JP3327866B2 - Calorimetric measuring method, calorimetric measuring device, drainage measuring method, and drainage measuring device - Google Patents

Calorimetric measuring method, calorimetric measuring device, drainage measuring method, and drainage measuring device

Info

Publication number
JP3327866B2
JP3327866B2 JP11142799A JP11142799A JP3327866B2 JP 3327866 B2 JP3327866 B2 JP 3327866B2 JP 11142799 A JP11142799 A JP 11142799A JP 11142799 A JP11142799 A JP 11142799A JP 3327866 B2 JP3327866 B2 JP 3327866B2
Authority
JP
Japan
Prior art keywords
slurry
temperature
medium
heat
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11142799A
Other languages
Japanese (ja)
Other versions
JP2000304714A (en
Inventor
正 塚野
敏浩 鈴木
敏雄 田代
隆夫 横瀬
誠司 澁谷
修二 角谷
芳典 白方
陽一郎 入谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11142799A priority Critical patent/JP3327866B2/en
Publication of JP2000304714A publication Critical patent/JP2000304714A/en
Application granted granted Critical
Publication of JP3327866B2 publication Critical patent/JP3327866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱システムに適
用される蓄熱材の凝固熱量または融解熱量を計測する熱
量計測方法、熱量計測装置、排液計量方法、及び排液計
量装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calorific value measuring method, a calorimetric measuring device, a drainage measuring method, and a drainage measuring device for measuring the heat of solidification or the heat of fusion of a heat storage material applied to a heat storage system.

【0002】[0002]

【従来の技術】従来の蓄熱システムにおける蓄熱方法と
して、水の顕熱のみを利用し蓄熱を行なう水蓄熱方法
と、例えば蓄熱材として水を用い、その水の融解潜熱を
利用した氷蓄熱方法が知られている。この氷蓄熱方法で
は、蓄熱時に0℃以下に冷却されたブライン(不凍液)
を用いて水を冷却することにより、氷として冷熱を蓄
え、放熱時に直接冷水を用いて、または間接的にブライ
ンを介して氷を融解して冷熱を取り出す。
2. Description of the Related Art As a heat storage method in a conventional heat storage system, there are a water heat storage method in which heat is stored using only sensible heat of water and an ice heat storage method in which water is used as a heat storage material and the latent heat of melting of the water is used. Are known. In this ice heat storage method, brine (antifreeze) cooled to 0 ° C. or less during heat storage
The water is cooled by using water to store cold heat as ice, and the heat is extracted by directly using cold water or indirectly melting the ice via brine during heat radiation.

【0003】この従来の氷潜熱方法を用いた蓄熱システ
ムでは、蓄熱する場合に冷凍機でブラインを−5℃程度
まで冷却する必要があるため、冷凍機の冷媒蒸発温度を
低くする必要があり、冷凍機の入力に対する蓄熱量の比
すなわち成績係数が低くなる。また、氷を冷却するとき
にブラインを使用する必要があり、その管理に注意が必
要である。
In the heat storage system using the conventional ice latent heat method, when storing heat, it is necessary to cool the brine to about -5.degree. C. with a refrigerator, so that it is necessary to lower the refrigerant evaporation temperature of the refrigerator. The ratio of the amount of stored heat to the input of the refrigerator, that is, the coefficient of performance, is reduced. In addition, it is necessary to use brine when cooling ice, and care must be taken in its management.

【0004】また、他の潜熱蓄熱システムの例として
は、常温で相変化する潜熱蓄熱物質の融解・凝固潜熱を
利用し、その潜熱蓄熱物質を芯物質としてカプセルやコ
ンテナ内に封入して冷水またはブラインを用いて冷却す
ることによって固体として冷熱を、または温水を用いて
加熱することによって液体として温熱を蓄え、放熱時に
は間接的に前記潜熱蓄熱物質を融解して冷熱を、凝固さ
せて温熱を取り出す方法が知られている。この常温で相
変化する潜熱蓄熱物質を利用する場合、潜熱蓄熱物質が
揮発性を有する場合や、共晶塩溶液中で用いられる場合
等の取扱い面から、カプセルやコンテナ内に封入する必
要がある。
As another example of a latent heat storage system, a latent heat storage material that changes phase at room temperature is utilized, and the latent heat storage material is encapsulated in a capsule or container as a core material to form cold water or water. Cooling as a solid by cooling using brine, or storing heat as a liquid by heating using warm water, and indirectly melting the cold heat by indirectly melting the latent heat storage material during heat radiation, taking out the heat by solidifying Methods are known. When using the latent heat storage material that changes phase at normal temperature, it is necessary to enclose the latent heat storage material in a capsule or container in terms of handling when the latent heat storage material has volatility or when used in a eutectic salt solution. .

【0005】一方、これらのカプセルやコンテナは、直
径70mmの球形のものや一辺が数10cmの矩形状あ
るいはプレート状コンテナが使用され、蓄熱槽容器内に
充填され静止状態で使用される。そして、蓄熱槽容器と
これらカプセルやコンテナの間の空間には、水やブライ
ンが充満される。
On the other hand, as these capsules and containers, spherical ones having a diameter of 70 mm or rectangular or plate-like containers having a side of several tens cm are used, filled in a heat storage tank and used in a stationary state. The space between the heat storage tank and these capsules or containers is filled with water or brine.

【0006】このような静置形カプセル方式とコンテナ
方式では、蓄熱時及び放熱時において、これらカプセル
やコンテナ(以下、蓄熱材容器と称する)と水等使用さ
れる熱媒流体との間や、蓄熱材容器の壁と潜熱蓄熱物質
との間での熱抵抗が大きい。よって、放熱時において加
熱された潜熱蓄熱物質の温度や蓄熱時において冷却され
た潜熱蓄熱物質の温度と水等使用される熱媒流体との温
度差を、各状態で5℃程度以上とる必要があり、蓄熱時
と放熱時における水等使用される熱媒流体の温度に10
℃以上の温度差を設ける必要がある。すなわち、5℃の
冷水を取出そうとする場合、蓄熱時には−5℃のブライ
ンで冷却する必要がある。また、ブラインを使用しない
温度レベルで蓄熱しようとすると、冷水取出し温度が1
0℃以上となり、一般空調等には直接利用しがたい温度
となる。
[0006] In such a stationary capsule system and a container system, during heat storage and heat radiation, between these capsules or containers (hereinafter referred to as heat storage material containers) and a heat medium fluid such as water, or heat storage. The thermal resistance between the wall of the material container and the latent heat storage material is large. Therefore, the temperature of the latent heat storage material heated at the time of heat release or the temperature difference between the temperature of the latent heat storage material cooled at the time of heat storage and the temperature of the heat medium fluid used, such as water, must be about 5 ° C. or more in each state. The temperature of the heat transfer fluid used such as water during heat storage and heat release is 10
It is necessary to provide a temperature difference of at least ° C. That is, when trying to extract cold water of 5 ° C., it is necessary to cool with brine of −5 ° C. when storing heat. In addition, if it is attempted to store heat at a temperature level where brine is not used, the cold water discharge temperature will be 1
The temperature is 0 ° C. or higher, which is a temperature that cannot be directly used for general air conditioning and the like.

【0007】このような潜熱蓄熱方法によるシステムの
問題を解決するために、潜熱蓄熱物質を芯物質として微
小なカプセル内に封入して構成した微小カプセルを、水
と混合してスラリー状態として流動性を持たせ(以下、
このスラリーを微小カプセルスラリーと称す)、伝熱性
能を向上させたシステムが知られている。このシステム
では、蓄熱時に、微小カプセルスラリーを熱交換器によ
り冷水またはブラインと熱交換させることで直接冷却す
ることにより、微小カプセル内の潜熱蓄熱物質に冷熱を
蓄える。また放熱時には、同様に微小カプセルスラリー
を熱交換器により戻り冷水またはブラインと熱交換させ
ることで直接加熱することにより、微小カプセル内の潜
熱蓄熱物質から冷熱を取り出す。
In order to solve the problem of the system using such a latent heat storage method, a microcapsule formed by encapsulating a latent heat storage material as a core material in a microcapsule is mixed with water to form a slurry to form a fluid. (Below,
This slurry is called a microcapsule slurry), and a system with improved heat transfer performance is known. In this system, during heat storage, the microcapsule slurry is directly cooled by exchanging heat with cold water or brine by a heat exchanger, thereby storing cold heat in the latent heat storage material in the microcapsules. Also, at the time of heat release, the microcapsule slurry is returned to the heat exchanger and exchanged heat with cold water or brine to directly heat, thereby extracting cold from the latent heat storage material in the microcapsules.

