JPH04243912A - Production of silicate grain - Google Patents

Production of silicate grain

Info

Publication number
JPH04243912A
JPH04243912A JP1123691A JP1123691A JPH04243912A JP H04243912 A JPH04243912 A JP H04243912A JP 1123691 A JP1123691 A JP 1123691A JP 1123691 A JP1123691 A JP 1123691A JP H04243912 A JPH04243912 A JP H04243912A
Authority
JP
Japan
Prior art keywords
organic liquid
particles
water
mixed solution
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1123691A
Other languages
Japanese (ja)
Inventor
Eiji Hattori
英次 服部
Toshitaka Nishiyama
西山 敏孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1123691A priority Critical patent/JPH04243912A/en
Publication of JPH04243912A publication Critical patent/JPH04243912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain silicate particles excellent in dispersibility by suspending an aqueous solution containing a metallic compound and a hydrolyzable silicon compound in an incompatible organic liquid using a cellulosic dispersing agent and gelatinizing the resultant suspension. CONSTITUTION:At least one compound (e.g. tetraisopropoxytitanium) of a metal selected from groups I, II, III and IV of the periodic table and a hydrolyzable silicon compound (e.g. tetramethoxytitanium) are dissolved in water. The resultant mixed solution is then suspended in an organic liquid (e.g. toluene) incompatible with the aforementioned mixture solution using a water-insoluble cellulosic ester or cellulosic ether (e.g. ethyl cellulose) insoluble in the above-mentioned organic liquid as a dispersion stabilizer. The obtained suspension is subsequently heated and gelatinized while being stirred and the produced get particles are separated, dried and burned to afford the objective spherical silicate grains having a relatively large grain diameter without aggregation. The aforementioned silicate grains are suitable as a filler, etc., for resins used) in sealing semiconductors.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は球状で粒径0.1〜10
0μmの範囲で凝集がなく、したがって分散性が良好な
けい素と周期律表第I〜IV族の金属元素を主な構成成
分とするけい酸塩粒子を得る方法に関する。本発明によ
って得られるけい酸塩粒子は、IC、LSIなど半導体
素子樹脂封止の充填材や歯科用補修材など各種分野の充
填材及びセラミックス、ガラス原料及び触媒担体等とし
て利用される。 【0002】 【従来の技術】けい素と周期律表第I〜IV族の金属元
素を主な構成成分とするけい酸塩粒子の製造法としては
、シリカと周期律表第I〜IV族の金属酸化物を混合し
、該混合物を融点以上の温度で溶融後冷却してガラス状
物とし該ガラス状物を粉砕して角型粒子を得る方法や、
特公平1−38043号及び38044号に記載された
加水分解可能な有機けい素化合物の低縮合物と加水分解
可能な周期律表第I〜IV族の有機化合物とを含む混合
溶液を、該有機けい素化合物の低縮合物及び周期律表第
I〜IV族の有機化合物は溶解するが反応生成物は実質
的に溶解しないアルカリ性溶媒中に添加し加水分解を行
い、反応生成物を析出させ、さらにこれを焼成して0.
