JPH04239094A - Method for desulfurizing and demetallizing residual oil - Google Patents

Method for desulfurizing and demetallizing residual oil

Info

Publication number
JPH04239094A
JPH04239094A JP15029491A JP15029491A JPH04239094A JP H04239094 A JPH04239094 A JP H04239094A JP 15029491 A JP15029491 A JP 15029491A JP 15029491 A JP15029491 A JP 15029491A JP H04239094 A JPH04239094 A JP H04239094A
Authority
JP
Japan
Prior art keywords
residual oil
diluent
oil
blend
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15029491A
Other languages
Japanese (ja)
Inventor
Byung Chang Choi
ビュン・チャン・チョイ
Philip Varghese
フィリップ・バーギーズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Publication of JPH04239094A publication Critical patent/JPH04239094A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE: To improve the effects of residual oil desulfurization and demetalation by blending the residual oil with a diluent of a low boiling point and hydrogenating the blend in specified conditions.
CONSTITUTION: A blend mainly containing residual oil is prepared by mixing residual oil with a diluent having a boiling point between 24°C and the boiling point of the residual oil. Next, the blend is brought into contact with a hydrogenation catalyst in conditions including temperature of 316-468°C, hydrogen pressure of 4,240-27,700 kPa, and space velocity (WHSV) of about 0.05-10. Cracked distillate such as gas oil, vacuum distillate, light and heavy cycle stock is used as the diluent.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、残油、例えば真空残油
の改良された脱硫および脱金属方法に関する。本発明に
おいて、脱硫及び/又は脱金属は、残油から不純物を実
質的に除去または減少させるものである。
FIELD OF THE INVENTION This invention relates to an improved process for desulfurizing and demetallizing resid oils, such as vacuum resid oils. In the present invention, desulfurization and/or demetallization substantially removes or reduces impurities from the residual oil.

【0002】0002

【従来の技術および発明が解決しようとする課題】不純
物は、ガソリンの製造のような残油の後の接触処理にお
いて、触媒に例えば触媒毒として影響を与える。
BACKGROUND OF THE INVENTION Impurities affect catalysts, for example as catalyst poisons, in the subsequent contact treatment of residual oils, such as in the production of gasoline.

【0003】0003

【課題を解決するための手段】本発明の要旨は、残油を
204℃ないし残油の沸点の範囲の沸点を有する希釈剤
とブレンドすることにより残油が主成分であるブレンド
を調製し、4240〜27700kPa(600〜40
00psig)の水素圧、316〜468℃(600〜
875°F)の高温および0.05〜10の空間速度を
含む条件下にブレンドを水素化処理触媒に接触させるこ
とを含んでなる残油の脱硫および脱金属方法に存する。
SUMMARY OF THE INVENTION The present invention provides for preparing a blend in which residual oil is the main component by blending residual oil with a diluent having a boiling point in the range of 204° C. to the boiling point of the residual oil; 4240~27700kPa (600~40
00 psig) hydrogen pressure, 316-468°C (600-
875° F.) and a space velocity between 0.05 and 10, comprising contacting the blend with a hydroprocessing catalyst.

【0004】本発明の一態様では、シリカ、アルミナま
たはシリカ−アルミナからなる群より選択される触媒の
存在下、上記の条件下に残油を軽油、留出油またはFC
C循環原料希釈剤に接触させる。一つの結果は、処理残
油の金属不純物含量が、軽油、留出油またはFCC循環
原料の不存在下、同一条件下に処理した残油より少ない
ことである。もう一つの結果は、低沸点フラクション(
軽油、留出油またはFCC循環原料)の存在下、この条
件下に処理した残油の硫黄含量が、軽油、留出油または
FCC循環油の不存在下、同一条件下に処理した残油よ
り少ないことである。
In one aspect of the invention, the residual oil is converted into gas oil, distillate oil or FC under the above conditions in the presence of a catalyst selected from the group consisting of silica, alumina or silica-alumina.
C. Contact with circulating raw material diluent. One result is that the metal impurity content of the treated resid is lower than that of a resid treated under the same conditions in the absence of gas oil, distillate or FCC recycle feedstock. Another result is that the low-boiling fraction (
The sulfur content of the residual oil treated under these conditions in the presence of gas oil, distillate oil or FCC recycled feedstock) is higher than that of the residual oil treated under the same conditions in the absence of gas oil, distillate oil or FCC recycled oil. It's a small thing.