【0008】このように、微小カプセルスラリーの蓄熱
特性は良好であるが、実用化の為には、任意の温度と熱
量の対応付けが必要である。
As described above, the heat storage characteristics of the microcapsule slurry are good, but for practical use, it is necessary to associate an arbitrary temperature with a heat quantity.

【0009】(1)第1の従来の技術 潜熱物質を有する媒体の温度と熱量の関係を計測する装
置として示差走査型熱量計(DSC:Differen
tial Scanning Calorimetr
y)を用いる方法が一般的である。
(1) First Prior Art A differential scanning calorimeter (DSC: Differen) is a device for measuring the relationship between the temperature and the amount of heat of a medium having a latent heat substance.
tial scanning calorimeter
The method using y) is generally used.

【0010】DSC装置は、加熱、冷却面に供試体を静
置し、加熱時に融解熱量と加熱面温度の関係を計測し、
冷却時に凝固熱量と冷却面温度の関係を計測して各温度
域での相変化熱量を求めることができる。同装置はかな
り高価であると共に、供試体が静置状態であることか
ら、微小カプセルスラリーの熱量計測には不適当であ
る。
[0010] In the DSC apparatus, the specimen is left standing on the heating and cooling surfaces, and the relationship between the heat of fusion and the temperature of the heating surface during heating is measured.
By measuring the relationship between the heat of solidification and the temperature of the cooling surface during cooling, the phase change heat in each temperature range can be determined. The apparatus is quite expensive and the specimen is in a stationary state, so it is not suitable for calorimetric measurement of the microcapsule slurry.

【0011】(2)第2の従来の技術 次に、図7に微小カプセルスラリーの熱量計測方法の事
例を示す。高温熱交換器61と加熱ポンプ63、高温側
熱量計64を有する微小カプセル加熱系と、低温熱交換
器62と冷却ポンプ65、低温側熱量計66を有する冷
却系との間に、スラリー循環ポンプ69とスラリー流量
制御器70ならびに微小カプセルスラリーの高温熱交換
器61の出口スラリー温調67および低温熱交換器62
の出口スラリー温調68よりなる微小カプセルスラリー
系より構成し、またスラリー系は密閉系となるため、ス
ラリー膨張タンク71を有している。
(2) Second Prior Art Next, FIG. 7 shows an example of a method for measuring the calorific value of the microcapsule slurry. A slurry circulation pump is provided between a high temperature heat exchanger 61, a heating pump 63, a microcapsule heating system having a high temperature side calorimeter 64, and a low temperature heat exchanger 62, a cooling pump 65, and a cooling system having a low temperature side calorimeter 66. 69, a slurry flow rate controller 70 and an outlet slurry temperature control 67 and a low-temperature heat exchanger 62 of the high-temperature heat exchanger 61 for the microcapsule slurry.
The slurry system is composed of a microcapsule slurry system consisting of a slurry temperature control 68 at the outlet, and the slurry system has a slurry expansion tank 71 because it is a closed system.

【0012】この方法では、高温熱交換器61のスラリ
ー出口温度と低温熱交換器62のスラリー出口温度との
間の温度差とスラリー流量に依存した熱量を各熱量計6
6、64で計測することができる。
In this method, the calorific value of each calorimeter 6 depends on the temperature difference between the slurry outlet temperature of the high-temperature heat exchanger 61 and the slurry outlet temperature of the low-temperature heat exchanger 62 and the slurry flow rate.
6, 64 can be measured.

【0013】[0013]

【発明が解決しようとする課題】(第1の従来の技術の
問題点)微小カプセルスラリーの蓄熱量は、微小カプセ
ル内の潜熱蓄熱材による第1の従来の技術では、凝固
熱、融解熱と微小カプセルスラリー全体の比熱とから構
成される。従来、微小カプセルにおける蓄熱量の計測を
行なう場合、乾燥状態もしくはスラリー状態の微小カプ
セルに対して冷却、加熱を行ない、示差走査熱量計を用
いたDSC法(DSC:Differential S
canning Calorimetry)により計測
を行なっている。
[Problems to be Solved by the First Prior Art] The amount of heat stored in the microcapsule slurry can be reduced by the heat of solidification and heat of fusion in the first prior art using the latent heat storage material in the microcapsules. And the specific heat of the entire microcapsule slurry. Conventionally, when measuring the amount of heat stored in a microcapsule, the microcapsule in a dry state or a slurry state is cooled and heated, and a DSC method using a differential scanning calorimeter (DSC: Differential S) is used.
The measurement is performed by using a scanning calorimetry.

【0014】しかし、この計測方法における微小カプセ
ルの状態は、DSC試験部に静置状態で計測されるた
め、実用条件であるスラリー状態で流動条件下の微小カ
プセルが実際の蓄熱システムの熱交換器を介して冷却、
加熱される状態と異なる。よって、DSCの計測方法に
より得られる微小カプセル内の凝固熱量、融解熱量は、
実用条件であるスラリー状態での微小カプセル内の凝固
熱量、融解熱量と異なり、精度が低く、さらにその計測
装置に係る費用も高価であるという問題がある。
However, since the state of the microcapsules in this measuring method is measured in a stationary state in the DSC test section, the microcapsules in a slurry state, which is a practical condition, and in a flow condition are actually used as heat exchangers in a heat storage system. Cooling through,
Different from heated state. Therefore, the heat of solidification and heat of fusion in the microcapsules obtained by the DSC measurement method are as follows:
Unlike the amount of heat of solidification and the amount of heat of fusion in a microcapsule in a slurry state, which is a practical condition, there is a problem that the accuracy is low and the cost of the measuring device is high.

【0015】(第2の従来の技術の問題点)図7に示し
た第2の従来の技術の方法では、スラリー流量が大きい
程計測精度が向上するが、高温側、低温側の熱源設備容
量が大きくなるとともに、供試体である微小カプセルス
ラリーの容積も相当量が必要であり、経済性に問題があ
るとともに、ヒートバランスならびに温度静定に達する
のに相当時間を要し労務量も多大となる。また、多くの
微小カプセルスラリを必要とするため、試作段階での検
証に困難をきたすこととなる。
(Problem of the second conventional technique) In the method of the second conventional technique shown in FIG. 7, the measurement accuracy is improved as the slurry flow rate is increased, but the heat source equipment capacity on the high temperature side and the low temperature side is increased. And the volume of the microcapsule slurry, which is the test sample, needs to be considerable.Therefore, there is a problem in economy, and it takes a considerable amount of time to reach heat balance and temperature stabilization. Become. In addition, since many microcapsule slurries are required, verification at the prototype stage becomes difficult.

【0016】本発明の目的は、簡易な構成で高精度に凝
固熱量、融解熱量を得られる熱量計測方法及び装置を提
供することにある。
It is an object of the present invention to provide a calorific value measuring method and a calorific value measuring device capable of obtaining a heat of solidification and a heat of fusion with high accuracy by a simple structure.

【0017】また本発明の目的は、熱量計測の精度を高
める排液計量方法及び装置を提供することにある。
It is another object of the present invention to provide a method and an apparatus for measuring a drainage liquid, which improve the accuracy of calorimetric measurement.

【0018】[0018]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明の熱量計測方法は以下の如く構
成されている。
Means for Solving the Problems In order to solve the above-mentioned problems and achieve the object, a calorific value measuring method of the present invention is configured as follows.