1〜0.53μmのけい酸塩粒子を得る湿式方法が知ら
れている。 【0003】しかしながら、前記溶融粉砕法で得られる
粒子は形状が角型不定形であり粒度分布も広く、また、
前記湿式法では0.1〜0.53μmの微細粒子しか得
られず、いずれも、限られた用途にしか使用できないと
いう問題があった。 【0004】 【発明が解決しようとする課題】本発明の目的は粒径0
.1〜100μmの範囲で凝集がなく、したがって分散
性が良好である球状の、けい素と周期律表第I〜IV族
の金属元素を主な構成成分とする球状けい酸塩粒子を得
ることにある。 【0005】 【課題を解決する手段】本発明者らは周期律表第I、I
I、III およびIV族の金属の化合物と加水分解可
能なけい素化合物および水を含む混合溶液を特定の条件
下で加水分解、重合させるならば、凝集のない球状のけ
い酸塩粒子が得られることを見出し、本発明に到達した
。 【0006】しかして本発明の要旨は、周期律表第I、
II、III およびIV族から選ばれる金属の化合物
の少なくとも1種と加水分解可能なけい素化合物および
水を含む混合溶液を、該混合溶液と実質的に相溶性のな
い有機液体中に懸濁させた後ゲル化させてけい酸塩粒子
を製造する方法において、該有機液体中に該有機液体に
可溶な水不溶性セルロースエステル又はセルロースエー
テルを分散安定剤として存在させることを特徴とするけ
い酸塩粒子の製造方法に存する。 【0007】以下、本発明を詳細に説明する。本発明に
使用するけい素化合物は加水分解可能な化合物から選ば
れ、具体的には、テトラメトキシシラン、テトラエトキ
シシラン、テトラプロポキシシラン、テトラプトキシシ
ラン等のオルトケイ酸のアルキルエステルおよびその縮
合物が代表的な化合物である。その他、トリメトキシメ
チルシラン、ジメトキシジメチルシラン、トリエトキシ
エチルシラン、ジエトキシジエチルシラン等のアルコキ
シアルキルシランおよびその縮合物でもよい。 【0008】また、もう1つの原料である周期律表第I
〜IV族の金属の化合物は、広い範囲から選ばれ、この
種反応に使用されている公知のものが使用可能であるが
、反応の際加水分解可能なけい素化合物と均一水溶液を
形成し得る化合物から選ばれる。均一水溶液の形成には
必要に応じ少量のアルコール等の共溶媒を用いることが
できる。 【0009】好ましくは、一般式M1 (OR′)、M
2 (OR′)2 、M3 (OR′)3 、M4 (
OR′)4 、(但しR′はアルキル基)で表示される
金属アルコキシド化合物又は上記一般式中の一つ又は二
つのアルコキシド基(OR′)がカルボキシル基あるい
はβ−ジカルボニル基で置換された化合物が挙げられる
。ここでM1 は第I族の金属、M2 は第II族の金
属、M3 は第III 族の金属、M4 は第IV族の
金属で、具体的には例えばリチウム、ナトリウム、カリ
ウム、マグネシウム、カルシウム、ストロンチウム、バ
リウム、アルミニウム、チタニウム、ジルコニウム、ゲ
ルマニウム、ハフニウム、錫又は鉛が好適に使用される
。 【0010】また、分散媒として用いられる有機液体は
、周期律表第I、II、III およびIV族の金属化
合物のうち少なくとも1種と加水分解可能なけい素化合
物および水を含む混合溶液に対して実質的に相溶性が無
いものであればいかなるものでもよいが、通常は炭化水
素またはハロゲン化芳香族炭化水素が用いられる。炭化
水素としては炭素数6〜10の芳香族炭化水素、脂環族
炭化水素もしくは脂肪族炭化水素が好ましく、ハロゲン
化芳香族炭化水素としては塩素化ベンゼンが好ましい。 とくに好適な有機溶媒はベンゼン、トルエン、キシレン
、シクロヘキサン、メチルシクロヘキサン、シクロオク
タン、デカリン、n−ヘキサン、n−ヘプタン、n−オ
クタン、n−デカン、クロルベンゼン、ジクロルベンゼ
ン、シメン、クメンなどである。 【0011】本発明方法では周期律表第I、II、II
I およびIV族の金属の化合物の少なくとも1種と加
水分解可能なけい素化合物および水を混合して原料溶液
を調製する。このとき金属化合物と加水分解可能な有機
けい素化合物と水が均一溶液化せず相分離を起こす場合
があるが、このような場合にはアルコールなどの溶媒を
添加することによって均一溶液とする。該均一溶液をも
って原料溶液とする。なお、後工程のゲル化に要する時
間を短縮するために触媒を添加することもできる。触媒
には塩酸、硝酸、硫酸、酢酸、修酸、蟻酸などの酸性触
媒やアンモニア、アミン、苛性アルカリなどの塩基性触
媒が使用できる。 【0012】次に前記のように調製した原料溶液と、該
原料溶液と実質的に相溶性のない分散媒である有機液体
を混合することによって原料溶液が懸濁粒子として分散
したエマルジョンを形成させ、引き続いて懸濁粒子のゲ
ル化を行なってゲル粒子を生成させる。このとき、分散
媒の容量は原料溶液が懸濁粒子として分散したエマルジ
ョンを形成するに十分な程度であればよく、通常は原料
溶液に対して同量以上である。 【0013】なお、エマルジョンの安定性を増すために
分散安定剤を添加する。分散安定剤としては、前記原料
溶液には不溶で、かつ、分散媒である有機液体には可溶
なセルロースエステルまたはセルロースエーテルが使用
される。具体的にはセルロースアセテートブチレート、
エチルセルロース、エチルヒドロキシエチルセルロース
などの油溶性セルロースエステルまたはエーテルを挙げ
ることができる。 【0014】また、混合の方法は特に限定条件はなく、
