JPH04238258A - Freezing point drop measuring method and freezing point drop measuring device - Google Patents

Freezing point drop measuring method and freezing point drop measuring device

Info

Publication number
JPH04238258A
JPH04238258A JP513191A JP513191A JPH04238258A JP H04238258 A JPH04238258 A JP H04238258A JP 513191 A JP513191 A JP 513191A JP 513191 A JP513191 A JP 513191A JP H04238258 A JPH04238258 A JP H04238258A
Authority
JP
Japan
Prior art keywords
sample liquid
cooling
temperature
freezing point
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP513191A
Other languages
Japanese (ja)
Inventor
Yasushi Ogi
御木 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP513191A priority Critical patent/JPH04238258A/en
Publication of JPH04238258A publication Critical patent/JPH04238258A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To obtain a small freezing point drop measuring device with excellent operability. CONSTITUTION:A main cooling block 11 cooling a sample liquid in a sample liquid chamber 12, an auxiliary cooling block 19 cooling a sample in an inlet pipe 14a feeding the sample into the sample liquid chamber 12 at a cooling speed faster than the cooling speed to cool the sample liquid in the sample liquid chamber 12, and a thermo-module cooling the main cooling block 11 and the auxiliary cooling block 19 are provided, the whole sample liquid is frozen by the crystal nucleus formed when the sample in the inlet pipe 14a is cooled in the supercooled state, and the temperature in the solid-liquid coexistence state formed by the coagulation latent heat at the time of freezing is measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液体試料特に臨床検査
の対象になる血漿、髄液、涙液等の体液や透析液あるい
は尿などの浸透圧を測定する医療用の浸透圧計等に適用
される氷点降下測定方法および氷点降下測定装置に関す
る。
[Industrial Application Field] The present invention is applicable to medical osmometers, etc. that measure the osmotic pressure of liquid samples, particularly body fluids such as plasma, spinal fluid, and tears that are subject to clinical tests, as well as dialysate and urine. The present invention relates to a freezing point depression measuring method and a freezing point depression measuring device.

【0002】0002

【従来の技術と発明が解決しようとする課題】従来の氷
点降下測定装置としては、試料液をその氷点より数℃低
い過冷却状態にする冷却槽と、氷点温度検出用の棒状の
サーミスタおよび氷結用の電磁式振動撹拌棒よりなるヘ
ッドと、このヘッドにより検出した氷点温度を測定する
測定回路と、全体の制御を行うコントロール部と、測定
結果を表示する表示部とを有するものが知られている。
[Prior Art and Problems to be Solved by the Invention] Conventional freezing point depression measuring devices include a cooling tank that supercools a sample liquid to a state several degrees below its freezing point, a rod-shaped thermistor for detecting freezing point temperature, and a freezing point depression measuring device. A device is known that has a head consisting of an electromagnetic vibrating stirring bar, a measuring circuit for measuring the freezing point temperature detected by the head, a control section for overall control, and a display section for displaying the measurement results. There is.

【0003】そして、上述した氷点降下測定装置におい
ては、試料液の入った試験管にヘッドを挿入したままこ
の試験管を冷却槽内に浸漬し、試料液を過冷却状態にし
た後、前記ヘッドにおける撹拌棒を急激に振動させるこ
とにより、試料液を固液共存状態にし、固液共存状態の
試料液のその温度をヘッドにおけるサーミスタにより検
出する。なお、この氷点降下測定装置により測定された
氷点降下度から浸透圧が算出される(米国特許第3,2
03,226号)。
[0003] In the freezing point depression measuring device described above, the head is inserted into a test tube containing a sample liquid and the test tube is immersed in a cooling tank to bring the sample liquid into a supercooled state. By rapidly vibrating the stirring rod in the head, the sample liquid is brought into a solid-liquid coexistence state, and the temperature of the sample liquid in the solid-liquid coexistence state is detected by a thermistor in the head. The osmotic pressure is calculated from the degree of freezing point depression measured by this freezing point depression measurement device (U.S. Patent Nos. 3 and 2).
03,226).

【0004】しかしながら、上述したヘッドを用いた氷
点降下測定方法あるいは氷点降下測定装置においては、
(1) 試料液の量を手動操作で調整しなければならな
い、(2)冷媒液の補充、交換等が必要であり、しかも
その取扱いが煩雑である、(3) 試験管の小型化や試
料液の微量化が困難であり、(4) 装置の小型化を図
ることが困難であり、(5) 冷却用の冷媒液を冷すの
に多くの時間を要するので、浸透圧測定の迅速化を図る
ことができないという数々の技術的問題点があった。
However, in the freezing point depression measuring method or freezing point depression measuring device using the above-mentioned head,
(1) The amount of sample solution must be adjusted manually, (2) Replenishment and replacement of refrigerant solution is necessary, and its handling is complicated; (3) Downsizing of test tubes and sample size It is difficult to reduce the amount of liquid, (4) it is difficult to miniaturize the device, and (5) it takes a long time to cool down the refrigerant liquid for cooling, so it is necessary to speed up osmotic pressure measurement. There were a number of technical problems that made it impossible to achieve this goal.

