JP2000178565A - Method for hydrotreatment of hydrocarbon oil - Google Patents

Method for hydrotreatment of hydrocarbon oil

Info

Publication number
JP2000178565A
JP2000178565A JP10378019A JP37801998A JP2000178565A JP 2000178565 A JP2000178565 A JP 2000178565A JP 10378019 A JP10378019 A JP 10378019A JP 37801998 A JP37801998 A JP 37801998A JP 2000178565 A JP2000178565 A JP 2000178565A
Authority
JP
Japan
Prior art keywords
oil
hydrotreatment
catalyst
kerosene
hydrotreating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10378019A
Other languages
Japanese (ja)
Inventor
Jun Fuchigami
循 渕上
Hiroyuki Kiyofuji
広幸 清藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP10378019A priority Critical patent/JP2000178565A/en
Publication of JP2000178565A publication Critical patent/JP2000178565A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To decrease the deposition of coke on a catalyst thereby prolonging the life of the catalyst and extending the operation time for hydrotreatment by subjecting a topped crude containing kerosene and gas oil fractions having a boiling point within a specific range in a specific ratio to hydrotreatment in the presence of a catalyst. SOLUTION: A topped crude containing at least 15 vol.% of kerosene and gas oil fractions having a boiling point within the range of 165-370 deg.C is subjected to hydrotreatment in the presence of a catalyst. The content of the kerosene and gas oil fractions is preferably 15-50 vol.%, more preferably 20-40 vol.%. The hydrotreatment can be carried out using an ordinary direct hydrotreatment apparatus and an ordinary hydrotreatment catalyst. A product oil obtained by the hydrotreatment is fractionated through a fractionator or the like into gas fractions, naphtha fractions, kerosene and gas oil fractions, heavy oil fractions and the like. The separatively recovered kerosene and gas oil fractions having a boiling point ranging from 165-370 deg.C has been usually desulfurized to have a sulfur content of not more than 500 wt. ppm, and yet it can be subjected to further hydrotreatment, if required.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素油の水素
化処理方法に関し、さらに詳しくは、供給原料炭化水素
油として軽質留分を含有する常圧残渣油を水素化処理す
ることにより、硫黄分が少なく、着色の少ない高品質の
軽油留分を得る、また、触媒寿命を伸ばすことができ、
水素化処理の運転期間を長くすることができる炭化水素
油の水素化処理方法に関する。
The present invention relates to a method for hydrotreating hydrocarbon oils, and more particularly, to a method for hydrotreating an atmospheric residue containing a light distillate as a feedstock hydrocarbon oil to obtain sulfur. It is possible to obtain a high quality light oil fraction with less color and less coloration, and to extend the life of the catalyst.
The present invention relates to a method for hydrotreating hydrocarbon oil, which can extend the operation period of hydrotreating.

【0002】[0002]

【従来技術】従来、製油所においては、通常、原油を常
圧蒸留装置にかけ、ナフサ、灯油、軽油、常圧残油に分
離しているが、できるだけ、ナフサ、灯軽油留分を得る
ためにいわゆる深絞りが行われていた。従って常圧残油
中には、灯軽油留分はほとんどふくまれておらず、沸点
の高い炭化水素油だけを残油水素化精製装置にかけて脱
硫するなど水素化処理を行っている。また、留出油中に
含まれる硫黄分などを除去するために、留出油について
は、各留分毎に留出油水素化精製装置にかけて水素化処
理を行っている。
2. Description of the Related Art Conventionally, in a refinery, crude oil is usually separated into naphtha, kerosene, gas oil and atmospheric residue by subjecting it to a normal pressure distillation apparatus. So-called deep drawing was performed. Accordingly, the kerosene gas oil fraction is hardly contained in the normal pressure residual oil, and only a hydrocarbon oil having a high boiling point is subjected to a hydrogenation treatment by desulfurization through a residual oil hydrorefining unit. Further, in order to remove the sulfur content and the like contained in the distillate, the distillate is subjected to a hydrotreating process by a distillate hydrotreating apparatus for each fraction.