インペラー型の回転攪拌機や乳化重合用の乳化機などや
微細な孔を有するノズルやフィルターなどを通して原料
溶液を有機液体中へ押し出すなどの方法が使用できる。 これらのうち、通常は、インペラー型の回転攪拌機を用
いる方法や微細な孔を有するノズルやフィルターなどを
通して原料溶液を有機液体中へ押し出す方法は、50μ
m以上の大粒子を製造する場合に適し、乳化重合用の乳
化機を使用する方法は50μm以下の微細粒子を製造す
る場合に適している。 【0015】なお、50μm以下の微細粒子を製造する
場合、前記原料溶液と、該原料溶液と実質的に相溶解性
のない有機液体を連続式混合分散器に導入し、0.1k
W/m3以上好ましくは0.2〜2000kW/m3の
強力な攪拌所要動力で懸濁工程での滞留時間が10分以
下好ましくは0.1〜5分の条件で混合する連続方法が
好ましい。このとき、攪拌所要動力が0.1kW/m3
より小さいと混合が十分に行なわれず不均一なエマルジ
ョンになりやすいため好ましくなく、また、懸濁工程で
の滞留時間が10分より長いと、懸濁液滴化した原料溶
液のゲル化が始まるため一部のゲル粒子に破砕や凝集が
発生するため好ましくない。ここに、連続式混合分散器
とは、例えばパイプラインミキサーのような、均質な微
小間隙に生ずる強力な剪断力によって媒体と分散質を微
細かつ均質に混合できる連続式混合容器を意味する。 【0016】懸濁工程終了後は必要に応じ、反応液をそ
のまま、あるいは加温下、静置あるいはゆるやかに攪拌
し放置することによりゲルの生成を促進する。生成した
ゲル粒子はデカンテーションや濾過等により反応液から
分離することができ、粒子表面に付着している分散安定
剤を有機溶媒で溶解洗浄後乾燥するか、又はそのまま3
00〜400℃程度に加熱して分散安定剤を燃焼分解さ
せることによってけい酸塩粒子が得られる。該けい酸塩
粒子は凝集のない比表面積の大きな球状粒子として得ら
れ、そのままでも各種分野の充填材や触媒担体等として
利用することができるが、通常は1000℃以上の温度
で焼成して緻密化する。焼成した場合も、凝集は発生せ
ず、球状のけい酸塩を得ることができる。 【0017】 【実施例】以下実施例を挙げて本発明を具体的に説明す
るが、本発明はその要旨を超えない限り以下の実施例に
制約されるものではない。本発明でいう攪拌所要動力お
よび懸濁工程での滞留時間は以下のようにして求めた。 【0018】(1)単位容積当たりの攪拌所要動力攪拌
所要動力は次式から求めることができる。 p=Np ・ρ/gc ・n3 ・d5 p    :
  攪拌所要動力〔kg・m/sec 〕Np   :
  攪拌翼の形状で決まる定数ρ    :  液の密
度    〔kg/m3〕gc   :  重力換算係
数〔kg・m/kg・sec2〕n    :  攪拌
速度    〔l/sec2〕d    :  攪拌翼
の翼長〔m〕 単位容積当たりの攪拌所要動力は、上式より求めたpを
攪拌機内容積vで除することによって求められる。 P=p/v/101.972 P    :  単位容積当たりの攪拌所要動力〔kW
/m3〕p    :  攪拌所要動力〔kg・m/s
ec 〕v    :  攪拌機内容積〔m3〕ただし
1kW=101.972kg・m/sec 【0019
】(2)懸濁工程での滞留時間T=v/m v    :  攪拌機内容積〔m3〕m    : 
 被攪拌液体が攪拌機に送り込まれる流速〔m3/mi
n〕 【0020】実施例1 分散安定剤としてエトキシ基が全重量に対して49%で
あるエチルセルロース1.8gをp−シメン(p−イソ
プロピルトルエン)429gに加え60℃で30分加熱
してエチルセルロースを十分に溶解した溶液をフラスコ
中に入れ、錨型攪拌翼で攪拌(300rpm )しなが
ら60℃の恒温槽中に保持し分散媒とした。別に、あら
かじめ5℃に冷却したテトラメトキシシラン34.1g
とテトライソプロポキシチタン8.4gおよびメタノー
ル38.9gの混合溶液に、あらかじめ5℃に冷却した
1.4重量%酢酸水溶液18.5gを攪拌下17分かけ
て滴下したのち5℃で2時間保持して透明な均一原料溶
液を得た。 【0021】該原料溶液を前記分散媒に添加してそのま
ま300rpm で攪拌しながら恒温槽中で60℃にて
30分保持することによりゲル化を行なってゲル粒子分
散スラリーを得た。該ゲル粒子分散スラリー中には凝集
が全くない球状のゲル粒子が生成していた。次いでデカ
ンテーションによりゲル粒子を分離したのち、200℃
で24時間乾燥し、さらに空気中で1000℃、2時間
焼成してけい酸塩粒子を得た。該けい酸塩粒子は凝集が
全くなく球状であり平均粒径は52μmであった。 【0022】実施例2〜4、比較例1、2分散安定剤と
してエトキシ基が全重量に対して49%であるエチルセ
ルロース97gをp−シメン(p−イソプロピルトルエ
ン)23.19kgに加え60℃で15分加熱してエチ
ルセルロースを十分に溶解した溶液を分散媒とした。別
に、あらかじめ5℃に冷却したテトラメトキシシラン1
562gとテトライソプロポキシチタン387gおよび
メタノール1782gの混合溶液に、あらかじめ5℃に
冷却した酢酸12gと蒸留水837gの混合溶液を、攪
拌下17分かけて滴下したのち5℃で2時間保持して透
明な均一原料溶液を得た。 【0023】次に該原料溶液1に対して前記分散媒が4
.5の体積割合になるようにそれぞれパイプラインホモ
ミキサー(特殊機化工業株式会社製)に導入し、表1に