【0005】残油の水素化処理の目的は、ニッケルおよ
びバナジウムのような金属の除去、硫黄生成物の減少お
よびCCR生成物の減少である。速度論的制限並びに炭
素質付着物および金属付着物による触媒汚染はこのよう
な処理において発生する二つの一般的問題である。常圧
残油は316〜427℃(600〜800°F)で沸騰
し、真空残油は482〜593℃(900〜1100°
F)で沸騰する。好ましくは、本発明により脱金属及び
/又は脱硫される残油は真空残油である。残油は、定義
によれば、原油の蒸留またはクラッキングプロセスから
の蒸気化しなかった液体または固体残渣油である。真空
残油は、蒸留される物質の分解およびクラッキングを避
ける目的で減圧において蒸留温度および留出物質の沸騰
温度を低下させる真空蒸留から得られる。すなわち、好
ましい態様において、第1工程は真空残油を提供するも
ので、上記目的を含む第1工程は標準的方法により真空
残油を提供するための原油の真空蒸留である。
The objectives of hydrotreating resid oils are removal of metals such as nickel and vanadium, reduction of sulfur products and reduction of CCR products. Kinetic limitations and catalyst contamination by carbonaceous and metal deposits are two common problems encountered in such processes. Atmospheric residues boil at 316-427°C (600-800°F) and vacuum residues boil at 482-593°C (900-1100°F).
F). Preferably, the resid to be demetalized and/or desulfurized according to the invention is a vacuum resid. Residual oil, by definition, is an unvaporized liquid or solid residual oil from a crude oil distillation or cracking process. Vacuum retentates are obtained from vacuum distillation in which the distillation temperature and the boiling temperature of the distillate material are lowered at reduced pressure in order to avoid decomposition and cracking of the material being distilled. Thus, in a preferred embodiment, the first step is to provide a vacuum resid, and the first step comprising the above purpose is the vacuum distillation of crude oil to provide the vacuum resid by standard methods.

【0006】残油のための低沸点希釈剤は、常圧および
真空軽油、またはLCO(軽質循環油)およびHCO(
重質循環油)のような分解留出油を含む。軽油は、灯油
と潤滑油との中間の粘度を有し、204〜427℃(約
400〜約800°F)の温度で沸騰する石油留出油で
ある。留出油は、ガソリン、灯油および軽質潤滑油を含
む。好ましい態様において、希釈剤は分解FCC留出油
のような芳香族流である。芳香族流としての分解留出油
はLCOおよびHCOを含む。本発明の方法において分
解留出油により提供される芳香族流と残油を組み合わせ
ることにより、触媒失活に有益な影響が及ぼされる。
Low-boiling diluents for residual oils are atmospheric and vacuum gas oils, or LCO (light circulating oil) and HCO (
including cracked distillate oils such as heavy circulating oils). Gas oil is a petroleum distillate oil that has a viscosity intermediate between that of kerosene and lubricating oil and boils at temperatures between about 400 and about 800 degrees Fahrenheit. Distillate oils include gasoline, kerosene and light lubricating oils. In a preferred embodiment, the diluent is an aromatic stream such as cracked FCC distillate. The cracked distillate as an aromatic stream contains LCO and HCO. Combining the aromatic stream provided by the cracked distillate with the resid in the process of the invention has a beneficial effect on catalyst deactivation.

【0007】残油は低沸点希釈剤とブレンドされる。得
られたブレンドは50体積%までの希釈剤を含み得る。 特に、ブレンドは約10〜30体積%の希釈剤を含む。 希釈剤の好ましい水準は、真空残油と希釈剤の各々の組
み合わせについて決められ、後述の水素化処理条件下に
おける脱金属および脱硫を促進するのに有効な量で残油
より低い沸点の希釈剤が存在する。本発明によれば、脱
金属および脱硫の両方またはいずれかの速度上昇は、1
00%までであり得る。特定の希釈剤について速度上昇
が100%であるとき、速度上昇は処理すべき残油の粘
度と共に増加する傾向がある。残油の粘度は産出場所に
より異なる。
[0007] The residual oil is blended with a low boiling diluent. The resulting blend may contain up to 50% by volume diluent. In particular, the blend contains about 10-30% diluent by volume. Preferred levels of diluent are determined for each combination of vacuum resid and diluent, including a diluent with a lower boiling point than the resid in an amount effective to promote demetalization and desulfurization under the hydroprocessing conditions described below. exists. According to the invention, the rate increase of demetalization and/or desulphurization is 1
It can be up to 00%. When the speed increase is 100% for a particular diluent, the speed increase tends to increase with the viscosity of the residual oil being treated. The viscosity of residual oil varies depending on where it is produced.