【0005】また、別の氷点降下測定方法として、試料
液を一旦過冷却状態にまで冷却し、次いで過冷却状態に
ある試料液の一部分をさらに冷却して超過冷却状態にす
ることにより試料液の一部分に氷晶核を生成させ、この
氷晶核を氷結刺激として試料液全体を固液共存状態にし
、その温度をサーミスタで検出する手法がある(特公昭
58−31541号)。そして、このようにして測定さ
れた氷点降下度より浸透圧が算出される。
[0005] Another method for measuring freezing point depression is to cool the sample liquid to a supercooled state, and then further cool a portion of the sample liquid that is in the supercooled state to a supercooled state. There is a method in which ice crystal nuclei are generated in a portion, the ice crystal nuclei are used as a freezing stimulus to bring the entire sample liquid into a solid-liquid coexistence state, and the temperature is detected using a thermistor (Japanese Patent Publication No. 58-31541). Then, the osmotic pressure is calculated from the degree of freezing point depression thus measured.

【0006】しかしながら、前記公告公報に記載の氷点
降下測定方法においては、試料液を過冷却状態にする冷
却器とそのコントローラを要するとともに、試料液の一
部を超過冷却状態に冷却する別の冷却器およびコントロ
ーラも必要とし、測定装置の小型化を達成する障害があ
り、しかも構成が複雑であり、測定に時間がかかるとい
う問題があった。
However, the method for measuring freezing point depression described in the above-mentioned publication requires a cooler and its controller to supercool the sample liquid, and also requires a separate cooling device to cool a part of the sample liquid to a supercooled state. This method also requires a device and a controller, which poses an obstacle to achieving miniaturization of the measuring device.Moreover, the configuration is complicated, and measurement takes time.

【0007】本発明の目的は、従来の氷点降下測定方法
ないし氷点降下測定装置に存在する欠点を解消する新規
の氷点降下測定方法および氷点降下測定装置を提供する
ことにある。すなわち、測定時間が短く、操作性も良好
で、しかも測定コストを低く抑えることが可能な氷点降
下測定方法および小型の構成で上述した方法を実現する
ことのできる氷点降下測定装置を提供することを目的と
するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new freezing point depression measuring method and a freezing point depression measuring device that overcome the drawbacks of conventional freezing point depression measuring methods and freezing point depression measuring devices. That is, it is an object of the present invention to provide a freezing point depression measurement method that takes a short measurement time, has good operability, and can keep measurement costs low, and a freezing point depression measurement device that can implement the above-mentioned method with a compact configuration. This is the purpose.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
の請求項1に記載の発明に係る方法は、試料液の一部を
冷却する冷却速度が試料液の残部を冷却する冷却速度よ
りも速くなるように試料液の一部および残部を同時に冷
却して試料液を氷結させ、試料液の氷結時に放出される
凝固潜熱で固液共存状態となった試料液の温度を測定手
段により測定することを特徴とする氷点降下測定方法で
あり、前記請求項2に記載の発明においては、前記請求
項1に記載の氷点降下測定方法において、前記試料液の
一部を超過冷却状態に冷却することにより試料液の一部
に氷晶核を形成し、この氷晶核の形成と同時に試料液全
体を氷結させ、この氷結時に放出される凝固潜熱で固液
共存状態になった試料液の温度を測定し、  前記請求
項3に記載の発明においては、前記請求項1に記載の氷
点降下測定方法において、氷結直前の試料液の温度と固
液共存状態になった試料液の温度とから固液共存状態の
温度を補正する。
[Means for Solving the Problems] In the method according to the invention according to claim 1 for solving the above problems, the cooling rate for cooling a part of the sample liquid is lower than the cooling rate for cooling the remaining part of the sample liquid. A portion of the sample liquid and the remainder are cooled at the same time to freeze the sample liquid, and the temperature of the sample liquid, which has entered a solid-liquid coexistence state due to the latent heat of solidification released when the sample liquid freezes, is measured by a measuring means. A freezing point depression measuring method according to claim 2, characterized in that, in the freezing point depression measuring method according to claim 1, a part of the sample liquid is cooled to an overcooled state. An ice crystal nucleus is formed in a part of the sample liquid, and the entire sample liquid is frozen at the same time as the ice crystal nucleus is formed.The temperature of the sample liquid in a solid-liquid coexistence state is controlled by the latent heat of solidification released during this freezing. In the invention according to claim 3, in the freezing point depression measuring method according to claim 1, the solid-liquid temperature is determined from the temperature of the sample liquid immediately before freezing and the temperature of the sample liquid in a solid-liquid coexistence state. Correct the temperature of the coexistence state.

【0009】前記請求項4に記載の発明にかかる装置は
、試料液を収容する試料液室と、前記試料液室の入口部
分内の試料液を超過冷却状態に冷却する補助冷却ブロッ
ク、試料液室内の試料液を冷却する主冷却ブロックおよ
び前記補助冷却ブロックと主冷却ブロックとを同時に冷
却する冷却器を備えた冷却手段と、前記試料液の温度を
検出する検出手段と、この検出手段の検出結果により試
料液の温度を算出する演算手段とを有することを特徴と
する氷点降下測定装置である。
The apparatus according to the invention according to claim 4 includes a sample liquid chamber containing a sample liquid, an auxiliary cooling block that cools the sample liquid in the inlet portion of the sample liquid chamber to a supercooled state, and a sample liquid chamber. A cooling means including a main cooling block for cooling a sample liquid in a room and a cooler for simultaneously cooling the auxiliary cooling block and the main cooling block, a detection means for detecting the temperature of the sample liquid, and a detection means for detecting the temperature of the sample liquid. This is a freezing point depression measuring device characterized by having a calculation means for calculating the temperature of a sample liquid based on the result.

【0010】0010

【作用】以下に各発明の作用を説明する。[Operation] The operation of each invention will be explained below.