記載の攪拌所要動力、滞留時間の条件で混合することに
より原料溶液が懸濁液滴として分散したエマルジョンを
得た。このエマルジョンを、さらに60℃で30分加熱
することによりテトラメトキシシランの加水分解・重合
によるゲル化を完了させてゲル粒子分散スラリーを得た
。次いでデカンテーションによりゲル粒子を分離しアセ
トンで洗浄した後200℃で24時間乾燥しさらに空気
中1000℃で2時間焼成してけい酸塩粒子を得た。 該けい酸塩粒子の形状、凝集状態と平均粒径を表1に示
した。 【0024】 【表1】             攪拌所要動力    滞留時
間  けい酸塩粒子の  球状けい酸塩粒子の    
        (kW/m3)       (分)
    分散、凝集状態  平均粒径(μm)比較例1
      210        11      
  凝集あり            −比較例2  
        0.05    0.2    粗大
凝集あり        −実施例2        
  0.2      0.5    凝集なし   
     41.8μm実施例3        50
          0.2    凝集なし    
    14.7μm実施例4      740  
        0.2    凝集なし      
    1.6μm実施例5    1180    
      0.2    凝集なし        
  0.8μm【0025】 【発明の効果】本発明方法によれば粒径が0.1〜10
0μmという比較的大粒径を有し、分散性の良好なけい
素と金属を主な構成成分とする球状けい酸塩を得るとが
できる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention has a spherical shape and a particle size of 0.1 to 10.
The present invention relates to a method for obtaining silicate particles whose main constituents are silicon and metal elements from Groups I to IV of the periodic table, which are free from agglomeration in the range of 0 μm and therefore have good dispersibility. The silicate particles obtained by the present invention are used as fillers for resin sealing of semiconductor devices such as ICs and LSIs, fillers in various fields such as dental repair materials, ceramics, raw materials for glass, catalyst carriers, and the like. [Prior Art] As a method for producing silicate particles whose main constituents are silicon and metal elements belonging to groups I to IV of the periodic table, silica and metal elements belonging to groups I to IV of the periodic table are produced. A method of mixing metal oxides, melting the mixture at a temperature higher than the melting point and cooling it to form a glassy material, and crushing the glassy material to obtain square particles;
A mixed solution containing a low condensate of hydrolyzable organosilicon compounds described in Japanese Patent Publication Nos. 1-38043 and 38044 and a hydrolyzable organic compound of groups I to IV of the periodic table is mixed with the organic compound. A low condensation product of a silicon compound and an organic compound of Groups I to IV of the periodic table are dissolved in an alkaline solvent in which the reaction product is not substantially dissolved, and hydrolysis is carried out to precipitate the reaction product, This is then fired to 0.