【0008】残油と希釈剤のブレンドを、石油残油の脱
金属および脱硫用のものとして当業者に良く知られてい
る固定床、沸騰床または移動床反応器において以下の水
素化処理条件に付することができる。水素化処理条件は
触媒を含む。
The blend of resid and diluent was subjected to the following hydroprocessing conditions in fixed bed, ebullated bed or moving bed reactors well known to those skilled in the art for demetallization and desulfurization of petroleum resid. can be attached. Hydrotreating conditions include a catalyst.

【0009】定義によれば、水素化処理は水素流を必要
とする。本発明の方法における水素圧は、4240〜2
7700kPa(600〜約4000psig)である
。本発明の方法における高温は約316〜468℃(6
00〜約875°F)である。空間速度(WHSV)は
0.05〜10である。
By definition, hydroprocessing requires a flow of hydrogen. The hydrogen pressure in the method of the present invention is 4240~2
7700 kPa (600 to about 4000 psig). The high temperature in the method of the present invention is about 316-468°C (6
00 to about 875°F). The space velocity (WHSV) is 0.05-10.

【0010】残油の脱金属及び/又は脱硫のための触媒
は一般的なものであってよい。触媒として有用なこれら
の組成物は、シリカ、アルミナまたはシリカ−アルミナ
を含む。
The catalyst for the demetalization and/or desulphurization of the residual oil may be conventional. These compositions useful as catalysts include silica, alumina or silica-alumina.

【0011】前述の条件下に、上記低沸点希釈剤の存在
下に水素化処理した残油の脱金属及び/又は脱硫の速度
定数が上昇する。この上昇故に、好ましくない結果を伴
うことなく、真空残油フラクションの処理に好ましい影
響さえ及ぼして特定の割合の希釈剤を同じ反応器におい
て水素化処理することができる。
Under the conditions described above, the rate constant for demetalization and/or desulfurization of the hydrotreated resid in the presence of the low-boiling diluent described above increases. Because of this increase, certain proportions of diluent can be hydrotreated in the same reactor without undesirable consequences, even having a positive influence on the treatment of the vacuum resid fraction.

【0012】この方法の生成物は、要すれば分別して他
の一般的装置に移すまたは最終生成物として直接使用す
ることができる。
The product of this process can be fractionated and transferred to other conventional equipment, if desired, or used directly as the final product.

【0013】[0013]

【実施例】実施例1   30%LCOの存在下、種々の空間速度においてア
ラブライト(AL)真空残油を水素化処理した。図1は
ニッケル除去の速度定数に対するLCOの影響を示し、
図2はバナジウム除去に対する影響を示す。30%LC
Oの存在は、速度定数の上昇により表した両者の割合以
上に脱金属を促進する。例えば、371℃(700°F
)の温度、13900kPa(2000psig)の圧
力および890v/v(5000SCF/BBL)の水
素循環量において、残油のみを処理した場合、ニッケル
除去の計算された見掛け速度定数は0.022である。 30%LCOを共処理すると速度定数が0.045に上
昇する。同様に、30%LCOを共処理すると、バナジ
ウム除去の速度定数が0.021から0.05に上昇す
る。この上昇した脱金属速度は生成物中の低金属含量を
表している。
EXAMPLES Example 1 Arablite (AL) vacuum resid was hydrotreated at various space velocities in the presence of 30% LCO. Figure 1 shows the effect of LCO on the rate constant of nickel removal,
Figure 2 shows the effect on vanadium removal. 30%LC
The presence of O promotes demetalization more than the ratio of the two expressed by the increase in rate constant. For example, 371°C (700°F
), a pressure of 13900 kPa (2000 psig) and a hydrogen circulation rate of 890 v/v (5000 SCF/BBL), the calculated apparent rate constant for nickel removal is 0.022 when treating only the resid. Co-treatment with 30% LCO increases the rate constant to 0.045. Similarly, co-treatment with 30% LCO increases the rate constant for vanadium removal from 0.021 to 0.05. This increased demetalization rate is indicative of a lower metal content in the product.