【0011】請求項1に記載の方法においては、試料液
室内の一部の試料液を冷却する冷却速度が試料液の残部
を冷却する冷却速度よりも速くなるように試料液の一部
および残部を同時に冷却する。冷却期間は、冷却された
試料液の一部に、自発的に氷晶核が形成されるまでであ
る。この氷晶核が形成されると試料液全体が氷結する。 そして、試料液は氷結時に放出される凝固潜熱により固
液共存状態となる。検出手段は固液共存状態になった試
料液の温度を検出し、測定手段に送る。これにより、測
定手段は前記温度を測定することができる。
In the method according to claim 1, the part of the sample liquid and the remaining part of the sample liquid in the sample liquid chamber are cooled so that the cooling rate of the part of the sample liquid in the sample liquid chamber is faster than the cooling rate of the remaining part of the sample liquid. are cooled at the same time. The cooling period is until ice crystal nuclei are spontaneously formed in a portion of the cooled sample liquid. When these ice crystal nuclei are formed, the entire sample liquid freezes. Then, the sample liquid enters a solid-liquid coexistence state due to latent heat of solidification released during freezing. The detection means detects the temperature of the sample liquid in a solid-liquid coexistence state and sends it to the measurement means. Thereby, the measuring means can measure the temperature.

【0012】請求項2に記載の方法においては、試料液
の一部を超過冷却状態にまで冷却する。超過冷却状態に
まで冷却された試料液の一部に自発的に氷晶核が形成さ
れる。この氷晶核の形成によって、試料液全体が氷結す
る。その後については前記請求項1に記載のとおりであ
る。
In the method according to claim 2, a portion of the sample liquid is cooled to an overcooled state. Ice crystal nuclei spontaneously form in a portion of the sample liquid that has been cooled to an overcooled state. This formation of ice crystal nuclei causes the entire sample liquid to freeze. The subsequent steps are as described in claim 1 above.

【0013】請求項3記載の方法においては、試料液の
氷結直前および固液共存状態の両温度を測定し、氷結直
前の温度で固液共存状態の温度を補正して適正値を求め
る。このときの、氷点温度の補正には、以下の補正式に
よることができる。
In the method described in claim 3, the temperature of the sample liquid is measured both immediately before freezing and in the solid-liquid coexistence state, and the temperature in the solid-liquid coexistence state is corrected by the temperature immediately before freezing to obtain an appropriate value. At this time, the freezing point temperature can be corrected using the following correction formula.

【0014】T(X,Y)=(Ty ・K1 −K2 
−Tx )・K3 +Ty ただし、T(X,Y)は補正された氷点温度、Ty は
測定された氷点温度、Tx は氷結直前の温度を示す。 K1 、K2 およびK3 は定数であり、氷点温度が
既知の校正液について少なくとも3回測定されたその氷
結直前の温度および氷結温度から求めることができる。
[0014]T(X,Y)=(Ty・K1−K2
−Tx )·K3 +Ty where T(X, Y) is the corrected freezing point temperature, Ty is the measured freezing point temperature, and Tx is the temperature just before freezing. K1, K2, and K3 are constants, and can be determined from the temperature just before freezing and the freezing temperature of a calibration liquid whose freezing point temperature is measured at least three times.

【0015】請求項4記載の装置においては、一個の冷
却器により主冷却ブロックおよび補助冷却ブロックを同
時に冷却すると、試料液室の入口内の試料液が補助冷却
ブロックにより超過冷却状態にまで冷却され、自発的に
氷晶核が形成される。この氷晶核により試料液全体が急
速に氷結し、試料液全体が固液共存状態になる。検出手
段により固液共存状態の温度を検出し、検出結果から演
算手段により氷点が算出される。
In the apparatus according to claim 4, when the main cooling block and the auxiliary cooling block are simultaneously cooled by one cooler, the sample liquid in the inlet of the sample liquid chamber is cooled to an overcooled state by the auxiliary cooling block. , ice crystal nuclei are formed spontaneously. The entire sample liquid rapidly freezes due to these ice crystal nuclei, and the entire sample liquid becomes in a solid-liquid coexistence state. The temperature of the solid-liquid coexistence state is detected by the detection means, and the freezing point is calculated by the calculation means from the detection result.

【0016】通常、検出手段により検出された固液共存
状態の温度をもって氷点とするのであるが、試料液の濃
度、不純物の存在、その他の原因により同一試料であっ
ても異なる固液共存状態の温度が検出されることがある
。そのような場合には、検出手段により、試料液の氷結
直前の温度と氷点温度とを測定し、演算手段により前記
補正式を用いて正確な氷点を算出することもできる。
Normally, the temperature of the solid-liquid coexistence state detected by the detection means is defined as the freezing point, but the same sample may have different solid-liquid coexistence states depending on the concentration of the sample liquid, the presence of impurities, and other reasons. Temperature may be detected. In such a case, the detection means may measure the temperature of the sample liquid immediately before freezing and the freezing point temperature, and the calculation means may calculate the accurate freezing point using the correction formula.