Wet methods for obtaining silicate particles of 1-0.53 μm are known. [0003] However, the particles obtained by the above-mentioned melt-grinding method have a rectangular amorphous shape and a wide particle size distribution, and
In the wet method, only fine particles of 0.1 to 0.53 μm can be obtained, and both methods have a problem in that they can only be used for limited purposes. [Problems to be Solved by the Invention] The object of the present invention is to reduce the particle size to 0.
.. To obtain spherical silicate particles whose main constituents are silicon and metal elements of groups I to IV of the periodic table, which have no agglomeration in the range of 1 to 100 μm and therefore have good dispersibility. be. [Means for Solving the Problems] The present inventors have determined that the periodic table I and I
If a mixed solution containing compounds of metals of groups I, III, and IV, a hydrolyzable silicon compound, and water is hydrolyzed and polymerized under specific conditions, spherical silicate particles without agglomeration can be obtained. They discovered this and arrived at the present invention. [0006]The gist of the present invention is that periodic table I,
A mixed solution containing at least one metal compound selected from Groups II, III, and IV, a hydrolyzable silicon compound, and water is suspended in an organic liquid that is substantially incompatible with the mixed solution. A method for producing silicate particles by gelling the silicate particles, the silicate being characterized in that a water-insoluble cellulose ester or cellulose ether soluble in the organic liquid is present as a dispersion stabilizer in the organic liquid. The problem lies in the method of manufacturing the particles. The present invention will be explained in detail below. The silicon compound used in the present invention is selected from hydrolyzable compounds, specifically, alkyl esters of orthosilicic acid such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraptoxysilane, and condensates thereof. is a typical compound. In addition, alkoxyalkylsilanes such as trimethoxymethylsilane, dimethoxydimethylsilane, triethoxyethylsilane, diethoxydiethylsilane, and condensates thereof may be used. [0008] Another raw material, Periodic Table I
The compound of the ~IV group metal can be selected from a wide range, and those known for use in this type of reaction can be used, but they can form a homogeneous aqueous solution with the hydrolyzable silicon compound during the reaction. selected from compounds. A small amount of a co-solvent such as alcohol can be used if necessary to form a homogeneous aqueous solution. Preferably, the general formula M1 (OR'), M
2 (OR')2 , M3 (OR')3 , M4 (
OR') 4, (where R' is an alkyl group) metal alkoxide compound or one or two alkoxide groups (OR') in the above general formula are substituted with a carboxyl group or a β-dicarbonyl group Examples include compounds. Here, M1 is a metal of group I, M2 is a metal of group II, M3 is a metal of group III, and M4 is a metal of group IV, specifically, for example, lithium, sodium, potassium, magnesium, calcium, Strontium, barium, aluminium, titanium, zirconium, germanium, hafnium, tin or lead are preferably used. [0010] The organic liquid used as a dispersion medium is a mixed solution containing at least one metal compound of Groups I, II, III and IV of the periodic table, a hydrolyzable silicon compound, and water. Any substance may be used as long as it is substantially incompatible with the hydrocarbon, but hydrocarbons or halogenated aromatic hydrocarbons are usually used. The hydrocarbons are preferably aromatic hydrocarbons, alicyclic hydrocarbons, or aliphatic hydrocarbons having 6 to 10 carbon atoms, and the halogenated aromatic hydrocarbons are preferably chlorinated benzenes. Particularly suitable organic solvents are benzene, toluene, xylene, cyclohexane, methylcyclohexane, cyclooctane, decalin, n-hexane, n-heptane, n-octane, n-decane, chlorobenzene, dichlorobenzene, cymene, cumene, etc. be. In the method of the present invention, periodic table I, II, II