【0014】実施例2   AL真空残油を30%LCOの存在下に水素化処理
した。処理後のLCOフラクション中の残留硫黄を差し
引くことにより残渣フラクション中の硫黄含量を計算し
た。図3は、共処理における真空残油の観察された脱硫
を真空残油そのものの処理において予測される脱硫と比
較する。実施例1と同じ操作条件において、脱硫の速度
定数が、共処理によりここでも0.2から0.36に上
昇した。このことは生成物流中の硫黄含量が非常に低い
ことを表している。
Example 2 AL vacuum resid was hydrotreated in the presence of 30% LCO. The sulfur content in the residue fraction was calculated by subtracting the residual sulfur in the LCO fraction after treatment. Figure 3 compares the observed desulfurization of the vacuum resid in the co-processing with the desulfurization expected in the treatment of the vacuum resid itself. Under the same operating conditions as in Example 1, the rate constant of desulfurization was again increased from 0.2 to 0.36 by co-treatment. This represents a very low sulfur content in the product stream.

【0015】実施例3   触媒失活に対するLCOの影響を独立して示すため
に、LCOそのものを実施例1と同じ条件下に平衡化触
媒を用いて4日間処理した。残油水素化処理に対する触
媒性能をLCOランの前後で比較した。以下に示すよう
に、AL残油からの金属除去率が43から46%に上昇
し、硫黄除去率が38から41%に上昇した。
Example 3 To independently demonstrate the influence of LCO on catalyst deactivation, the LCO itself was treated for 4 days with an equilibrated catalyst under the same conditions as in Example 1. Catalyst performance for resid hydrotreating was compared before and after the LCO run. As shown below, the metal removal rate from the AL residual oil increased from 43 to 46%, and the sulfur removal rate increased from 38 to 41%.

【0016】                     残油の水素
化処理の比較                   
         原料       ラン前    
    ラン後  操作条件     圧力、kPa               
         13400    13400  
        (psig)           
            (2000)    (20
00)    温度、℃              
                321      
  321          (°F)      
                    (610)
      (610)    WHSV      
                         
   0.8         0.8  生成物特性     Ni、ppm               
 9.0            6.9      
   6.5    V、ppm          
      31.0          16.0 
      15.0    S、重量%      
         2.9            0
.9         0.75  脱金属、%   
                         
    43          46  脱硫、% 
                         
        38          41
Comparison of residual oil hydrotreatment
Raw material before run
Post-run operating conditions Pressure, kPa
13400 13400
(psig)
(2000) (20
00) Temperature, °C
321
321 (°F)
(610)
(610) WHSV

0.8 0.8 Product characteristics Ni, ppm
9.0 6.9
6.5V, ppm
31.0 16.0
15.0 S, weight%
2.9 0
.. 9 0.75 Demetallization, %

43 46 Desulfurization, %

38 41

【00
17】上記の結果はLCOの存在が実際に触媒活性を回
復させることを示している。すなわち、LCO共処理は
触媒失活を遅くすることが予測される。
00
[17] The above results show that the presence of LCO actually restores the catalyst activity. That is, LCO co-treatment is expected to slow catalyst deactivation.

【0018】実施例4   AL真空残油を、321℃および399℃(610
°Fおよび750°F)の温度、13900kPa(2
000psig)の圧力および890v/v(5000
SCF/BBL)の水素循環量で、20%の真空軽油お
よび10%の軽質留出油と共処理した。真空残油からの
硫黄除去を追跡するために、生成物を分離して、硫黄含
量を測定する為の850+(°F)ポーションを得た。 図4において、真空残油からのニッケル除去に対する希
釈剤添加の影響を種々の反応器温度において比較する。 残油からのバナジウムおよび硫黄除去における共処理に
よる同様の向上をそれぞれ図5および図6に示す。そこ
に示すように、共処理により金属および硫黄除去能が実
質的に向上する。
Example 4 AL vacuum residual oil was heated at 321°C and 399°C (610°C
°F and 750 °F), 13,900 kPa (2
000 psig) pressure and 890 v/v (5000 psig)
It was co-processed with 20% vacuum gas oil and 10% light distillate at a hydrogen circulation rate of SCF/BBL). To track sulfur removal from the vacuum resid, the product was separated to give an 850+ (°F) portion for determination of sulfur content. In Figure 4, the effect of diluent addition on nickel removal from vacuum retentate is compared at various reactor temperatures. Similar improvements with co-treatment in vanadium and sulfur removal from residual oil are shown in Figures 5 and 6, respectively. As shown therein, co-treatment substantially improves metal and sulfur removal capabilities.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  WHSVに対して原料中Niに対する生成
物中Niの割合をプロットしたグラフであり、軽質循環
油(LCO)のニッケル除去に対する影響を示す。
FIG. 1 is a graph plotting the ratio of Ni in the product to Ni in the feed versus WHSV, showing the effect of light circulating oil (LCO) on nickel removal.