【0017】[0017]

【実施例】以下に本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0018】図1に示す氷点降下測定装置1は、試料液
を収容する収容手段2と、この収容手段2に試料液を供
給するポンプ3と、このポンプ3に連通する状態で配置
した試料びん4と、前記収容手段2に取付けた検出手段
5および冷却手段15と、この検出手段5の検出結果を
取込んで試料液の温度測定、温度補正を行う測定手段6
と、この測定手段6により制御されて前記ポンプ3を駆
動するポンプ駆動部7と、収容手段2から排出される試
料液を収容する排液びん8と、前記測定手段6に対し各
種の操作情報を送る操作手段9と、液晶ディスプレイの
如き表示手段10とを具備している。
The freezing point depression measurement apparatus 1 shown in FIG. 4, a detection means 5 and a cooling means 15 attached to the storage means 2, and a measurement means 6 that takes in the detection results of the detection means 5 to measure and correct the temperature of the sample liquid.
A pump driving section 7 that drives the pump 3 under the control of the measuring means 6, a drain bottle 8 that stores the sample liquid discharged from the storing means 2, and various operational information for the measuring means 6. It is equipped with an operating means 9 for sending a message, and a display means 10 such as a liquid crystal display.

【0019】前記収容手段2は、図2および図3にも示
されるように、銀等の熱伝導率が大きく、かつ、比熱が
小さい耐食性材料で形成された略L字状の主冷却ブロッ
ク11を具備している。
As shown in FIGS. 2 and 3, the housing means 2 includes an approximately L-shaped main cooling block 11 made of a corrosion-resistant material having high thermal conductivity and low specific heat, such as silver. Equipped with:

【0020】この主冷却ブロック11は、垂直片部11
aおよび水平片部11bからなる筒状体により形成され
、垂直片部11aの内部に試料液室12を有している。 また、試料液室12の上側から検出手段5を構成するサ
ーミスタ13を挿通している。
This main cooling block 11 has a vertical piece 11
The sample liquid chamber 12 is formed inside the vertical piece 11a. Further, a thermistor 13 constituting the detection means 5 is inserted from the upper side of the sample liquid chamber 12 .

【0021】試料液室12の下側には前記ポンプ3に連
通する入口管14aが挿通され、また、試料液室12に
連通する水平片部11bには前記排液びん8に連通する
排液管14bが挿通されている。
An inlet pipe 14a communicating with the pump 3 is inserted into the lower side of the sample liquid chamber 12, and a drain pipe 14a communicating with the drain bottle 8 is inserted into the horizontal piece 11b communicating with the sample liquid chamber 12. A tube 14b is inserted therethrough.

【0022】さらに、前記主冷却ブロック11は、冷却
手段15を構成する主冷却部としてのペルチェ効果を利
用するサーモモジュール16a、冷却板17、サーモモ
ジュール16aとカスケード接続されたサーモモジュー
ル16b,16cを介して放熱板18に取付けられてい
る。
Furthermore, the main cooling block 11 includes a thermo module 16a that utilizes the Peltier effect as a main cooling section constituting the cooling means 15, a cooling plate 17, and thermo modules 16b and 16c connected in cascade with the thermo module 16a. It is attached to the heat sink 18 via the heat sink.

【0023】また、前記主冷却ブロック11の下側で、
かつ、サーモモジュール16aの表面には、前記入口管
14aを囲む状態で補助冷却ブロック19を密着配置し
ている。補助冷却ブロック19は、前記主冷却ブロック
11を構成する材質よりも熱伝導率が大きく、比熱の小
さい材質により形成されている。
Furthermore, below the main cooling block 11,
Further, an auxiliary cooling block 19 is closely disposed on the surface of the thermo module 16a so as to surround the inlet pipe 14a. The auxiliary cooling block 19 is made of a material having higher thermal conductivity and lower specific heat than the material constituting the main cooling block 11.

【0024】前記測定手段6は、図1に示すように、全
体の制御を行うとともにサーミスタ13の検出信号に基
いて温度の値を求める制御部21と、ROM、RAM等
を包含した記憶部22と、前記サーミスタ13の出力信
号を電圧値に変換して出力する抵抗電圧変換回路23と
、この抵抗電圧変換回路23からの電圧値の信号をデジ
タル信号に変換して制御部21に送出するA/D変換器
24と、前記制御部21に接続されると共にこの制御部
21からの各種制御信号、前記サーミスタ13の検出信
号に基いて測定した測定信号を出力するI/Oポート”
25と、前記冷却手段15、抵抗電圧変換回路23の極
性切替えを行う極性切替器26と、サーモモジュール1
6a,16b,16c用の直流電源27とを具備してい
る。
As shown in FIG. 1, the measuring means 6 includes a control section 21 that performs overall control and determines the temperature value based on the detection signal of the thermistor 13, and a storage section 22 that includes ROM, RAM, etc. , a resistance voltage conversion circuit 23 that converts the output signal of the thermistor 13 into a voltage value and outputs it, and A that converts the voltage value signal from the resistance voltage conversion circuit 23 into a digital signal and sends it to the control section 21. /D converter 24 and an I/O port that is connected to the control section 21 and outputs a measurement signal measured based on various control signals from the control section 21 and a detection signal of the thermistor 13.
25, the cooling means 15, a polarity switch 26 for switching the polarity of the resistance voltage conversion circuit 23, and a thermo module 1.
It is equipped with a DC power supply 27 for 6a, 16b, and 16c.

【0025】また、制御部21は、I/Oポート25を
介して前記ポンプ駆動部7を制御するようになっている
Furthermore, the control section 21 controls the pump driving section 7 via the I/O port 25.

【0026】次に、上述した構成の氷点降下測定装置1
を用いた氷点降下測定方法を図4および図5をも参照し
て説明する。
Next, the freezing point depression measuring device 1 having the above-described configuration will be described.
A method of measuring freezing point depression using the method will be explained with reference to FIGS. 4 and 5.