【0019】(1)本発明の熱量計測方法は、相変化を
伴う潜熱蓄熱物質を主成分とする芯物質が封入された有
機系膜物質からなる微小なカプセルと液体とで構成され
た蓄熱材であるスラリーを所定量、所定温度に維持し、
前記スラリーと所定量、所定温度の既知の物性の冷却媒
体または加熱媒体とを混合し、混合後の前記スラリーの
温度を測定し、その温度を基に前記芯物質の凝固熱量及
び融解熱量の少なくとも一方を、冷却もしくは加熱のプ
ロセスに応じて計測する。
(1) The calorie measuring method according to the present invention provides a heat storage material comprising a microcapsule made of an organic film material in which a core material mainly containing a latent heat storage material with a phase change is enclosed, and a liquid. A predetermined amount of the slurry is maintained at a predetermined temperature,
Mix the slurry and a predetermined amount, a cooling medium or a heating medium of known physical properties at a predetermined temperature, measure the temperature of the slurry after mixing, and at least the heat of solidification and the heat of fusion of the core material based on the temperature. One is measured according to the cooling or heating process.

【0020】(2)本発明の熱量計測装置は、前記スラ
リーを貯える微小カプセルスラリー槽とスラリー熱交換
器、スラリ温調系、質量調管系とそれらを結ぶ配管系よ
りなる微小カプセルスラリー系と既知物性媒体を貯える
既知物性媒体槽と媒体熱交換器、既知媒体温調系、媒体
流量調節系とそれらを結ぶ配管系よりなる既知物性媒体
系を混合器で結び混合後の平衡温度を計測する少なくと
も1個の温度計を設置し、上記(1)に記載の混合法に
より微小カプセルスラリーの任意温度幅の融解、凝固熱
量および顕熱量を計測する。なお、各系の熱交換器は別
途用意された冷却系、加熱系に切替え任意の温度に調整
できる。
(2) The calorimeter according to the present invention comprises a microcapsule slurry tank containing the slurry, a slurry heat exchanger, a slurry temperature control system, a mass control system, and a piping system connecting them. A known physical medium system consisting of a known physical medium tank for storing known physical media and a medium heat exchanger, a known medium temperature control system, a medium flow control system, and a piping system connecting them is connected by a mixer to measure the equilibrium temperature after mixing. At least one thermometer is installed, and the melting, solidification heat and sensible heat of the optional temperature range of the microcapsule slurry are measured by the mixing method described in (1) above. The heat exchanger of each system can be switched to a separately prepared cooling system and heating system, and can be adjusted to an arbitrary temperature.

【0021】すなわち、既知の物性の冷却、加熱媒体と
の混合法熱量計測法において、微小カプセルスラリー槽
と既知の物性の媒体槽とそれぞれの供給ポンプと熱交換
器より構成される温度調節系統を設け、それぞれ所定温
度、流量にて混合器内で混合し、混合後温度の計測結果
から冷却もしくは加熱のプロセスに応じて熱量を計測す
る。
That is, in the calorimetric method using the cooling and heating medium of known physical properties, a temperature control system composed of a microcapsule slurry tank, a medium tank of known physical properties, respective supply pumps and a heat exchanger is used. The mixing is performed at predetermined temperatures and flow rates in a mixer, and the calorific value is measured according to the cooling or heating process from the measurement result of the temperature after mixing.

【0022】(3)本発明の熱量計測装置は上記(2)
に記載の装置であり、かつ既知物性媒体を清水とし混合
後のラインに排液槽を設け、希釈後の微小カプセルスラ
リーを前記微小カプセルスラリー槽へ戻す管路を設けて
おり、希釈微小カプセルスラリーについても熱量計測を
容易に行える事を特徴とする補助手段を構成している。
なお、戻りラインは排液槽の高さによる重力によっても
よいしポンプを介装してもよい。
(3) The calorimeter according to the present invention has the above-mentioned (2).
And a drain line is provided in a line after mixing the known physical medium as fresh water, and a conduit for returning the diluted microcapsule slurry to the microcapsule slurry tank is provided, and the diluted microcapsule slurry is provided. Also constitutes an auxiliary means characterized in that the calorific value can be easily measured.
The return line may be driven by gravity depending on the height of the drainage tank or may be provided with a pump.

【0023】既知の物性の媒体が水である場合、微小カ
プセルスラリーの構成物であり、混合後希釈されること
になるが、排液受け槽から移送ポンプを介して微小カプ
セルスラリー槽へ戻し、希釈状態の再計測をすることを
可能とする。
When the medium having a known physical property is water, it is a component of the microcapsule slurry and is diluted after mixing. However, it is returned from the drainage receiving tank to the microcapsule slurry tank via a transfer pump. It is possible to re-measure the dilution state.

【0024】(4)本発明の熱量計測装置は、上記
(1)の既知物性媒体との混合法によるスラリーの熱量
計測法を用い、微小カプセルスラリー撹拌部、スラリー
温調部、秤量計を有する微小カプセルスラリー槽とスラ
リー質量流量調節系からなる微小カプセルスラリー系
と、既知物性媒体撹拌部、媒体温調系、秤量計を有する
既知物性媒体槽と、媒体流量調節系からなる既知媒体系
を混合器で結び、混合後の平衡温度を計測する少なくと
も1個の温度計を設置し、上記(1)の混合法により微
小カプセルスラリーの任意温度幅における融解、凝固熱
量および顕熱量を計測する。
(4) The calorimeter of the present invention employs the calorimetric method for slurry by mixing with a known physical medium described in (1) above, and has a microcapsule slurry stirring section, a slurry temperature control section, and a weighing scale. A microcapsule slurry system consisting of a microcapsule slurry tank and a slurry mass flow rate control system, a known physical property medium tank having a known physical property medium stirring unit, a medium temperature control system, a weighing scale, and a known medium system consisting of a medium flow rate control system are mixed. At least one thermometer for measuring the equilibrium temperature after mixing is installed, and the melting, solidification heat, and sensible heat of the microcapsule slurry in an arbitrary temperature range are measured by the mixing method (1).

【0025】すなわち、微小カプセルスラリー槽と既知
の物性媒体槽に、混合器、冷却・加熱装置、秤量計をそ
れぞれ備え、微小カプセル取出しラインに質量流量計と
流量調節系を装置し、既知の物性媒体取出しラインに流
量計および流量調節系を装置し混合器で混合後、その混
合温度を計測することによって、その所定温度差におけ
る熱量計測を行なう。
That is, a mixer, a cooling / heating device, and a weighing meter are respectively provided in the microcapsule slurry tank and the known physical medium tank, and a mass flowmeter and a flow rate control system are provided in the microcapsule take-out line. A flow meter and a flow control system are provided in the medium take-out line, and after mixing by a mixer, the mixing temperature is measured to measure the calorific value at the predetermined temperature difference.

【0026】(5)本発明の排液計量装置は、上記
(4)の熱量計測装置を用い、混合後のラインに排液弁
を設けかつ、分岐と排液計量弁を設け、熱量計測条件下
の混合後スラリーを排液撹拌部、秤量計、排液温度計を
有する排液計量槽に取り込むよう構成している。
(5) The drainage measuring device of the present invention uses the calorie measuring device of the above (4), is provided with a drainage valve in the line after mixing, and is provided with a branch and a drainage measuring valve. The lower mixed slurry is taken into a drainage measuring tank having a drainage stirring section, a weighing meter, and a drainage thermometer.

【0027】すなわち、計測精度を高めるために混合後
の排液槽を2槽構成とし、一方を温度静定するまでの排
液受けとし、他方を温度静定後の本計測時排液受けと
し、かつこの本計測用の槽に撹拌部、秤量計、排液温度
計を装置し、未混合分や非平衡等の補正を可能とする。
That is, in order to improve the measurement accuracy, the drainage tank after mixing is composed of two tanks, one of which is a drainage receiver until the temperature is settled, and the other is a drainage receiver for the main measurement after the temperature is settled. In addition, a stirrer, a weighing meter, and a drainage thermometer are provided in the main measurement tank to enable correction of unmixed components, non-equilibrium, and the like.

【0028】(6)本発明の排液計量方法は、上記
(5)の排液計量装置により排液を計量する。
(6) In the drainage measuring method of the present invention, the drainage is measured by the drainage measuring device of (5).