【図2】  WHSVに対して原料中Vに対する生成物
中Vの割合をプロットしたグラフであり、LCOのバナ
ジウム除去に対する影響を示す。
FIG. 2 is a graph plotting the ratio of V in the product to V in the feed versus WHSV, showing the effect of LCO on vanadium removal.

【図3】  WHSVに対して残油中硫黄含量の変化を
プロットしたグラフであり、LCOの残油脱硫に対する
影響を示す。
FIG. 3 is a graph plotting the change in sulfur content in residual oil against WHSV, showing the influence of LCO on residual oil desulfurization.

【図4】  WHSVに対してニッケル含量をプロット
したグラフであり、850+(°F)残渣油の脱金属に
対する希釈剤の影響を示す。
FIG. 4 is a graph plotting nickel content versus WHSV showing the effect of diluent on demetalization of 850+ (°F) residual oil.

【図5】  WHSVに対してバナジウム含量をプロッ
トしたグラフであり、850+(°F)残渣油の脱金属
に対する希釈剤の影響を示す。
FIG. 5 is a graph plotting vanadium content versus WHSV showing the effect of diluent on demetalization of 850+ (°F) residual oil.

【図6】  WHSVに対して硫黄含量をプロットした
グラフであり、850+(°F)残渣油の脱硫に対する
希釈剤の影響を示す。
FIG. 6 is a graph plotting sulfur content versus WHSV showing the effect of diluent on desulfurization of 850+ (°F) residual oil.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  残油を204℃ないし残油の沸点の範
囲の沸点を有する希釈剤とブレンドすることにより残油
が主成分であるブレンドを調製し、4240〜2770
0kPaの水素圧、316〜468℃の高温および約0
.05〜10の空間速度を含む条件下にブレンドを水素
化処理触媒に接触させることを含んでなる残油の脱硫お
よび脱金属方法。
1. A blend in which the residual oil is the main component is prepared by blending the residual oil with a diluent having a boiling point in the range of 204° C. to the boiling point of the residual oil;
Hydrogen pressure of 0kPa, high temperature of 316-468℃ and approx.
.. A process for desulfurizing and demetallizing resid oils comprising contacting a blend with a hydrotreating catalyst under conditions comprising a space velocity of 0.05 to 10.
【請求項2】  残油用の希釈剤が、常圧軽油、真空軽
油、並びに分解留出油軽質循環油および重質循環油から
なる群より選択される請求項1記載の方法。
2. The method of claim 1, wherein the diluent for the residual oil is selected from the group consisting of atmospheric gas oil, vacuum gas oil, and cracked distillate light and heavy circulating oils.
【請求項3】  残油が真空残油である請求項1または
2のいずれかに記載の方法。
3. The method according to claim 1, wherein the residual oil is a vacuum residual oil.
【請求項4】  残油が、下流の処理において触媒毒と
して作用するのに有効な量のニッケルまたはバナジウム
を含む請求項1〜3のいずれかに記載の方法。
4. A process according to claim 1, wherein the residual oil contains an effective amount of nickel or vanadium to act as a catalyst poison in downstream processing.
【請求項5】  回収ブレンド中のニッケルまたはバナ
ジウムの量が触媒毒として作用するのに有効な量より少
ない請求項1〜4のいずれかに記載の方法。
5. A process according to claim 1, wherein the amount of nickel or vanadium in the recovery blend is less than the amount effective to act as a catalyst poison.
【請求項6】  水素化処理触媒が、シリカ、アルミナ
およびシリカ−アルミナからなる群より選択される請求
項1〜5のいずれかに記載の方法。
6. A process according to claim 1, wherein the hydrotreating catalyst is selected from the group consisting of silica, alumina and silica-alumina.
JP15029491A 1990-06-21 1991-06-21 Method for desulfurizing and demetallizing residual oil Pending JPH04239094A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US540,721 1983-10-11
US54072190A 1990-06-21 1990-06-21

Publications (1)

Publication Number Publication Date
JPH04239094A true JPH04239094A (en) 1992-08-26

Family

ID=24156649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15029491A Pending JPH04239094A (en) 1990-06-21 1991-06-21 Method for desulfurizing and demetallizing residual oil

Country Status (5)