【0027】オペレータが操作手段9から測定開始の指
令を発すると、この指令は制御部21に取込まれ、これ
により制御部21はI/Oポート25を介してポンプ駆
動部7に制御信号を送る(図4に示すA工程)。
When the operator issues a command to start measurement from the operating means 9, this command is taken into the control section 21, and the control section 21 then sends a control signal to the pump drive section 7 via the I/O port 25. (Step A shown in FIG. 4).

【0028】ポンプ駆動部1は、前記制御信号を基に所
定時間ポンプ3を駆動し、この結果、試料びん4内に収
容されている所定量(例えば0.2ml)の試料液が入
口管14aを経て試料室12内へ送られる。この後ポン
プ3はその駆動を停止する。
The pump driving section 1 drives the pump 3 for a predetermined period of time based on the control signal, and as a result, a predetermined amount (for example, 0.2 ml) of the sample liquid contained in the sample bottle 4 flows into the inlet pipe 14a. The sample is sent into the sample chamber 12 through the . After this, the pump 3 stops driving.

【0029】また、制御部21は、I/Oポート25、
極性切替器26を介して冷却手段15に冷却開始の制御
信号を送る(図4に示すB工程)。
[0029] The control unit 21 also controls the I/O ports 25,
A control signal to start cooling is sent to the cooling means 15 via the polarity switch 26 (step B shown in FIG. 4).

【0030】このとき、冷却手段15が試料液を冷却す
る状態を図4中において「CS」で表すものとする。
At this time, the state in which the cooling means 15 cools the sample liquid is indicated by "CS" in FIG.

【0031】試料液は冷却手段の冷却動作に伴い、主冷
却ブロック11により試料液室12内の試料液が図4お
よび図5に示す特性Xで示されるように冷却され、この
状態はサーミスタ13により検出され、さらに抵抗電圧
変換回路23、A/D変換器24を経て制御部21に検
出結果が送られて、温度値が求められ、この温度値は表
示手段10により表示される。
With the cooling operation of the cooling means, the sample liquid in the sample liquid chamber 12 is cooled by the main cooling block 11 as shown by the characteristic X shown in FIGS. 4 and 5, and this state is maintained by the thermistor 13. Further, the detection result is sent to the control section 21 via the resistance voltage conversion circuit 23 and the A/D converter 24 to obtain a temperature value, and this temperature value is displayed on the display means 10.

【0032】一方、入口管14a内の試料液は、補助冷
却ブロック19により前記主冷却ブロック11よりも速
い冷却速度で、図4に示す特性Yに示すように冷却され
る。
On the other hand, the sample liquid in the inlet pipe 14a is cooled by the auxiliary cooling block 19 at a faster cooling rate than the main cooling block 11, as shown by characteristic Y shown in FIG.

【0033】そして、試料液室12内の試料液の温度が
、図4に示すTx(たとえば−6℃〜−11℃程度)に
なったときには、入口管14a内の試料液の温度は補助
冷却ブロック19の動作でTz(超過冷却状態の温度、
たとえば−18℃程度)にまで冷却される。この入口管
14aで超過冷却状態にまで冷却された試料液中には自
発的に氷晶核が生成し、このため、試料液全体が急激に
氷結する。このとき、試料液は、凝固潜熱により、固液
共存状態となり、その温度は氷結に伴う潜熱放出で徐々
に上昇し一旦プラトー(温度の平坦部)となってその後
は徐々に降下する。
When the temperature of the sample liquid in the sample liquid chamber 12 reaches Tx shown in FIG. In the operation of block 19, Tz (temperature in supercooled state,
For example, it is cooled down to about -18°C. Ice crystal nuclei are spontaneously generated in the sample liquid that has been cooled to an overcooled state by the inlet pipe 14a, so that the entire sample liquid rapidly freezes. At this time, the sample liquid enters a solid-liquid coexistence state due to the latent heat of solidification, and its temperature gradually rises due to the release of latent heat accompanying freezing, once reaches a plateau (temperature flat area), and then gradually decreases.

【0034】プラトーとなったときの温度Tyは、固液
共存状態の平衡温度としてサーミスタ13により検出さ
れ、その検出信号を入力する制御部21により演算され
て表示手段10により表示されるとともに、記憶部22
に記憶される。
The temperature Ty when the plateau is reached is detected by the thermistor 13 as the equilibrium temperature of the solid-liquid coexistence state, is calculated by the control unit 21 to which the detection signal is input, is displayed by the display means 10, and is stored in the memory. Part 22
is memorized.

【0035】上述した温度TxからTyへの急激な温度
変化により測定手段6は試料液が固定共存状態になった
ことを知ることができ、氷結直前の温度Txを補正パラ
メータとして用いることができる。
The rapid temperature change from Tx to Ty allows the measuring means 6 to know that the sample liquid is in a fixed coexistence state, and the temperature Tx just before freezing can be used as a correction parameter.

【0036】この後、冷却手段15はオフ状態に制御さ
れる(図3に示すC工程)。
After this, the cooling means 15 is controlled to be in the OFF state (Step C shown in FIG. 3).

【0037】次に、上述した氷点温度Tyの測定が終る
と、制御部21は図4に「HS」で示すように冷却手段
15を加熱制御する。
Next, when the above-described measurement of the freezing point temperature Ty is completed, the control section 21 controls the heating of the cooling means 15 as indicated by "HS" in FIG.