【0003】しかし、従来の方法では、常圧残油の水素
化処理は、沸点の高い重質油だけを水素化処理するた
め、多環芳香族化合物が重合してドライスラッジやコー
クを生成し、反応塔に圧力損失を起こし、また、コーク
は触媒上に析出するため触媒活性の低下(コーク失活)
が起きるので、触媒寿命が短くなるという問題があっ
た。
[0003] However, in the conventional method, since the hydrotreating of the residual oil under normal pressure is performed by hydrotreating only the heavy oil having a high boiling point, the polycyclic aromatic compound is polymerized to form dry sludge or coke. , Causing a pressure loss in the reaction tower and reducing coke activity on the catalyst because coke is deposited on the catalyst (coke deactivation)
This causes a problem that the life of the catalyst is shortened.

【0004】また、地球環境保護の面から欧州では20
05年には軽油中の硫黄濃度は50wtppm以下に規
制する方向にあり、米国、我国でもこれに追随すること
が予想されている。しかし、軽油中の硫黄濃度を50w
tppm以下にするためには水素化脱硫の反応温度を高
くしなければならないが、従来の留出油水素化精製装置
では水素分圧を高くできないため、反応温度を高くする
と生成油の色相が悪化するという問題があった。
[0004] Also, in Europe, 20
In 2005, the sulfur concentration in light oil will be regulated to 50 wtppm or less, and the United States and Japan are expected to follow this. However, the sulfur concentration in light oil is 50w
The reaction temperature of hydrodesulfurization must be increased in order to make it less than tppm, but the conventional distillate hydrotreating equipment cannot raise the hydrogen partial pressure. There was a problem of doing.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前述のコー
ク失活や圧力損失の問題を解決し、触媒寿命を伸ばすこ
とにより水素化処理期間を長くできる炭化水素油の水素
化処理方法を提供することを目的とする。また、本発明
の他の目的は、軽油中の硫黄分を深度脱硫して硫黄濃度
を500wtppm以下に低下すると共に、生成油の色
相問題を解決して商品価値の高い軽油を得る炭化水素油
の水素化処理方法を提供することである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of coke deactivation and pressure loss, and provides a method for hydrotreating a hydrocarbon oil which can extend the hydrotreating period by extending the life of the catalyst. The purpose is to do. Another object of the present invention is to provide a desulfurized sulfur component in gas oil to reduce the sulfur concentration to 500 wtppm or less, and to solve the problem of the hue of the produced oil to obtain a gas oil having high commercial value. It is to provide a hydrotreating method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、灯軽油留
分を含有する常圧残渣油を触媒の存在下に水素化処理す
ることにより、触媒のコーク失活が防止され、触媒寿命
を伸ばすことができること、また、得られた生成油中の
軽油留分は、硫黄分が少なく、着色の少ない高品質の軽
油留分が得ることを見出し本発明を完成するに至った。
Means for Solving the Problems The present inventors hydrotreat a normal pressure residue oil containing a kerosene oil fraction in the presence of a catalyst to prevent the deactivation of coke in the catalyst and reduce the catalyst life. Have been found, and the gas oil fraction in the obtained product oil has a low sulfur content and a high quality gas oil fraction with little coloration has been obtained, and the present invention has been completed.

【0007】本発明に係わる炭化水素油の水素化処理方
法は、沸点165〜370℃範囲の灯軽油留分を15v
ol%以上含有する常圧残渣油を触媒の存在下に水素化
処理することを特徴とする。
The method for hydrotreating a hydrocarbon oil according to the present invention is characterized in that a kerosene gas oil fraction having a boiling point of 165 to 370 ° C.
It is characterized by hydrotreating an atmospheric residue containing at least ol% in the presence of a catalyst.

【0008】さらに、前述の炭化水素油の水素化処理方
法により得られた生成油から灯軽油留分を分離回収する
ことを特徴とする。
Further, the present invention is characterized in that a kerosene oil fraction is separated and recovered from the product oil obtained by the above-mentioned method for hydrotreating hydrocarbon oil.