Country Link
EP (1) EP0462823B1 (en)
JP (1) JPH04239094A (en)
AU (1) AU644166B2 (en)
CA (1) CA2043403A1 (en)
DE (1) DE69101670T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224091A (en) * 2006-02-21 2007-09-06 Nippon Oil Corp Method for producing fuel base material
WO2009013971A1 (en) * 2007-07-24 2009-01-29 Idemitsu Kosan Co., Ltd. Hydrorefining method for hydrocarbon oil
JP2012149104A (en) * 2011-01-14 2012-08-09 Idemitsu Kosan Co Ltd Process of hydrotreatment heavy hydrocarbon oil

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366709C (en) * 2006-04-17 2008-02-06 中国石油化工集团公司 Combined process for processing heavy oil
US8932451B2 (en) 2011-08-31 2015-01-13 Exxonmobil Research And Engineering Company Integrated crude refining with reduced coke formation
CN103102986B (en) * 2011-11-10 2015-05-13 中国石油化工股份有限公司 Combined process of hydrotreatment and delayed coking for residual oil
CN104927920B (en) * 2014-03-21 2017-03-15 中国石油化工股份有限公司 A kind of residuum coking method
EP3294841B1 (en) 2015-05-12 2022-07-13 Ergon, Inc. Process for production of high performance process oil based on distilled aromatic extracts
RU2726612C2 (en) 2015-05-12 2020-07-15 Эргон, Инк. Process oil with high operating characteristics
CN106367113A (en) * 2015-07-23 2017-02-01 中国石化扬子石油化工有限公司 Residual oil hydrotreating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB833705A (en) * 1956-03-14 1960-04-27 Exxon Research Engineering Co Destructive hydrogenation of asphaltic hydrocarbons
US4548709A (en) * 1983-04-29 1985-10-22 Mobil Oil Corporation Hydrotreating petroleum heavy ends in aromatic solvents with dual pore size distribution alumina catalyst
US4808289A (en) * 1987-07-09 1989-02-28 Amoco Corporation Resid hydrotreating with high temperature flash drum recycle oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224091A (en) * 2006-02-21 2007-09-06 Nippon Oil Corp Method for producing fuel base material
WO2009013971A1 (en) * 2007-07-24 2009-01-29 Idemitsu Kosan Co., Ltd. Hydrorefining method for hydrocarbon oil
JP2012149104A (en) * 2011-01-14 2012-08-09 Idemitsu Kosan Co Ltd Process of hydrotreatment heavy hydrocarbon oil

Also Published As

Publication number Publication date
CA2043403A1 (en) 1991-12-22
DE69101670D1 (en) 1994-05-19
EP0462823A1 (en) 1991-12-27
AU644166B2 (en) 1993-12-02
DE69101670T2 (en) 1994-07-28
AU7727991A (en) 1992-01-02
EP0462823B1 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
EP0523679B2 (en) A process for the production of low-sulfur diesel gas oil
US4149965A (en) Method for starting-up a naphtha hydrorefining process
KR101829113B1 (en) Integration of residue hydrocracking and solvent deasphalting
EP2880132B1 (en) Residue hydrocracking
US4992163A (en) Cat cracking feed preparation
JPH04239094A (en) Method for desulfurizing and demetallizing residual oil
CA2104112C (en) Method of upgrading residua
EP3135749B1 (en) Process for conversion of vacuum resid to middle distillates
US4062757A (en) Residue thermal cracking process in a packed bed reactor
CA1182770A (en) Process for the preparation of a hydrocarbon mixture
US4988434A (en) Removal of metallic contaminants from a hydrocarbonaceous liquid
US3948756A (en) Pentane insoluble asphaltene removal
CA1198387A (en) Process for the production of low-asphaltenes hydrocarbon mixtures
US8828218B2 (en) Pretreatment of FCC naphthas and selective hydrotreating
US4005006A (en) Combination residue hydrodesulfurization and thermal cracking process
JPH0848981A (en) Method for hydrorefining gas oil fraction
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
US3575844A (en) Hydrocracking process
CN111378470B (en) Residual oil hydrodemetallization treatment method
CN111378469B (en) Residual oil hydrodemetallization method
JPH0413397B2 (en)
US4461699A (en) Process for reducing Ramsbottom Carbon Test of short residues
CA1094489A (en) Desulfurization and demetalation of heavy charge stocks
JP2000178565A (en) Method for hydrotreatment of hydrocarbon oil
US20160060548A1 (en) Methods and apparatuses for hydroprocessing hydrocarbons