【0029】(7)本発明の熱量計測装置は上記(2)
乃至(4)のいずれかに記載の装置であり、かつ前記微
小カプセルスラリー系において体積流量を同時計測する
機能を付加し、微小カプセルスラリーの任意温度幅にお
ける熱量および顕熱量計測とともに比重計測を行なえる
よう構成している。なお、体積流量を計測する機能とし
て、体積流量計に電磁流量計等を介装してもよく、また
質量流量計の体積流量信号を用いてもよい。
(7) The calorific value measuring apparatus of the present invention is the above (2)
The apparatus according to any one of (1) to (4), wherein a function of simultaneously measuring a volume flow rate in the microcapsule slurry system is added, and a specific gravity measurement can be performed together with a calorie measurement and a sensible heat measurement at an arbitrary temperature width of the microcapsule slurry. It is configured so that: As a function of measuring the volume flow rate, an electromagnetic flow meter or the like may be interposed in the volume flow meter, or a volume flow signal of the mass flow meter may be used.

【0030】すなわち、微小カプセルスラリー取出しラ
インに体積流量計を設置し質量流量と同時計測すること
により、所定温度条件での比重計測を可能とし、所定温
度差での熱量計測と同時に比重計測も行なうことを可能
とする。
That is, by installing a volume flow meter in the microcapsule slurry take-out line and simultaneously measuring it with the mass flow rate, it is possible to measure the specific gravity under a predetermined temperature condition, and also perform the specific gravity measurement simultaneously with the calorimetric measurement at a predetermined temperature difference. To make things possible.

【0031】[0031]

【発明の実施の形態】(第1の実施の形態)図1は、本
発明の第1の実施の形態に係る熱量計測方法を実施する
ための試験装置の構成を示す図である。本第1の実施の
形態では、微小カプセルスラリーと冷水または温水とを
混合して試験を行ない、微小カプセル内の潜熱蓄熱材に
おける凝固熱量、融解熱量を算出し、微小カプセルスラ
リーの蓄熱密度を求める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a diagram showing a configuration of a test apparatus for carrying out a calorific value measuring method according to a first embodiment of the present invention. In the first embodiment, a test is performed by mixing the microcapsule slurry with cold or hot water, the amount of heat of solidification and the amount of heat of fusion in the latent heat storage material in the microcapsule are calculated, and the heat storage density of the microcapsule slurry is obtained. .

【0032】図1に示す試験装置では、恒温室1内にビ
ーカー2とスターラー(磁石式撹拌機)3が設置されて
おり、ビーカー2内には微小カプセルスラリー21が収
容されている。スターラー3には軸31を介してプロペ
ラ32が取り付けられており、このプロペラ32がビー
カー2内に備えられている。また、恒温室1外にデータ
ロガー4が設置されており、このデータロガー4の熱電
対41がビーカー2内に挿入されている。
In the test apparatus shown in FIG. 1, a beaker 2 and a stirrer (magnetic stirrer) 3 are installed in a constant temperature chamber 1, and a microcapsule slurry 21 is contained in the beaker 2. A propeller 32 is attached to the stirrer 3 via a shaft 31, and the propeller 32 is provided in the beaker 2. A data logger 4 is installed outside the constant temperature chamber 1, and a thermocouple 41 of the data logger 4 is inserted into the beaker 2.

【0033】以下、タイプA及びタイプBの二種類の微
小カプセルスラリーについて、蓄熱量及び放熱量のスラ
リー温度への依存性を凝固側、融解側の両方で確認する
ことを目的として試験を行なう。
Hereinafter, tests are performed on two types of microcapsule slurries, Type A and Type B, for the purpose of confirming the dependence of the amount of heat storage and heat release on the slurry temperature on both the solidification side and the melting side.

【0034】まず凝固側試験時には、融解温度以上に暖
められ、所定温度となった微小カプセル内の潜熱蓄熱材
(ペンタデカン、テトラデカン等のパラフィン系炭化水
素の混合物からなる)が液相状態である微小カプセルス
ラリーを用意し、ビーカー2内に入れる。その後、ビー
カー2内のスラリーの質量を測定する。そして、氷の表
面の水分を十分取り除いた、小さく砕いた所定量の氷を
ビーカー2内に入れ、スターラー3を稼働し軸31を介
してプロペラ32を回転させることでスラリーと瞬時に
混合させ、混合後のスラリー全体の温度を計測する。
First, at the time of the solidification side test, the latent heat storage material (comprising a mixture of paraffinic hydrocarbons such as pentadecane and tetradecane) in a microcapsule heated to a predetermined temperature or higher at a melting temperature or higher is in a liquid phase state. A capsule slurry is prepared and placed in the beaker 2. Thereafter, the mass of the slurry in the beaker 2 is measured. Then, a predetermined amount of small crushed ice, which has sufficiently removed water from the surface of the ice, is put into the beaker 2, the stirrer 3 is operated, and the propeller 32 is rotated through the shaft 31 to be instantaneously mixed with the slurry. Measure the temperature of the entire slurry after mixing.

【0035】また融解側試験時には、凝固温度以下に冷
やされ、微小カプセル内の潜熱蓄熱材が固相状態である
所定温度の微小カプセルスラリーを用意し、ビーカー2
内に入れる。その後、ビーカー2内のスラリーの質量を
測定する。そして、凝固温度より十分高い温度の所定温
度の水をビーカー2内に供給し、スターラー3を稼働し
軸31を介してプロペラ32を回転させることでスラリ
ーと瞬時に混合させ、混合後のスラリー全体の温度を計
測する。これら凝固側試験時と融解側試験時に計測され
た温度および質量から、微小カプセルスラリーの凝固熱
量及び融解熱量、すなわち蓄熱量及び放熱量を測定す
る。
At the time of the melting side test, a microcapsule slurry is prepared at a predetermined temperature in which the latent heat storage material in the microcapsules is cooled to a solidification temperature or lower and is in a solid state.
Put in. Thereafter, the mass of the slurry in the beaker 2 is measured. Then, water at a predetermined temperature sufficiently higher than the coagulation temperature is supplied into the beaker 2, the stirrer 3 is operated, and the propeller 32 is rotated through the shaft 31 to be instantaneously mixed with the slurry. Measure the temperature of. The heat of solidification and the heat of fusion of the microcapsule slurry, that is, the heat storage and heat release, are measured from the temperatures and masses measured during the coagulation side test and the melting side test.

【0036】次に、凝固試験時には混合後全体温度を、
融解試験時にはスラリー初期温度と供給水初期温度を以
下のように変化させて、変化前と変化後の蓄熱量及び放
熱量を導出する。スラリーの温度はスラリー中に熱電対
41を挿入して測定し、その温度をデータロガー4に記
録する。
Next, during the coagulation test, the total temperature after mixing is
At the time of the melting test, the initial temperature of the slurry and the initial temperature of the supply water are changed as follows to derive the heat storage amount and the heat release amount before and after the change. The temperature of the slurry is measured by inserting a thermocouple 41 into the slurry, and the temperature is recorded on the data logger 4.

【0037】下表1,2に、上記試験におけるタイプ
A,Bの微小カプセルスラリーの条件を示す。
Tables 1 and 2 below show the conditions of the microcapsule slurries of types A and B in the above test.

【0038】 表1:混合試験条件(タイプA) スラリー濃度 スラリー スラリー 供給水 混合後 (原液) 重量 初期温度 初期温度 全体温度 (%) (g) (℃) (℃) (℃) 44.8 100 9〜12 0〜1 2〜5 44.8 100 2〜5 22〜23 9〜12 表2:混合試験条件(タイプB) スラリー濃度 スラリー スラリー 供給水 混合後 (原液) 重量 初期温度 初期温度 全体温度 (%) (g) (℃) (℃) (℃) 46.8 100 9〜12 0〜1 2〜5 46.8 100 2〜5 22〜23 9〜12 微小カプセルスラリーの凝固熱量及び融解熱量は図示し
ない計算機により、下式(1),(2)を基に求められ
る。
Table 1: Mixing test conditions (Type A) Slurry concentration Slurry Slurry Feed water After mixing (stock solution) Weight Initial temperature Initial temperature Total temperature (%) (g) (° C) (° C) (° C) 44.8 100 9 ~ 12 0 ~ 1 2 ~ 5 44.8 100 2 ~ 5 22 ~ 23 9 ~ 12 Table 2: Mixing test conditions (Type B) Slurry concentration Slurry Slurry Feed water After mixing (stock solution) Weight Initial temperature Initial temperature Overall temperature (%) (G) (° C) (° C) (° C) 46.8 100 9 to 120 to 12 to 5 46.8 100 2 to 5 22 to 23 9 to 12 Heat of solidification and heat of fusion of the microcapsule slurry Is obtained by a computer (not shown) based on the following equations (1) and (2).