A raw material solution is prepared by mixing at least one metal compound of Groups I and IV, a hydrolyzable silicon compound, and water. At this time, the metal compound, the hydrolyzable organosilicon compound, and water may not form a homogeneous solution and phase separation may occur, but in such cases, a homogeneous solution is obtained by adding a solvent such as alcohol. This homogeneous solution is used as a raw material solution. Note that a catalyst can also be added in order to shorten the time required for gelation in the subsequent step. As the catalyst, acidic catalysts such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid, and formic acid, and basic catalysts such as ammonia, amine, and caustic alkali can be used. Next, the raw material solution prepared as described above is mixed with an organic liquid serving as a dispersion medium that is substantially incompatible with the raw material solution to form an emulsion in which the raw material solution is dispersed as suspended particles. , followed by gelation of the suspended particles to produce gel particles. At this time, the volume of the dispersion medium may be sufficient to form an emulsion in which the raw material solution is dispersed as suspended particles, and is usually at least the same amount as the raw material solution. Note that a dispersion stabilizer is added to increase the stability of the emulsion. As the dispersion stabilizer, cellulose ester or cellulose ether is used, which is insoluble in the raw material solution and soluble in the organic liquid that is the dispersion medium. Specifically, cellulose acetate butyrate,
Oil-soluble cellulose esters or ethers such as ethylcellulose and ethylhydroxyethylcellulose can be mentioned. [0014] Furthermore, there are no particular limitations on the mixing method;
Methods such as extruding the raw material solution into an organic liquid through an impeller-type rotary stirrer, an emulsifier for emulsion polymerization, a nozzle or a filter having fine holes, etc. can be used. Among these methods, the method using an impeller-type rotary stirrer or the method of extruding the raw material solution into the organic liquid through a nozzle or filter with fine holes is usually used.
The method using an emulsifying machine for emulsion polymerization is suitable for producing fine particles of 50 μm or less. In addition, when producing fine particles of 50 μm or less, the raw material solution and an organic liquid that is substantially incompatible with the raw material solution are introduced into a continuous mixing and dispersing device, and 0.1 k
A continuous method is preferred in which the mixture is mixed under conditions of strong stirring power of W/m3 or more, preferably 0.2 to 2000 kW/m3, and residence time in the suspension step of 10 minutes or less, preferably 0.1 to 5 minutes. At this time, the power required for stirring is 0.1kW/m3
If it is smaller than this, it is not preferable because mixing will not be done sufficiently and a non-uniform emulsion will likely result.If the residence time in the suspension step is longer than 10 minutes, gelation of the raw material solution that has been formed into suspension droplets will begin. This is not preferable because some gel particles may be crushed or aggregated. Here, the continuous mixing and dispersing device refers to a continuous mixing vessel, such as a pipeline mixer, which is capable of finely and homogeneously mixing a medium and a dispersoid by a strong shearing force generated in a homogeneous micro gap. [0016] After the suspension step, if necessary, the reaction solution is allowed to stand as it is, or is allowed to stand under heating, or is left to stand with gentle stirring to promote the formation of a gel. The generated gel particles can be separated from the reaction solution by decantation, filtration, etc., and the dispersion stabilizer attached to the particle surface can be dissolved and washed with an organic solvent, then dried, or left as is.