【0009】[0009]

【発明の実施の形態】以下、本発明に係わる炭化水素油
の水素化処理方法の好適な実施形態について、詳細に説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for hydrotreating hydrocarbon oil according to the present invention will be described in detail below.

【0010】本発明での水素化処理の対象となる常圧残
渣油は、沸点165〜370℃範囲の灯軽油留分を15
vol%以上含有するものである。製油所においては、
常圧蒸留装置での白油とりわけ軽油の増産を目的として
原油の深絞りを行っているため、常圧残渣油はほとんど
370℃以下の留分を含有していないのが通例である。
沸点165〜370℃範囲の灯軽油留分を15vol%
以上含有する常圧残渣油は、常圧蒸留装置で原油の浅絞
りすることで得ることができるし、また、常圧蒸留装置
で原油の深絞りで得られた灯軽油留分を常圧残渣油に混
合して得ることができる。
The atmospheric residue to be hydrotreated in the present invention is a kerosene oil fraction having a boiling point of 165 to 370 ° C.
vol% or more. In refineries,
Since the crude oil is deeply drawn for the purpose of increasing the production of white oil, particularly light oil, in the atmospheric distillation unit, the atmospheric residual oil generally contains almost no fraction of 370 ° C. or less.
15 vol% of kerosene oil fraction with boiling point of 165-370 ° C
The normal pressure residue oil contained above can be obtained by shallow drawing of crude oil with a normal pressure distillation device, or the kerosene oil fraction obtained by deep drawing of crude oil with a normal pressure distillation device can be obtained at normal pressure residue. It can be obtained by mixing with oil.

【0011】前述の水素化処理の対象となる常圧残渣油
中に含まれる沸点165〜370℃範囲の灯軽油留分の
含有量が15vol%より少ない場合には、原料の重質
油の希釈効果が小さいため、ドライスラッジやコークの
生成を低減する効果も小さく、また、水素化処理により
得られた生成油から得られる高品質の灯軽油留分も少な
く、所望の効果が得られない。本発明では、前述の常圧
残渣油中に含まれる沸点165〜370℃範囲の灯軽油
留分の含有量は、好ましくは15〜50vol%、さら
に好ましくは20〜40vol%の範囲が望ましい。
When the content of the kerosene oil fraction having a boiling point in the range of 165 to 370 ° C. contained in the atmospheric residual oil to be subjected to the above-mentioned hydrotreatment is less than 15 vol%, the dilution of the heavy oil as a raw material is carried out. Since the effect is small, the effect of reducing the generation of dry sludge and coke is also small, and the high-quality kerosene oil fraction obtained from the product oil obtained by the hydrotreatment is also small, so that the desired effect cannot be obtained. In the present invention, the content of the kerosene oil fraction having a boiling point in the range of 165 to 370 ° C. contained in the above-mentioned normal pressure residual oil is preferably 15 to 50 vol%, more preferably 20 to 40 vol%.

【0012】本発明では、前述の原料油は水素と伴に水
素化処理触媒が充填された残油水素化精製装置にかけて
脱硫するなど水素化処理に付される。本発明での水素化
処理は、通常の直接水素化処理装置を使用して、通常の
水素化処理触媒を使用し行うことができる。
In the present invention, the above-mentioned feedstock is subjected to hydrotreatment such as desulfurization in a resid hydrotreating unit filled with a hydrogenation catalyst together with hydrogen. The hydrotreating in the present invention can be carried out using a usual direct hydrotreating apparatus and using a usual hydrotreating catalyst.