【0039】 (1)凝固熱量算出式 Gp・Cp・(Tp−T)+Gp・L=Gice・Cw(T−Tice) +Gice・Lice+Q …(1) L :微小カプセルスラリーの凝固熱(kcal/
kg) Lice:氷の融解熱(79.4kcal/kg) T :微小カプセルスラリーの混合後全体温度
(℃) Tp :微小カプセルスラリーの初期温度(℃) Tice:氷の温度(℃) Gp :微小カプセルスラリーの重量(g) Gice:氷の重量(g) Cp :微小カプセルスラリーの比熱(0.8kca
l/kg℃) Cw :水の比熱(1.0kcal/kg℃) Q :入熱補正値(kcal) (2)融解熱量算出式 Gp・Cp・(T−Tp)+Gp・L=Gw・Cw(T
w−T) L :微小カプセルスラリーの融解熱(kcal/
kg) T :微小カプセルスラリーの混合後全体温度
(℃) Tp :微小カプセルスラリーの初期温度(℃) Tw :供給水の初期温度(℃) Gp :微小カプセルスラリーの重量(g) Gw :供給水の重量(g) Cp :微小カプセルスラリーの比熱(0.8kca
l/kg℃) Cw :水の比熱(1.0kcal/kg℃) 図2の(a),(b)は、上述した試験により得られた
凝固熱量及び融解熱量を示す図である。この結果より、
凝固側をみるとタイプA,B共、凝固終了温度が低くな
るに伴い、相変化領域をはずれ同等の熱量に落ち着く
が、3〜5℃領域ではタイプBの方が相対的に凝固熱量
が上昇傾向にあることが分かる。また、融解側で融解終
了温度に対してプロットすると、やはりタイプBの方が
融解熱量が上昇傾向にある。これは、タイプAに比べて
タイプBのスラリー濃度が高く、タイプAに対しタイプ
Bの相変化領域が高いことにより、相対的にこのような
傾向がみられるものと考えられる。
(1) Coagulation calorific value calculation formula Gp · Cp · (Tp−T) + Gp · L = Gice · Cw (T-Tice) + Gice · Lice + Q (1) L: Coagulation heat of microcapsule slurry (kcal /
kg) Rice: Heat of melting of ice (79.4 kcal / kg) T: Total temperature after mixing of microcapsule slurry (° C) Tp: Initial temperature of microcapsule slurry (° C) Tice: Ice temperature (° C) Gp: Fine Gice: Weight of ice (g) Cp: Specific heat of microcapsule slurry (0.8 kca)
1 / kg ° C.) Cw: Specific heat of water (1.0 kcal / kg ° C.) Q: Heat input correction value (kcal) (2) Heat of fusion calculation formula Gp · Cp · (T−Tp) + Gp · L = Gw · Cw (T
wT) L: heat of fusion of microcapsule slurry (kcal /
kg) T: Overall temperature after mixing of the microcapsule slurry (° C) Tp: Initial temperature of the microcapsule slurry (° C) Tw: Initial temperature of the supply water (° C) Gp: Weight of the microcapsule slurry (g) Gw: Supply water Weight (g) Cp: Specific heat of the microcapsule slurry (0.8 kca
1 / kg ° C.) Cw: Specific heat of water (1.0 kcal / kg ° C.) FIGS. 2A and 2B are diagrams showing the heat of solidification and the heat of fusion obtained by the test described above. From this result,
Looking at the solidification side, both types A and B fall out of the phase change region and settle down to the same amount of heat as the solidification end temperature decreases, but in the 3-5 ° C region, type B has a relatively higher heat of solidification. It can be seen that there is a tendency. Also, when plotting against the melting end temperature on the melting side, type B also tends to have a higher heat of fusion. This is presumably because the type B slurry concentration is higher than the type A and the type B phase change region is higher than the type A, so that such a tendency is relatively observed.

【0040】(第2の実施の形態)第2の実施の形態を
図3に示す。本第2の実施の形態は、微小カプセルスラ
リー槽301、スラリー熱交換器303、スラリー温調
系310、スラリー質量流量調節系320とスラリー温
度計330よりなる微小カプセル調整系と、既知物性媒
体槽351、既知媒体熱交換器353、既知媒体温調系
360、媒体流量調節系370、媒体温度計380より
なる既知媒体調節系から得られたスラリーと媒体を混合
器390で連続的に混合し、その混合後温度を混合温度
計391で計測し、第1の実施の形態に記した混合法に
よる熱量計測を行うもので有る。
(Second Embodiment) FIG. 3 shows a second embodiment. In the second embodiment, a microcapsule adjusting system including a microcapsule slurry tank 301, a slurry heat exchanger 303, a slurry temperature control system 310, a slurry mass flow control system 320 and a slurry thermometer 330, and a known physical medium tank 351, a known medium heat exchanger 353, a known medium temperature control system 360, a medium flow rate control system 370, a slurry and a medium obtained from a known medium control system including a medium thermometer 380 are continuously mixed by a mixer 390, The temperature after the mixing is measured by a mixing thermometer 391, and the calorific value is measured by the mixing method described in the first embodiment.

【0041】また、スラリー熱交換器303および既知
媒体熱交換器353は、冷却系395もしくは加熱系3
96に管路で結ばれ、それぞれの熱交換器を加熱もしく
は冷却するもので、管路切替によりいずれかのモードを
選択できる。
Further, the slurry heat exchanger 303 and the known medium heat exchanger 353 include a cooling system 395 or a heating system 3.
The heat exchanger is connected to the heat exchanger 96 by heating or cooling, and any mode can be selected by switching the pipe.

【0042】また、図示管路は簡略化し往路のみを示し
ている。本第2の実施の形態の装置制御と熱量演算は、
制御・演算装置393でつかさどる。混合後の排液は、
排液槽392に貯蔵される。この時既知物性媒体は、水
やブライン、油などを使用可能で有るが、水の場合微小
カプセルスラリーの構成物と同一で有り希釈微小カプセ
ルスラリーでの物性計測に再使用可能である。この場
合、図示の排液戻しポンプ394、戻し弁398を介し
て空になった微小カプセルスラリー槽301へ戻し、次
の希釈微小カプセルスラリー熱量計測に使用することが
できる。
The illustrated pipeline is simplified and only the outward route is shown. The device control and calorific value calculation of the second embodiment are as follows:
It is controlled by the control / arithmetic unit 393. The drainage after mixing is
It is stored in the drainage tank 392. At this time, the known physical property medium may be water, brine, oil, or the like. In the case of water, the medium has the same composition as the microcapsule slurry, and can be reused for measuring the physical properties of the diluted microcapsule slurry. In this case, the liquid is returned to the empty microcapsule slurry tank 301 via the drainage return pump 394 and the return valve 398 shown in the figure, and can be used for the next calorie measurement of the diluted microcapsule slurry.

【0043】本第2の実施の形態では、第1の実施の形
態の様に凝固熱量計測に当って氷を使用できないが、連
続計測で有る事から既知物性媒体の流量を多くする事に
よって計測可能となる。
In the second embodiment, ice cannot be used in the measurement of the heat of solidification as in the first embodiment. However, since the measurement is continuous, the measurement is performed by increasing the flow rate of the known physical medium. It becomes possible.

【0044】次に、凝固熱量計測時の形態を説明する。
微小カプセルスラリー系は、所定温度に昇温する必要が
あり、スラリー熱交換器303は管路選択により加熱系
396に結ばれる。スラリーポンプ302を起動しスラ
リー温調系310によりスラリー熱交換器303で所定
温度まで加熱する。この時スラリー温調系310では、
スラリー供給弁312を閉としスラリー循環弁311を
開とし、微小カプセルスラリー槽301へ戻し循環しな
がら所定温度に昇温する。
Next, the form at the time of measuring the heat of solidification will be described.
The temperature of the microcapsule slurry system needs to be raised to a predetermined temperature, and the slurry heat exchanger 303 is connected to the heating system 396 by selecting a pipeline. The slurry pump 302 is started and heated to a predetermined temperature by the slurry heat exchanger 303 by the slurry temperature control system 310. At this time, in the slurry temperature control system 310,
The slurry supply valve 312 is closed, the slurry circulation valve 311 is opened, and the temperature is raised to a predetermined temperature while circulating back to the microcapsule slurry tank 301.