Silicate particles are obtained by heating to about 00 to 400°C to burn and decompose the dispersion stabilizer. The silicate particles are obtained as spherical particles with a large specific surface area without agglomeration, and can be used as fillers or catalyst supports in various fields as they are, but are usually calcined at a temperature of 1000°C or higher to become dense. become Even when calcined, no agglomeration occurs and spherical silicate can be obtained. [Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. The power required for stirring and the residence time in the suspension step in the present invention were determined as follows. (1) Power required for stirring per unit volume The power required for stirring can be determined from the following equation. p=Np ・ρ/gc ・n3 ・d5 p:
Power required for stirring [kg・m/sec] Np:
Constant determined by the shape of the stirring blade ρ: Density of the liquid [kg/m3] gc: Gravity conversion coefficient [kg・m/kg・sec2] n: Stirring speed [l/sec2] d: Blade length of the stirring blade [m] The power required for stirring per unit volume is obtained by dividing p obtained from the above formula by the internal volume v of the stirrer. P=p/v/101.972 P: Required stirring power per unit volume [kW
/m3]p: Required stirring power [kg・m/s
ec]v: Stirrer internal volume [m3] However, 1kW=101.972kg・m/sec 0019
] (2) Residence time in the suspension step T=v/m v: Stirrer internal volume [m3] m:
The flow rate at which the liquid to be stirred is fed into the stirrer [m3/mi
[0020] Example 1 1.8 g of ethyl cellulose containing 49% of ethoxy groups based on the total weight as a dispersion stabilizer was added to 429 g of p-cymene (p-isopropyltoluene) and heated at 60° C. for 30 minutes to form ethyl cellulose. A sufficiently dissolved solution was put into a flask and kept in a constant temperature bath at 60° C. while stirring with an anchor-type stirring blade (300 rpm) to serve as a dispersion medium. Separately, 34.1 g of tetramethoxysilane pre-cooled to 5°C
To a mixed solution of 8.4 g of titanium, tetraisopropoxy titanium, and 38.9 g of methanol, 18.5 g of a 1.4 wt% acetic acid aqueous solution previously cooled to 5°C was added dropwise over 17 minutes with stirring, and then held at 5°C for 2 hours. A transparent homogeneous raw material solution was obtained. The raw material solution was added to the dispersion medium and kept at 60° C. for 30 minutes in a constant temperature bath while stirring at 300 rpm to perform gelation, thereby obtaining a gel particle dispersion slurry. Spherical gel particles with no agglomeration were produced in the gel particle dispersion slurry. Next, after separating the gel particles by decantation, the gel particles were heated at 200°C.
The powder was dried for 24 hours and then calcined in air at 1000°C for 2 hours to obtain silicate particles. The silicate particles were spherical with no agglomeration and had an average particle size of 52 μm. Examples 2 to 4, Comparative Examples 1 and 2 As a dispersion stabilizer, 97 g of ethylcellulose containing 49% of ethoxy groups based on the total weight was added to 23.19 kg of p-cymene (p-isopropyltoluene) at 60°C. A solution in which ethyl cellulose was sufficiently dissolved by heating for 15 minutes was used as a dispersion medium. Separately, tetramethoxysilane 1 pre-cooled to 5°C
A mixed solution of 12 g of acetic acid and 837 g of distilled water, previously cooled to 5°C, was added dropwise to a mixed solution of 562 g of titanium, 387 g of tetraisopropoxytitanium, and 1782 g of methanol under stirring over 17 minutes, and then kept at 5°C for 2 hours to make it transparent. A uniform raw material solution was obtained. Next, the amount of the dispersion medium is 4 to 1 of the raw material solution.
.. 5 into a pipeline homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) and mixed under the conditions of stirring power and residence time listed in Table 1 to turn the raw material solution into a suspension. An emulsion was obtained which was dispersed as droplets. This emulsion was further heated at 60° C. for 30 minutes to complete gelation by hydrolysis and polymerization of tetramethoxysilane to obtain a gel particle-dispersed slurry. Next, the gel particles were separated by decantation, washed with acetone, dried at 200°C for 24 hours, and further calcined in air at 1000°C for 2 hours to obtain silicate particles. Table 1 shows the shape, agglomeration state, and average particle size of the silicate particles. [Table 1] Required stirring power Residence time For silicate particles For spherical silicate particles
(kW/m3) (minutes)
Dispersion and aggregation state Average particle size (μm) Comparative example 1
210 11
With aggregation - Comparative Example 2
0.05 0.2 Coarse aggregation - Example 2
0.2 0.5 No agglomeration
41.8 μm Example 3 50
0.2 No agglomeration
14.7 μm Example 4 740
0.2 No agglomeration
1.6μm Example 5 1180
0.2 No agglomeration
0.8 μm [Effect of the invention] According to the method of the present invention, the particle size is 0.1 to 10 μm.
It is possible to obtain a spherical silicate having a relatively large particle size of 0 μm and having good dispersibility and mainly consisting of silicon and metal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  周期律表第I、II、III および
IV族から選ばれる金属の化合物の少なくとも1種と加
水分解可能なけい素化合物および水を含む混合溶液を、
該混合溶液と実質的に相溶性のない有機液体中に懸濁さ
せた後ゲル化させてけい酸塩粒子を製造する方法におい
て、該有機液体中に該有機液体に可溶な水不溶性セルロ
ースエステルまたはセルロースエーテルを分散安定剤と
して存在させることを特徴とするけい酸塩粒子の製造方
法。
1. A mixed solution containing at least one metal compound selected from Groups I, II, III and IV of the Periodic Table, a hydrolyzable silicon compound, and water,
A method for producing silicate particles by suspending the particles in an organic liquid that is substantially incompatible with the mixed solution and then gelling the water-insoluble cellulose ester, which is soluble in the organic liquid, in the organic liquid. Alternatively, a method for producing silicate particles, characterized in that cellulose ether is present as a dispersion stabilizer.