【0013】本発明で使用される水素化処理触媒として
は、例えば、無機酸化物担体に水素化活性金属成分を担
持した通常の水素化脱メタル触媒、水素化脱硫触媒、水
素化分解触媒がなどが使用可能である。無機酸化物担体
としては、例えば、アルミナ、シリカ、チタニア、アル
ミナ−シリカ、アルミナ−チタニア、アルミナ−ボリ
ア、アルミナ−マグネシア、アルミナ−ジルコニア、ア
ルミナ−リン、シリカ−チタニア、アルミナ−シリカ−
ボリア、アルミナ−シリカ−リン、アルミナ−チタニア
−シリカ、アルミナ−チタニア−リン、アルミナ−ボリ
ア−リンなどが挙げられ、中でもアルミナ、アルミナ−
シリカ、アルミナ−チタニア、アルミナ−ボリア、アル
ミナ−リンなどが好適である。また、分解成分であるゼ
オライトを含有する、アルミナ、アルミナ−シリカ、ア
ルミナ−チタニア、アルミナ−ボリア、アルミナ−リン
などの担体も好適である。
[0013] Examples of the hydrotreating catalyst used in the present invention include ordinary hydrodemetallization catalysts having a hydrogenation active metal component supported on an inorganic oxide carrier, hydrodesulfurization catalysts, hydrocracking catalysts, and the like. Can be used. As the inorganic oxide carrier, for example, alumina, silica, titania, alumina-silica, alumina-titania, alumina-boria, alumina-magnesia, alumina-zirconia, alumina-phosphorus, silica-titania, alumina-silica-
Boria, alumina-silica-phosphorus, alumina-titania-silica, alumina-titania-phosphorus, alumina-boria-phosphorus, etc., among which alumina, alumina-
Preferred are silica, alumina-titania, alumina-boria, alumina-phosphorus and the like. Carriers containing zeolite, which is a decomposition component, such as alumina, alumina-silica, alumina-titania, alumina-boria, and alumina-phosphorus are also suitable.

【0014】水素化活性金属成分としては、周期律表第
VIA族金属および第VIII族金属が例示され、中で
もニッケルおよび/またはコバルトとモリブデンおよび
/またはタングステンの組み合わせが好ましい。また、
水素化活性金属成分の担持量は、酸化物換算で、第VI
A族金属が8〜30重量%、第VIII族金属が1〜1
0重量%の範囲が好適である。
Examples of the hydrogenation-active metal component include metals of Group VIA and VIII of the Periodic Table, and a combination of nickel and / or cobalt with molybdenum and / or tungsten is preferred. Also,
The supported amount of the hydrogenation-active metal component is represented by VI.
8-30% by weight of Group A metal, 1-1 of Group VIII metal
A range of 0% by weight is preferred.

【0015】本発明での水素化処理条件は、特に限定さ
れるものではなく、通常の直接水素化処理条件から適宜
選択することができる。例えば、反応温度320℃〜4
50℃、反応圧力3〜30Mpa、液空間速度0.1〜
5h−1、水素/オイル比50〜1500nm/kl
などの条件が例示される。
The hydrotreating conditions in the present invention are not particularly limited, and can be appropriately selected from ordinary direct hydrotreating conditions. For example, a reaction temperature of 320 ° C. to 4
50 ° C., reaction pressure 3 to 30 Mpa, liquid hourly space velocity 0.1 to
5 h -1 , hydrogen / oil ratio 50 to 1500 nm 3 / kl
Such conditions are exemplified.

【0016】本発明の方法では、前述の水素化処理で得
られた生成油は、フラクショーネターなどに通して、ガ
ス分、ナフサ分、灯軽油留分および重質油分などに分け
られる。分離回収された沸点165〜370℃範囲の灯
軽油留分は、通常、硫黄濃度が500wtppm以下に
脱硫されているが、所望により、さらに水素化処理に付
すことができる。
In the method of the present invention, the product oil obtained by the above-mentioned hydrotreating is passed through a fractionator or the like to be divided into a gas portion, a naphtha portion, a kerosene oil fraction and a heavy oil portion. The kerosene light oil fraction having a boiling point in the range of 165 to 370 ° C. which has been separated and recovered is usually desulfurized to a sulfur concentration of 500 wt ppm or less, but can be further subjected to a hydrogenation treatment if desired.

