JPH06340412A (en) Powdery synthetic quartz glass
CN113060746A (en) Preparation method of large-particle-size alumina raw material and spherical alumina product thereof
JPH04240110A (en) Production of celled silica particles
JPH0687608A (en) Production of monodispersive spherical silica
JPH04243912A (en) Production of silicate grain
JPH08337413A (en) Silica particles and their production
TW201914687A (en) Method for preparing high-purity micron-sized spherical silicon dioxide micropowder capable of producing a silicon oxide microsphere with extremely high purity by a simple operation
JPH029704A (en) Raw material composition for producing silicon carbide and its production
CN115057469B (en) Spherical calcium titanate preparation method
CN112194142B (en) Method for preparing high-purity spherical silicon dioxide and high-purity spherical silicon dioxide
JP2023110669A (en) Method for adjusting particle diameter of silica particles and method for producing silica particles
JPH0351643B2 (en)
JP2903242B2 (en) Method for producing powdery spherical silica glass
JPH11147709A (en) Production of granular silica
JP3847819B2 (en) Method for producing synthetic quartz glass powder