【0045】一方、既知物性媒体系では、既知媒体熱交
換器353は同様に管路選択により冷却系395に結ば
れ、既知媒体ポンプ352を起動し既知媒体温調系36
0により既知媒体熱交換器353で所定温度(制御・演
算装置393の信号)まで冷却する。この時、既知媒体
温調系360では、媒体供給弁362を閉とし媒体循環
弁361を開とし、既知物性媒体槽351へ戻し循環し
ながら所定温度に冷却する。この様にそれぞれ所定温度
に到達するまで制御・演算装置393によって維持さ
れ、到達時点でスラリー供給弁312、媒体供給弁36
2が開となり計測が始まる。
On the other hand, in the known physical medium system, the known medium heat exchanger 353 is similarly connected to the cooling system 395 by selecting a pipeline, starts the known medium pump 352, and starts the known medium temperature control system 36.
According to 0, the known medium heat exchanger 353 cools down to a predetermined temperature (a signal from the control / arithmetic unit 393). At this time, in the known medium temperature control system 360, the medium supply valve 362 is closed, the medium circulation valve 361 is opened, and the medium is cooled to a predetermined temperature while circulating back to the known physical medium tank 351. In this manner, the temperature is maintained by the control / arithmetic unit 393 until the respective temperatures reach the predetermined temperatures.
2 is opened and measurement starts.

【0046】制御・演算装置393では、あらかじめ設
定されたプログラムに従ってスラリー質量流量調節系3
20と媒体流量調節系370の設定流量組み合せを変え
ながら所定時間毎運転する。
The control / arithmetic unit 393 controls the slurry mass flow control system 3 according to a preset program.
The operation is performed at predetermined time intervals while changing the combination of the set flow rate of the medium flow control system 370 and the set flow rate of the medium flow control system 370.

【0047】また、各流量組み合せでの状態計測はスラ
リー温度計330、媒体温度計380、混合温度計39
1の温度モニターとスラリー質量流量系320のPV値
媒体流量調節系370のPV値をモニターし、静定後の
所定サンプル完了を持って次ステップへ進む。この各組
み合せデータから微小カプセルスラリーの任意温度から
の所定温度幅での凝固熱量及び顕熱の全エンタルピー変
化を求めることができる。
The state of each flow rate combination was measured by a slurry thermometer 330, a medium thermometer 380, and a mixing thermometer 39.
The temperature monitor of Step 1 and the PV value of the slurry mass flow system 320 are monitored, and the PV value of the medium flow control system 370 is monitored. From this combination data, it is possible to determine the change in total enthalpy of the heat of solidification and the sensible heat in a predetermined temperature range from an arbitrary temperature of the microcapsule slurry.

【0048】ここで、微小カプセルスラリー系の流量調
節系320を質量流量計としたのは、微小カプセル内の
相変化に伴なう比体積変化が大きく、また、当初は不明
で有ることが多く、市販のコリオリ力利用型質量流量計
などを使用する。また、既知物性媒体系は体積流量計
(電磁流量計等)とし経済性を高める。
Here, the reason why the flow rate adjusting system 320 of the microcapsule slurry system is a mass flow meter is that the specific volume change accompanying the phase change in the microcapsule is large and it is often unknown at first. A commercially available Coriolis force type mass flow meter or the like is used. In addition, the known physical property medium system is a volume flow meter (such as an electromagnetic flow meter) to improve the economic efficiency.

【0049】次に融解熱量計測時は、微小カプセルスラ
リー系スラリー熱交換器303を管路選択により冷却系
395に継ぎ、既知物性媒体系の既知媒体熱交換器35
3を、加熱系396に継ぎ前述の凝固時計測と同様に微
小カプセルスラリーを所定の低い温度から温既知媒体の
混合により昇温することによって融解熱量を計測する。
Next, when measuring the heat of fusion, the microcapsule slurry-based slurry heat exchanger 303 is connected to the cooling system 395 by selecting a pipe line, and the known medium heat exchanger 35 of the known physical medium system is used.
3 is connected to a heating system 396, and the heat of fusion is measured by raising the temperature of the microcapsule slurry from a predetermined low temperature by mixing a known temperature medium in the same manner as the above-described measurement at the time of solidification.

【0050】以上の様に第2の実施の形態では、温度調
節をした微小カプセルスラリーと既知物性媒体とを連続
的に所定の流量組合せにより混合する事により、熱容量
問題やヒートバランス整合に係りなく自動的に逐次計測
を行え、効率的に温度と比エンタルピー相関を得ること
ができる。また、連続的混合法で有ることから小流量で
の試験が可能となり、少ない微小カプセルサンプル量で
試験実施が可能で試作段階での問題も軽減される。
As described above, in the second embodiment, the temperature-controlled microcapsule slurry and the known physical property medium are continuously mixed in a predetermined flow rate combination, regardless of the heat capacity problem and the heat balance matching. Automatic sequential measurement can be performed, and the temperature and specific enthalpy correlation can be obtained efficiently. In addition, since the method is a continuous mixing method, a test at a small flow rate can be performed, the test can be performed with a small amount of microcapsule sample, and problems at the prototype stage can be reduced.

【0051】(第3の実施の形態)次に、第3の実施の
形態を図4に示す。第2の実施の形態では、スラリーポ
ンプや既知媒体ポンプならびに冷却系、加熱系を有しま
だ大がかりであるため、第3の実施の形態では、タンク
の位置ヘッドを利用した混合方式で冷却、加熱系を簡略
にし、かつ秤量機能を付加し計測精度を高めた例を示
す。
(Third Embodiment) Next, a third embodiment is shown in FIG. In the second embodiment, a slurry pump, a known medium pump, a cooling system, and a heating system are still large-scaled. Therefore, in the third embodiment, cooling and heating are performed by a mixing method using a position head of a tank. An example in which the system is simplified and the measurement accuracy is increased by adding a weighing function will be described.

【0052】本第3の実施の形態は、微小カプセルスラ
リー槽401とスラリー質量流量調節系420、スラリ
ー温度計430および既知物性媒体槽451、媒体流量
調節系470、媒体温度計480、混合器490、混合
温度計491、制御・演算装置493より成る。また、
微小カプセルスラリー槽401には、スラリー温調系4
10として加熱・冷却ジャケット412と温調コントロ
ーラ411が装置され、また、撹拌装置413、秤量計
414が装置されている。既知物性媒体槽451も同様
に、既知媒体温調系460として加熱・冷却ジャケット
462と温調コントローラ461が、また、撹拌装置4
63と秤量計464が装置されている。混合後の排液は
排液槽492に流入する。なお、図示の上下関係に応じ
て各槽は配置され位置差で混合を行ない、ポンプ類は設
置していないが、試験範囲を広げる上でポンプを設置し
ても良い。
In the third embodiment, a microcapsule slurry tank 401, a slurry mass flow control system 420, a slurry thermometer 430 and a known physical medium tank 451, a medium flow control system 470, a medium thermometer 480, and a mixer 490 are used. , A mixing thermometer 491 and a control / arithmetic unit 493. Also,
The microcapsule slurry tank 401 has a slurry temperature control system 4
As 10, a heating / cooling jacket 412 and a temperature controller 411 are provided, and a stirrer 413 and a weighing scale 414 are provided. Similarly, the known physical medium tank 451 includes the heating / cooling jacket 462 and the temperature control controller 461 as the known medium temperature control system 460, and the stirring device 4
63 and a scale 464 are provided. The waste liquid after mixing flows into the drain tank 492. In addition, each tank is arranged according to the vertical relationship shown in the figure, and mixing is performed at a position difference. Pumps are not provided. However, a pump may be provided in order to expand the test range.