【0017】本発明の方法では、灯軽油留分を含有する
常圧残渣油を水素化処理するため、触媒上へのコーク析
出が少なく、触媒のコーク失活が防止されるので、触媒
寿命が長くなり、水素化処理の運転期間を長くすること
ができる。
In the method of the present invention, since the atmospheric residual oil containing the kerosene oil fraction is hydrotreated, coke deposition on the catalyst is small, and coke deactivation of the catalyst is prevented. And the operating period of the hydrotreatment can be extended.

【0018】また、本発明の方法では、原料油を高温で
水素化脱硫しても水素分圧が高いため、透明性を有し、
商品価値の高い高品質の軽油を得ることができる。
Further, the method of the present invention has a high hydrogen partial pressure even if the feedstock is hydrodesulfurized at a high temperature, and thus has transparency.
High quality gas oil with high commercial value can be obtained.

【0019】[0019]

【実施例】以下に実施例を示し本発明を本発明を具体的
に説明するが、本発明はこれにより限定されるものでは
ない。
EXAMPLES The present invention will be described below in detail with reference to Examples, but the present invention is not limited thereto.

【0020】実施例1 下記性状を有する常圧残渣油71.4vol%と下記性
状を有する軽油28.6vol%を混合した原料油を、
2.4wt%Ni−3.0wt%Mo−Al触媒
120mlを第一触媒層に、0.9wt%Co−0.6
wt%Ni−7.0wt%Mo−Al触媒280
mlを第二触媒層に充填した反応器に通油しで、下記の
反応条件で水素化処理を行った。 反応条件: 通油量=112(ml/hr) LHSV=0.28(hr−1) H/Oil=800(nM/Kl) 水素圧=13.5(Mpa) 反応温度、360℃、380℃および400℃における
生成油の性状を表1に示す。表1から軽油留分は深度脱
硫されているにもかかわらずセイボルトカラーが改善さ
れていることが分かる。
Example 1 A stock oil obtained by mixing 71.4 vol% of a normal pressure residual oil having the following properties with 28.6 vol% of a light oil having the following properties was used.
120 ml of 2.4 wt% Ni-3.0 wt% Mo-Al 2 O 3 catalyst was added to the first catalyst layer, and 0.9 wt% Co-0.6
wt% Ni-7.0wt% Mo- Al 2 O 3 catalyst 280
The resulting mixture was passed through a reactor filled with the second catalyst layer, and a hydrogenation treatment was performed under the following reaction conditions. Reaction conditions: Oil flow rate = 112 (ml / hr) LHSV = 0.28 (hr −1 ) H 2 / Oil = 800 (nM 3 / Kl) Hydrogen pressure = 13.5 (Mpa) Reaction temperature: 360 ° C. Table 1 shows the properties of the produced oil at 380 ° C and 400 ° C. It can be seen from Table 1 that the diesel oil fraction has an improved Saybolt color despite being deep desulfurized.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 実施例1と同様に処理して得られた380℃反応生成油
中の軽油留分を、さらに3.1wt%Co−10.0w
t%Mo−Al触媒を使用して次の軽油脱硫反応
条件で処理した。 反応条件: LHSV=1.5(hr−1) H/Oil=250(nM/Kl) 水素圧=5.0(Mpa) 反応結果を表2に示す。超深度脱硫されており、セイボ
ルトカラー値も良い。
Example 2 A light oil fraction in a reaction product oil at 380 ° C. obtained by treating in the same manner as in Example 1 was further treated with 3.1 wt% Co-10.0 w
It was treated with the following gas oil desulfurization reaction conditions using t% Mo-Al 2 O 3 catalyst. Reaction conditions: LHSV = 1.5 (hr −1 ) H 2 / Oil = 250 (nM 3 / Kl) Hydrogen pressure = 5.0 (Mpa) The reaction results are shown in Table 2. It is super deep desulfurized and has good Saybolt color value.