【0038】そして、試料液の温度が0℃を越える段階
で、制御部21は冷却手段15のサーモモジュール16
a,16b,16cをオフにし、同時に試料液を排液び
ん8に排出する(図4に示す工程E)。
Then, when the temperature of the sample liquid exceeds 0° C., the controller 21 controls the thermo module 16 of the cooling means 15.
a, 16b, and 16c are turned off, and at the same time, the sample liquid is discharged into the drain bottle 8 (step E shown in FIG. 4).

【0039】次に、上述した試料液の固液共存状態の生
成過程を数値的に説明する。
Next, the process of forming the above-mentioned solid-liquid coexistence state of the sample liquid will be numerically explained.

【0040】例えば、0.2mlの試料液の凝固潜熱は
、0.2ml×79.7cal=15.94calにな
る。
For example, the latent heat of solidification of 0.2 ml of sample liquid is 0.2 ml×79.7 cal=15.94 cal.

【0041】また、前記試料液を1℃変化させるに必要
な熱量は0.2cal/℃であるとする。
It is also assumed that the amount of heat required to change the sample liquid by 1°C is 0.2 cal/°C.

【0042】前記銀製の主冷却ブロック11の体積を0
.5cm3 、銀の比熱を0.054cal/g/℃、
銀の比重を10.49g/cm3 とすれば、前記試料
液ブロックの温度を1℃変化させる熱量は、0.054
×0.5×10.49=0.283cal/℃になる。
[0042] The volume of the silver main cooling block 11 is set to 0.
.. 5cm3, the specific heat of silver is 0.054cal/g/℃,
If the specific gravity of silver is 10.49 g/cm3, the amount of heat required to change the temperature of the sample liquid block by 1°C is 0.054
×0.5×10.49=0.283 cal/°C.

【0043】いま、試料液および主冷却ブロック11の
温度を−22℃のとき、試料液が氷結して固液共存状態
となり−2℃で平衡に達すると仮定すると、このときの
凝固熱は、(22−2)×0.2+(22−2)×0.
283=9.66calになる。
Now, when the temperature of the sample liquid and the main cooling block 11 is -22°C, assuming that the sample liquid freezes and enters a solid-liquid coexistence state and reaches equilibrium at -2°C, the heat of solidification at this time is: (22-2)×0.2+(22-2)×0.
283=9.66 cal.

【0044】この凝固熱は、試料液全体の凝固潜熱(約
15.94cal)より少ないので、試料液全体が氷る
ことはなく、固液共存状態になる。
Since this heat of solidification is lower than the latent heat of solidification (approximately 15.94 cal) of the entire sample liquid, the entire sample liquid does not freeze and enters a solid-liquid coexistence state.

【0045】尚、上述した主冷却ブロック11の熱容量
の点に言及すると、この熱容量を小さくすることは、過
冷却された試料液や主冷却ブロック11を氷点温度にま
で上昇させるに必要な熱量が試料液全体の凝固潜熱より
小さい状態にすることを意味する。
Regarding the heat capacity of the main cooling block 11 mentioned above, reducing this heat capacity means that the amount of heat required to raise the supercooled sample liquid and the main cooling block 11 to the freezing point temperature is reduced. This means that the latent heat of solidification is lower than the latent heat of solidification of the entire sample liquid.

【0046】上述した入口管14a、出口管14bやサ
ーミスタ13の持つ熱容量は無視できるが、サーモモジ
ュール16a,16b,16cの熱容量は無視できない
し、上述した温度上昇のための熱量は当然その上昇温度
が大きくなるほど多くなるので、主冷却ブロック11の
熱容量は余裕をもって小さくしておくことが必要になる
Although the heat capacities of the inlet pipe 14a, outlet pipe 14b, and thermistor 13 mentioned above can be ignored, the heat capacities of the thermo modules 16a, 16b, and 16c cannot be ignored, and the amount of heat for the above-mentioned temperature increase is naturally equal to the increase temperature. The larger the number, the greater the number, so it is necessary to keep the heat capacity of the main cooling block 11 small with some margin.

【0047】次に、図5をも参照し、氷点温度Tyの温
度補正について説明する。
Next, referring also to FIG. 5, temperature correction of the freezing point temperature Ty will be explained.

【0048】自然氷結が生じる温度Tzは、試料液の濃
度、不純物の度合い、等により変化し、これが氷結直前
の温度Txと氷点温度Tyに影響を及ぼす。
The temperature Tz at which natural freezing occurs varies depending on the concentration of the sample liquid, the degree of impurities, etc., and this influences the temperature Tx just before freezing and the freezing point temperature Ty.

【0049】例えば、同一濃度の試料液の測定を2度行
ったとき、図5に示すように氷結直前の温度がTx1 
,Tx2 のように差が生じ、このため氷点温度もTy
1 ,Ty2 の如く差がでる場合があり得る。
For example, when measuring a sample solution with the same concentration twice, the temperature immediately before freezing is Tx1 as shown in FIG.
, Tx2, and therefore the freezing point temperature also changes as Ty
There may be cases where there is a difference such as 1 and Ty2.

【0050】このため、下記(1) を用いて氷点温度
補正値T(x,y) を求める。
For this reason, the freezing point temperature correction value T(x,y) is determined using the following (1).

【0051】 T(x,y)=(Ty・K1−K2−Tx)・K3+T
y  ……  (1)なお、K1 、K2 、K3 の
値は過去数回の校正データより求めるものである。
T(x,y)=(Ty・K1−K2−Tx)・K3+T
y... (1) Note that the values of K1, K2, and K3 are obtained from the past several calibration data.