【0053】微小カプセルスラリー槽401では、常に
スターラー等の撹拌装置413で撹拌し均一に保持され
ている。融解・凝固の各試験に応じた加熱ならびに冷却
は、スラリー槽401の壁面ジャケット内に設置された
熱電素子(ペルチェ効果利用)が加熱面側もしくは冷却
面側両用途を満足する様に配置配線され、加熱・冷却ジ
ャケット412を構成する。また、本ジャケットは、冷
却水、加熱水のコイルジャケットで有っても良い。
In the microcapsule slurry tank 401, the slurry is constantly stirred by a stirring device 413 such as a stirrer and kept uniformly. Heating and cooling according to each test of melting and solidification are arranged and wired so that the thermoelectric element (using the Peltier effect) installed in the wall jacket of the slurry tank 401 satisfies both the heating surface side and the cooling surface side. , A heating / cooling jacket 412. Further, the jacket may be a coil jacket of cooling water and heating water.

【0054】加熱・冷却ジャケット412は、スラリー
内の温度を感温して動作する温調コントローラー411
によって試験条件に応じた制御・演算装置493の設定
温度を維持する様、微小カプセルスラリーを加熱もしく
は冷却保持する。また、スラリー槽401内に充填され
た微小カプセルスラリーは秤量計414によって重量計
測されている。なお,スラリー槽はスラリー管路系から
の外力がかからないように配慮され,また,かかる場合
補正可能なよう配慮されている。この秤量計414は、
図中では槽の保持ハンドル下のロードセルで記している
が、天秤方式、バネ方式等いずれでも良い。同様に既知
物性媒体槽451でも、媒体は撹拌装置463、既知媒
体温調系460、秤量計464によって温度調節と重量
計測が成されている。
The heating / cooling jacket 412 is provided with a temperature controller 411 which operates by sensing the temperature in the slurry.
Thus, the microcapsule slurry is heated or cooled so as to maintain the set temperature of the control / calculation device 493 according to the test conditions. The weight of the microcapsule slurry filled in the slurry tank 401 is measured by a weighing meter 414. The slurry tank is designed so that external force from the slurry pipeline system is not applied, and in such a case, consideration is given so that correction can be made. This weighing machine 414
In the figure, the load cell is shown below the holding handle of the tank, but any of a balance method, a spring method, and the like may be used. Similarly, in the known physical medium tank 451, the medium is temperature-controlled and weighed by the stirrer 463, the known medium temperature control system 460, and the scale 464.

【0055】この様に第3の実施の形態では、第2の実
施の形態に対し微小カプセルスラリーならびに既知物性
媒体の温度保持機能が異なる点を除いて、熱量計測は混
合法により制御・演算装置493、スラリー質量流量調
節系420、スラリー温度計430、媒体流量調節系4
70、媒体温度計480、混合器490を介して同様に
行うことができる。
As described above, in the third embodiment, the calorimetric measurement is performed by the mixing and controlling method using a control / arithmetic apparatus, except that the temperature holding function of the microcapsule slurry and the known physical medium is different from that of the second embodiment. 493, slurry mass flow control system 420, slurry thermometer 430, medium flow control system 4
70, a medium thermometer 480, and a mixer 490.

【0056】本第3の実施の形態の大きな特長は、秤量
計414,464を設置している点で安定条件下の計測
タイミング間の秤量差から、実際に混合した微小カプセ
ルスラリー及び媒体の時間積分重量を求めることがで
き、計測精度を上げられる事で有る。また、それぞれ単
独にスラリー質量流量調節系420と媒体流量調節系4
70の指示値較正を容易に行うことができる。また、位
置ヘッドで流出量に応じた流量変動が有るが、流量調節
系の制御域を外れた場合の補正も質量計測を行っている
為容易となる。
The major feature of the third embodiment is that the weighing scales 414 and 464 are provided, and the time difference between the actually mixed microcapsule slurry and the medium is obtained from the weighing difference between measurement timings under stable conditions. The integral weight can be obtained, and the measurement accuracy can be improved. The slurry mass flow control system 420 and the medium flow control system 4
The indicated value calibration of 70 can be easily performed. In addition, although there is a flow rate variation corresponding to the outflow amount at the position head, correction when the flow rate is out of the control range of the flow rate adjustment system is facilitated by performing the mass measurement.

【0057】以上の様に第3の実施の形態では、ジャケ
ット加熱・冷却ならびに秤量計、上下配置による位置ヘ
ッド利用で、第2の実施の形態以上にコンパクトかつ計
測精度の高い熱量計測装置を得ることができる。
As described above, in the third embodiment, a calorie measuring device which is more compact and has higher measurement accuracy than the second embodiment is obtained by using the heating / cooling of the jacket, the weighing device, and the use of the position head by the vertical arrangement. be able to.

【0058】(第4の実施の形態)第4の実施の形態を
図5に示す。第4の実施の形態は上記第3の実施の形態
の排液系に改良を施したもので、混合温度計491から
排液槽492の間に、排液弁444、排液計量弁44
5、排液計量槽440を設けたものである。また、排液
計量槽440には撹拌装置441、排液温度計442、
秤量計443が設けられている。
(Fourth Embodiment) FIG. 5 shows a fourth embodiment. In the fourth embodiment, the drainage system of the third embodiment is improved, and a drainage valve 444 and a drainage measurement valve 44 are provided between the mixing thermometer 491 and the drainage tank 492.
5. A drainage measuring tank 440 is provided. Further, a stirrer 441, a drain thermometer 442,
A weigh scale 443 is provided.

【0059】本第4の実施の形態は、微小カプセルスラ
リーの混合後、平衡時定数が長い場合への対処や、微小
カプセル系と既知媒体系の各計測系の共通計測による精
度補完を行うものである。
The fourth embodiment is to cope with a case where the equilibrium time constant is long after the mixing of the microcapsule slurry, and to complement the accuracy by common measurement of each measurement system of the microcapsule system and the known medium system. It is.

【0060】熱量計測時の機能は次の通りである。第3
の実施の形態の混合開始直後の配管の温度静定までに至
る間、排液制御弁445は閉じられ排液弁444が開と
なっており非静定の混合スラリーは排液槽492に排出
される。混合温度計491の温度静定状態を制御・演算
機が判定し、排液計量弁445を開とし排液弁444を
閉とする。所定時間計測終了直前に排液弁444を開と
し排液計量弁445を閉とし、計測時間帯内の排液を排
液計量槽440に取り入れる。
The functions at the time of calorie measurement are as follows. Third
During the period up to the temperature stabilization of the pipe immediately after the start of mixing according to the embodiment, the drain control valve 445 is closed and the drain valve 444 is open, and the non-stabilized mixed slurry is discharged to the drain tank 492. Is done. The control / arithmetic unit determines the temperature stabilization state of the mixing thermometer 491, and opens the drainage measuring valve 445 and closes the drainage valve 444. Immediately before the end of the predetermined time measurement, the drainage valve 444 is opened and the drainage measurement valve 445 is closed, and the drainage within the measurement time period is taken into the drainage measurement tank 440.

【0061】排液計量槽440では、撹拌装置441で
取り入れた排液を均一に混合するとともに、排液温度計
442で温度推移をモニターし非平衡度解除後の温度を
計測するとともに、秤量計443で計測時間内の流入量
を計測し、微小カプセルスラリー系と既知媒体系の秤量
値他の補正に供する。また、この排液計量槽はその都度
空にする必要はなく、任意の条件下の累積評価にも使用
される。
In the drainage measuring tank 440, the wastewater taken in by the stirring device 441 is mixed uniformly, and the temperature transition after the non-equilibrium degree is released is monitored by monitoring the temperature transition by the wastewater thermometer 442. At 443, the inflow amount within the measurement time is measured, and is used for correction of the weighed value and the like of the microcapsule slurry system and the known medium system. The drainage measuring tank does not need to be emptied each time, and is used for cumulative evaluation under arbitrary conditions.

【0062】熱量計測外のスラリー系、既知媒体系の計
装系較正時に本排液計量槽440系統を使用しそれぞれ
の較正を行うことができる。
The calibration can be performed by using the drainage measuring tank 440 system when calibrating the instrument system of the slurry system and the known medium system other than the calorimetric measurement.