【0023】[0023]

【表2】 [Table 2]

【0024】比較例1 実施例1と同一の常圧残渣油を原料油として使用し、
2.4wt%Ni−3.0wt%Mo−Al触媒
120mlを第一触媒層に、0.9wt%Co−0.6
Wt%Ni−7.0wt%Mo−Al触媒280
mlを第二触媒層に充填した反応器に通油しで、下記の
反応条件で水素化処理を行った。 反応条件: 通油量=80(ml/hr) LHSV=0.20(hr−1) H/Oil=800(nM/Kl) 水素圧=13.5(Mpa) 反応温度、360℃、380℃および400℃における
生成油の性状を表3に示す。
COMPARATIVE EXAMPLE 1 The same atmospheric residue as in Example 1 was used as a feed oil.
120 ml of 2.4 wt% Ni-3.0 wt% Mo-Al 2 O 3 catalyst was added to the first catalyst layer, and 0.9 wt% Co-0.6
Wt% Ni-7.0wt% Mo- Al 2 O 3 catalyst 280
The resulting mixture was passed through a reactor filled with the second catalyst layer, and a hydrogenation treatment was performed under the following reaction conditions. Reaction conditions: oil flow amount = 80 (ml / hr) LHSV = 0.20 (hr -1) H 2 / Oil = 800 (nM 3 / Kl) hydrogen pressure = 13.5 (Mpa) reaction temperature, 360 ° C., Table 3 shows the properties of the produced oil at 380 ° C and 400 ° C.

【0025】[0025]

【表3】 [Table 3]

【0026】比較例2 実施例1と同一の軽油を原料油として使用し、実施例2
と同様の方法で、3.1wt%Co−10.0wt%M
o−Al触媒16mlを充填した反応器に通油し
で、下記の反応条件で水素化処理を行った。 反応条件: 通油量=32(ml/hr) LHSV=1.5(hr−1) H/Oil=250(nM/Kl) 水素圧=5.0(Mpa) 各反応温度における生成油の性状を表4に示す。
Comparative Example 2 The same light oil as in Example 1 was used as a feed oil,
3.1 wt% Co-10.0 wt% M
The oil was passed through a reactor filled with 16 ml of the o-Al 2 O 3 catalyst, and a hydrogenation treatment was performed under the following reaction conditions. Reaction conditions: oil flow amount = 32 (ml / hr) LHSV = 1.5 (hr -1) H 2 / Oil = 250 (nM 3 / Kl) hydrogen pressure = 5.0 (Mpa) product oil at each reaction temperature Table 4 shows the properties.

【0027】[0027]

【表4】 [Table 4]

【0028】実施例3 実施例1および比較例1と全く同様にして、生成油中の
沸点370℃以上留分が硫黄濃度が0.3wt%を維持
するように反応温度を調整しながら、硫黄濃度一定運転
を2000時間実施した。結果を図1に示す。本発明の
方法では、沸点370℃以上留分の硫黄濃度を一定にし
た場合に、反応温度が低く寿命が長いことが分かる。
Example 3 In exactly the same manner as in Example 1 and Comparative Example 1, while adjusting the reaction temperature so that the fraction having a boiling point of 370 ° C. or higher in the produced oil maintains the sulfur concentration of 0.3 wt%, The constant concentration operation was performed for 2000 hours. The results are shown in FIG. According to the method of the present invention, when the sulfur concentration of the fraction having a boiling point of 370 ° C. or higher is kept constant, the reaction temperature is low and the life is long.

【0029】[0029]