【請求項2】  周期律表第I、II、III および
IV族から選ばれる金属の化合物の少なくとも1種と加
水分解可能なけい素化合物および水を含む混合溶液と該
混合溶液と実質的に相溶性のない有機液体とを、連続式
混合分散器に供給し、0.1kW/m3以上の攪拌所要
動力且つ懸濁工程での滞留時間10分以下の条件で懸濁
させることを特徴とする請求項1記載のけい酸塩粒子の
連続的製造方法。
2. A mixed solution containing at least one metal compound selected from Groups I, II, III, and IV of the Periodic Table, a hydrolyzable silicon compound, and water, and a solution substantially compatible with the mixed solution. A claim characterized in that an insoluble organic liquid is supplied to a continuous mixing and dispersing device and suspended under conditions of a required stirring power of 0.1 kW/m3 or more and a residence time in the suspension step of 10 minutes or less. Item 1. A method for continuously producing silicate particles according to item 1.
JP1123691A 1991-01-31 1991-01-31 Production of silicate grain Pending JPH04243912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123691A JPH04243912A (en) 1991-01-31 1991-01-31 Production of silicate grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123691A JPH04243912A (en) 1991-01-31 1991-01-31 Production of silicate grain

Publications (1)

Publication Number Publication Date
JPH04243912A true JPH04243912A (en) 1992-09-01

Family

ID=11772305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123691A Pending JPH04243912A (en) 1991-01-31 1991-01-31 Production of silicate grain

Country Status (1)

Country Link
JP (1) JPH04243912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978741A (en) * 2021-02-02 2021-06-18 中国科学院上海硅酸盐研究所 Manganese silicate hollow nanosphere capable of immunoregulation vascularization and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978741A (en) * 2021-02-02 2021-06-18 中国科学院上海硅酸盐研究所 Manganese silicate hollow nanosphere capable of immunoregulation vascularization and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2008508169A (en) Highly filled aqueous metal oxide dispersion
JPH10316750A (en) Spherical polyamide and production thereof
CN101851308A (en) In-situ suspension polymerization preparation method of nanocomposite material consisting of polyvinyl chloride and silicon dioxide and product thereof
JPH0671553B2 (en) Process for the manufacture of microencapsulated flakes or powders, process for the preparation of medicinal products for flatulence, additives for cements, concretes, paints and plasters and processes for surface modification of plastics and stabilization of foams
CN113321219B (en) Preparation method of spherical silicon micropowder
JP4494473B2 (en) Method and apparatus for producing polyvinyl alcohol having a high degree of polymerization
KR960003236B1 (en) Method for preparing silica gel particles
JPH04243912A (en) Production of silicate grain
JP4044350B2 (en) Nonporous spherical silica and method for producing the same
JPH04240110A (en) Production of celled silica particles
TWI664014B (en) Preparation method of high-purity micron-level spherical silicon dioxide fine powder
JPS6385012A (en) Production of siliceous spherical particle
JPH07257925A (en) Zirconia minute particle
JP2002293857A (en) Method for producing amino resin particle
JP2002293856A (en) Method for producing amino resin particle
JPH0812324A (en) Production of fine particle-shaped hydroxide
JPH0351643B2 (en)
JPH02145405A (en) Manufacture of metallic oxide powder from metal alkoxide
KR100417694B1 (en) Preparation method of spherical monodispersed bariumtitanate particles
EP1748838A2 (en) Method of producing modified metal oxides that are dispersible in an organic matrix
JP2002293855A (en) Method for producing amino resin particle
JP3653753B2 (en) Inorganic composite oxide and method for producing the same
JPH01264924A (en) Production of spherical silica
JP2003210970A (en) Method for manufacturing colloidal fine particle slurry
KR19980048897A (en) Method for producing spherical barium hydroxide titanate fine particles