【0052】すなわち、例えば、氷点温度が−1.85
8℃である1000mOsm/kgの校正液を作成し、
3度校正したときのデータが、(Tx1,Ty1),(
Tx2,Ty2),(Tx3,Ty3) とした場合、
下記(2) 、(3) 、(4) 式を連立させて、K
1 、K2 、K3 の値を求めることができる。
That is, for example, if the freezing point temperature is -1.85
Create a calibration solution of 1000mOsm/kg at 8℃,
The data when calibrated three times is (Tx1, Ty1), (
Tx2, Ty2), (Tx3, Ty3),
By combining the following equations (2), (3), and (4), K
1, K2, and K3 can be found.

【0053】 −1.858 =(Ty1K1−K2−Ty1)・K3
 +Ty1 ・・・(2)−1.858 =(Ty2K
1−K2−Tx2)・K3 +Ty2 ・・・(3)−
1.858 =(Ty2・K2 −K2−Tx3)・K
3 +Ty3 ・・(4)本発明は上述した実施例のほ
か、その要旨の範囲内で種々の変形が可能である。
−1.858 = (Ty1K1−K2−Ty1)・K3
+Ty1...(2)-1.858 =(Ty2K
1-K2-Tx2)・K3 +Ty2...(3)-
1.858 = (Ty2・K2 −K2−Tx3)・K
3 +Ty3 (4) In addition to the embodiments described above, the present invention can be modified in various ways within the scope of its gist.

【0054】[0054]

【発明の効果】以上詳述した本発明によれば以下の効果
を奏する。
[Effects of the Invention] The present invention described in detail above provides the following effects.

【0055】本発明によると、(1) 試料液室内に試
料液を吸い込みこれを冷却することにより氷点が測定さ
れるから、試料液の量を手動操作で調製する必要がなく
なり、(2) 冷媒液を使用することなく、サーモモジ
ュール等により試料液を冷却するので、冷媒液の補充、
交換等の煩雑なメンテナンス操作がなくなり、換言する
と、メンテナンスフリーであり、(3) サーミスタや
撹拌棒を入れた試験管を使用せずに、試料液室を使用す
るから、試料液の微量化が容易であり、(4) 装置の
小型化を簡単に達成することができ、(5) 冷却用の
冷媒液を冷すこともなく、サーモモジュール等の冷却操
作によるので、短時間で冷却を行うことができ、したが
って、この氷点降下測定方法を採用すると浸透圧測定の
迅速化を図ることができ、(6)試料液の一部および残
部を同時に一基の冷却器で冷却するので、従来装置にお
けるような試料液を過冷却状態に冷却する冷却器および
そのコントローラや過冷却状態から超過冷却状態に冷却
する他の冷却器およびそのコントローラが不要になり、
その分装置の小型化を達成することができるという、優
れた氷点降下測定方法およびそれを実現することのでき
る小型の氷点降下測定装置を提供することができる。
According to the present invention, (1) the freezing point is measured by sucking the sample liquid into the sample liquid chamber and cooling it, so there is no need to manually adjust the amount of the sample liquid, and (2) the refrigerant Since the sample liquid is cooled by a thermo module etc. without using liquid, replenishment of refrigerant liquid,
There is no need for complicated maintenance operations such as replacement, in other words, it is maintenance-free. (3) Since the sample liquid chamber is used instead of a test tube containing a thermistor or stirring rod, the amount of sample liquid can be minimized. (4) It is easy to downsize the device; (5) Cooling is performed in a short time because the cooling operation is performed using a thermo module, etc. without cooling the refrigerant liquid for cooling. Therefore, by adopting this freezing point depression measuring method, it is possible to speed up the osmotic pressure measurement. This eliminates the need for a cooler and its controller to cool the sample liquid to a supercooled state, as well as other coolers and its controller to cool the sample liquid from the supercooled state to the supercooled state.
It is possible to provide an excellent method for measuring freezing point depression, which allows the device to be made more compact, and a small-sized freezing point depression measuring device capable of realizing the method.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例装置のブロック図を示す。FIG. 1 shows a block diagram of an embodiment device of the present invention.

【図2】同装置における試料液室および冷却手段を示す
正面図である。
FIG. 2 is a front view showing a sample liquid chamber and cooling means in the apparatus.

【図3】図2におけるI−I線断面図である。FIG. 3 is a sectional view taken along line II in FIG. 2;

【図4】本発明の実施例方法を示す原理説明図である。FIG. 4 is a diagram illustrating the principle of an embodiment method of the present invention.

【図5】本発明の実施例方法における温度補正を行う場
合の説明図である。
FIG. 5 is an explanatory diagram when temperature correction is performed in the embodiment method of the present invention.