【発明の効果】本発明の方法では、軽油中の硫黄分を超
深度脱硫して硫黄濃度を500wtppm以下に低下す
ると共に、生成油の色相問題を解決して商品価値の高い
軽油を得ることができる。また、灯軽油留分を多量に含
有する常圧残渣油を水素化処理するため、触媒上へのコ
ーク析出が少なく、触媒のコーク失活が防止されるの
で、触媒寿命が長くなり、水素化処理の運転期間を長く
することができる。
According to the method of the present invention, it is possible to reduce the sulfur content to 500 wtppm or less by ultra-deep desulfurization of the sulfur content in light oil and to solve the color problem of the produced oil to obtain light oil of high commercial value. it can. In addition, since normal pressure residue oil containing a large amount of kerosene oil fraction is hydrotreated, coke deposition on the catalyst is small and coke deactivation of the catalyst is prevented, so that the catalyst life is prolonged and hydrogenation is extended. The operation period of the treatment can be lengthened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1および比較例1の方法で行っ
た寿命試験の結果を示すグラフである。
FIG. 1 is a graph showing the results of a life test performed by the methods of Example 1 and Comparative Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 沸点165〜370℃範囲の灯軽油留分
を15vol%以上含有する常圧残渣油を触媒の存在下
に水素化処理することを特徴とする炭化水素油の水素化
処理方法。
1. A method for hydrotreating a hydrocarbon oil, comprising hydrotreating an atmospheric residue containing at least 15 vol% of a kerosene oil fraction having a boiling point of 165 to 370 ° C. in the presence of a catalyst.
【請求項2】 請求項1記載の炭化水素油の水素化処理
方法により得られた生成油から灯軽油留分を分離回収す
ることを特徴とする炭化水素油の水素化処理方法。
2. A process for hydrotreating a hydrocarbon oil, comprising separating and recovering a kerosene oil fraction from a product oil obtained by the process for hydrotreating a hydrocarbon oil according to claim 1.
JP10378019A 1998-12-18 1998-12-18 Method for hydrotreatment of hydrocarbon oil Pending JP2000178565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10378019A JP2000178565A (en) 1998-12-18 1998-12-18 Method for hydrotreatment of hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10378019A JP2000178565A (en) 1998-12-18 1998-12-18 Method for hydrotreatment of hydrocarbon oil

Publications (1)

Publication Number Publication Date
JP2000178565A true JP2000178565A (en) 2000-06-27

Family

ID=18509331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10378019A Pending JP2000178565A (en) 1998-12-18 1998-12-18 Method for hydrotreatment of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2000178565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010314A1 (en) * 2000-07-28 2002-02-07 Japan Energy Corporation Process for super deep desulfurization of light oil fraction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010314A1 (en) * 2000-07-28 2002-02-07 Japan Energy Corporation Process for super deep desulfurization of light oil fraction

Similar Documents

Publication Publication Date Title
US4149965A (en) Method for starting-up a naphtha hydrorefining process
JP2966985B2 (en) Catalytic hydrotreating method for heavy hydrocarbon oil
US9523049B2 (en) Hydrocracking process including switchable reactors with feedstocks containing 200 ppm by weight—2% by weight of asphaltenes
JP3387700B2 (en) Desulfurization method of catalytic cracking gasoline
US8741129B2 (en) Use of low boiling point aromatic solvent in hydroprocessing heavy hydrocarbons
KR20190082994A (en) Multi-stage resid hydrocracking
CA1072903A (en) Hydrodenitrogenation of shale oil using two catalysts in series reactors
JPH05247474A (en) Process for upgrading hydrocarbon
KR20020068369A (en) Process for removing sulfur from a hydrocarbon feed
US6197718B1 (en) Catalyst activation method for selective cat naphtha hydrodesulfurization
US4747932A (en) Three-step catalytic dewaxing and hydrofinishing
US4062757A (en) Residue thermal cracking process in a packed bed reactor
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
JP6181378B2 (en) Hydrotreating method
US4283270A (en) Process for removing sulfur from petroleum oils
JPH04239094A (en) Method for desulfurizing and demetallizing residual oil
US6589418B2 (en) Method for selective cat naphtha hydrodesulfurization
US4005006A (en) Combination residue hydrodesulfurization and thermal cracking process
US3970543A (en) Production of lubricating oils
JP2000178565A (en) Method for hydrotreatment of hydrocarbon oil
JP2000256678A (en) Method for hydro-refining of heavy oil
JPH05112785A (en) Treatment of heavy hydrocarbon oil
JP4245218B2 (en) Method for hydrodesulfurization of heavy oil
CA2150205A1 (en) Process for hydrotreating heavy hydrocarbon oil
US20220315844A1 (en) Slurry hydroconversion with pitch recycle