【符号の説明】[Explanation of symbols]

1    氷点降下測定装置 2    収容手段 5    検出手段 6    測定手段 12  試料液室 15  冷却手段。 1 Freezing point depression measuring device 2. Containment means 5 Detection means 6 Measurement means 12 Sample liquid chamber 15 Cooling means.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  試料液の一部を冷却する冷却速度が試
料液の残部を冷却する冷却速度よりも速くなるように試
料液の一部および残部を同時に冷却して試料液を氷結さ
せ、試料液の氷結時に放出される凝固潜熱で固液共存状
態となった試料液の温度を測定手段により測定すること
を特徴とする氷点降下測定方法。
Claim 1: The sample liquid is frozen by simultaneously cooling a part of the sample liquid and the remaining part so that the cooling rate for cooling the part of the sample liquid is faster than the cooling rate for cooling the remaining part of the sample liquid. A method for measuring freezing point depression, characterized in that the temperature of a sample liquid, which has entered a solid-liquid coexistence state due to the latent heat of solidification released when the liquid freezes, is measured by a measuring means.
【請求項2】  前記試料液の一部を超過冷却状態に冷
却することにより試料液の一部に氷晶核を形成し、この
氷晶核の形成と同時に試料液全体を氷結させ、この氷結
時に放出される凝固潜熱で固液共存状態になった試料液
の温度を測定する前記請求項1に記載の氷点降下測定方
法。
2. Forming ice crystal nuclei in a portion of the sample liquid by cooling a portion of the sample liquid to an overcooled state, freezing the entire sample liquid at the same time as the formation of the ice crystal nuclei, and freezing the entire sample liquid. 2. The freezing point depression measuring method according to claim 1, wherein the temperature of the sample liquid that has entered a solid-liquid coexistence state is measured due to the latent heat of solidification released at the time.
【請求項3】  氷結直前の試料液の温度と固液共存状
態になった試料液の温度とから固液共存状態の温度を補
正する前記請求項1に記載の氷点降下測定方法。
3. The freezing point depression measuring method according to claim 1, wherein the temperature in the solid-liquid coexistence state is corrected from the temperature of the sample liquid immediately before freezing and the temperature of the sample liquid in the solid-liquid coexistence state.
【請求項4】  試料液を収容する試料液室と、前記試
料液室の入口部分内の試料液を超過冷却状態に冷却する
補助冷却ブロック、試料液室内の試料液を冷却する主冷
却ブロックおよび前記補助冷却ブロックと主冷却ブロッ
クとを同時に冷却する冷却器を備えた冷却手段と、前記
試料液の温度を検出する検出手段と、この検出手段の検
出結果により試料液の温度を算出する演算手段とを有す
ることを特徴とする氷点降下測定装置。
4. A sample liquid chamber containing a sample liquid, an auxiliary cooling block that cools the sample liquid in the inlet portion of the sample liquid chamber to a supercooled state, a main cooling block that cools the sample liquid in the sample liquid chamber, and A cooling means equipped with a cooler that simultaneously cools the auxiliary cooling block and the main cooling block, a detection means for detecting the temperature of the sample liquid, and an arithmetic means for calculating the temperature of the sample liquid based on the detection result of the detection means. A freezing point depression measuring device comprising:
JP513191A 1991-01-21 1991-01-21 Freezing point drop measuring method and freezing point drop measuring device Withdrawn JPH04238258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP513191A JPH04238258A (en) 1991-01-21 1991-01-21 Freezing point drop measuring method and freezing point drop measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP513191A JPH04238258A (en) 1991-01-21 1991-01-21 Freezing point drop measuring method and freezing point drop measuring device

Publications (1)

Publication Number Publication Date
JPH04238258A true JPH04238258A (en) 1992-08-26

Family

ID=11602762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP513191A Withdrawn JPH04238258A (en) 1991-01-21 1991-01-21 Freezing point drop measuring method and freezing point drop measuring device

Country Status (1)

Country Link
JP (1) JPH04238258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244054A (en) * 2008-03-31 2009-10-22 Nikkiso Co Ltd Osmotic pressure analyzer
CN105136840A (en) * 2015-08-17 2015-12-09 国网天津市电力公司 Pour point tester cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244054A (en) * 2008-03-31 2009-10-22 Nikkiso Co Ltd Osmotic pressure analyzer
CN105136840A (en) * 2015-08-17 2015-12-09 国网天津市电力公司 Pour point tester cooling device

Similar Documents

Publication Publication Date Title
Ramsay A new method of freezing-point determination for small quantities
Hardy A grain boundary groove measurement of the surface tension between ice and water
JP4022878B2 (en) Cryopreservation system with controlled dendritic interface speed
KR102412507B1 (en) Systems, devices, and methods for automated sample thawing
US8387826B2 (en) Beverage dispensing apparatus
Diller et al. A cryomicroscope for the study of freezing and thawing processes in biological cells
US4601587A (en) Device and method for determining freezing points
JPS5831541B2 (en) Freezing point depression measuring method and measuring device
JPH04238258A (en) Freezing point drop measuring method and freezing point drop measuring device
JP2009525847A (en) Method and apparatus for controlling reaction temperature in a biochemical instrument
Peppin et al. Steady-state mushy layers: experiments and theory
JPH0622684A (en) Low-temperature storage device
JPH0229578A (en) Regeneration type refrigerator and arithmetic and display methods for residual cold insulation feasible time of regeneration type coolant used
CN212819998U (en) Small-sized low-temperature water bath kettle
US20040216862A1 (en) Laboratory thermostat
JPH07318215A (en) Cold heat accumulating device
JPH0545312A (en) Automatic freezing-point measuring apparatus
JP3327866B2 (en) Calorimetric measuring method, calorimetric measuring device, drainage measuring method, and drainage measuring device
JP2909840B2 (en) Osmotic pressure measurement method by freezing point descent method
Kobe et al. The Heat Capacity of Saturated Sodium Sulfate Solution.
CN216411121U (en) Device capable of accurately measuring liquid freezing point
JP2000137011A (en) Freezing point depression measuring device and method thereof
KR830000736B1 (en) Method for measuring the freezing point lowering
CN217033713U (en) Cooling device for X-ray diffractometer
SU763755A1 (en) Device for determining solidification temperature oforganic substances

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514