【0063】以上の様に第4の実施の形態では、第3の
実施の形態に対し非平衡度の高い微小カプセルスラリー
熱量計測精度が向上し、混合法が一過性の計測である為
に生ずる計測エラーを排液計量系の累積計測で精度確認
できるとともに、スラリー系、既知媒体系の較正が容易
となり更に精度向上を図ることができる。
As described above, in the fourth embodiment, the accuracy of calorie measurement of the microcapsule slurry having a high degree of non-equilibrium is improved as compared with the third embodiment, and the mixing method is a transient measurement. Accuracy can be checked for the measurement error caused by the cumulative measurement of the drainage measuring system, and the calibration of the slurry system and the known medium system is facilitated, so that the accuracy can be further improved.

【0064】(第5の実施の形態)第5の実施の形態を
図6に示す。第5の実施の形態は、第4の実施の形態の
機能アップとして、熱量計測と同時に、微小カプセルス
ラリーの比重計測をも可能とする方法を示したものであ
る。なお、本方法は、上記第2,3,4の実施の形態と
も共通に適用可能である。本第5の実施の形態は第4の
実施の形態の微小カプセルスラリー系に、体積流量計4
95を質量流量調節系420に加えて介装したものであ
る。
(Fifth Embodiment) FIG. 6 shows a fifth embodiment. In the fifth embodiment, as a function enhancement of the fourth embodiment, a method is shown in which the specific gravity of the microcapsule slurry can be measured simultaneously with the calorific value measurement. This method can be applied commonly to the second, third, and fourth embodiments. In the fifth embodiment, a volumetric flowmeter 4 is added to the microcapsule slurry system of the fourth embodiment.
95 is interposed in addition to the mass flow control system 420.

【0065】熱量計測の為に整えられた所定温度の微小
カプセルスラリーの質量流量と同一条件で体積流量計4
95(電磁流量計、オリフィス流量計等)を併設し、同
時に得られたデータから微小カプセルスラリーの比重計
測が可能となり、工業的に短期間で熱量と比重を計測す
ることが可能となる。
Under the same conditions as the mass flow rate of the microcapsule slurry at a predetermined temperature prepared for calorie measurement, the volume flow meter 4 was used.
95 (electromagnetic flow meter, orifice flow meter, etc.) is also provided, and the specific gravity of the microcapsule slurry can be measured from the data obtained at the same time, so that the calorific value and the specific gravity can be measured industrially in a short period of time.

【0066】本発明は上記各実施の形態のみに限定され
ず、要旨を変更しない範囲で適時変形して実施できる。
The present invention is not limited to the above-described embodiments, and can be modified as needed without departing from the scope of the invention.

【0067】(実施の形態のまとめ)実施の形態に示さ
れた構成及び作用効果をまとめると次の通りである。
(Summary of Embodiment) The configuration, operation and effect shown in the embodiment are summarized as follows.

【0068】[1]第1の実施の形態に示された熱量計
測方法は、微小カプセルスラリーの熱量計測法であり、
所定量のスラリーを所定温度に維持し、加熱媒体または
冷却媒体として所定温度に維持した温水や冷水など既知
の比熱を有する所定量の液体を瞬時に混合し平衡温度を
求めることによって、スラリーの混合前所定温度と平衡
後温度との間で生ずる凝固熱量、融解熱量を特定する。
[1] The calorimetric method described in the first embodiment is a calorimetric method for microcapsule slurry.
A predetermined amount of slurry is maintained at a predetermined temperature, and a predetermined amount of liquid having a known specific heat such as hot water or cold water maintained at a predetermined temperature as a heating medium or a cooling medium is instantaneously mixed to obtain an equilibrium temperature. The amount of heat of solidification and the amount of heat of fusion generated between the predetermined temperature and the temperature after equilibrium are specified.

【0069】したがって上記熱量計測方法によれば、少
ない供試体を用い、かつスラリーと既知の物性を有する
物質とを混合する方法によるため、簡易な構成で安価
に、短時間で精度良く、任意の温度範囲の微小カプセル
スラリーについて凝固熱量、融解熱量を計測することが
可能になる。
Therefore, according to the above calorimetric method, since a small number of specimens are used and the slurry is mixed with a substance having known physical properties, a simple structure can be used at low cost, in a short time, with high accuracy, It becomes possible to measure the heat of solidification and the heat of fusion for the microcapsule slurry in the temperature range.

【0070】[2]第2の実施の形態は、微小カプセル
スラリーと既知の物性を持つ媒体とを所定の温度で所定
の流量割合で連続的にデータ計測可能な、具体的な装置
を提供するもので、微小カプセルスラリー槽とスラリー
熱交換器、スラリー温調系、質量流量調節系よりなる微
小カプセル系と既知物性媒体槽と媒体熱交換器、既知媒
体温調系、媒体流量調節系よりなる既知媒体系を混合器
で結び、混合後の平衡温度を計測することによって連続
的に熱量計測を行ない、それぞれの系は切替機能を有す
る冷却系、加熱系装置と装置全体を統御する制御・演算
装置より構成され、比較的少ない微小カプセルスラリー
量で自動的に連続して凝固熱量、融解熱量を計測するこ
とが可能となる。
[2] The second embodiment provides a specific device capable of continuously measuring data of a microcapsule slurry and a medium having known physical properties at a predetermined temperature and a predetermined flow rate. It consists of a microcapsule system consisting of a microcapsule slurry tank, a slurry heat exchanger, a slurry temperature control system, and a mass flow control system, a known physical medium tank and a medium heat exchanger, a known medium temperature control system, and a medium flow control system. A known medium system is connected with a mixer, and the calorie measurement is continuously performed by measuring the equilibrium temperature after mixing.Each system has a switching function, a control system that controls the cooling system, heating system device, and the entire device. It is composed of an apparatus, and it is possible to automatically and continuously measure the heat of solidification and the heat of fusion with a relatively small amount of slurry of the microcapsules.

【0071】また、既知物性媒体が水である場合、排液
槽から微小カプセルスラリー槽の戻しラインを設け、希
釈スラリーによる再計測が可能とできる。
When the known physical medium is water, a return line from the drainage tank to the microcapsule slurry tank can be provided to enable re-measurement with the diluted slurry.

【0072】[3]第3の実施の形態は、よりコンパク
トな装置構成で精度を上げる装置を提供するもので、撹
拌装置、スラリー温調系、秤量計を有する微小カプセル
スラリー槽と、スラリー質量流量調節系からなる微小カ
プセルスラリー系と同じく撹拌装置、既知媒体温調系、
秤量計を有する既知物性媒体槽と、媒体流量温調系から
なる既知媒体系を混合器で結び、混合後の平衡温度を計
測することによって熱量計測を連続的に行なう。また、
それぞれの系は制御・演算機により統御される。
[3] The third embodiment provides an apparatus for improving accuracy with a more compact apparatus configuration, and includes a stirring apparatus, a slurry temperature control system, a microcapsule slurry tank having a weighing scale, a slurry mass As with the microcapsule slurry system consisting of a flow rate control system, a stirring device, a known medium temperature control system,
A calorie measurement is continuously performed by connecting a known medium medium tank having a weighing meter and a known medium system including a medium flow rate temperature control system with a mixer and measuring an equilibrium temperature after mixing. Also,
Each system is controlled by a control and arithmetic unit.

【0073】本第3の実施の形態では、各槽内の秤量に
より混合量の計測が多重計測となり精度向上を図ること
ができるとともに、流量調節系統の較正が容易となり、
精度維持上も有利である。
In the third embodiment, the measurement of the mixing amount is multiplexed by the weighing in each tank, so that the accuracy can be improved, and the calibration of the flow rate control system becomes easy.
This is also advantageous in maintaining accuracy.

【0074】[4]第4の実施の形態は、第3の実施の
形態を更に拡張したもので、非平衡度の高い微小カプセ
ルスラリー対応や更なる精度向上を図るもので、第3の
実施の形態の構成に加えて、混合後のラインに排液弁と
分岐による排液計量弁を設け排液計量槽に導く。また、
排液計量槽には撹拌装置、秤量計、排液温度計を装置
し、熱量計測中の混合排液のみを集液し、その平衡温度
計測や累積状態量計測データによるフィードバックによ
り計測精度を高めることができる。
[4] The fourth embodiment is a further extension of the third embodiment, and is intended to cope with microcapsule slurries having a high degree of non-equilibrium and further improve accuracy. In addition to the configuration of the embodiment, a drain valve and a drain measuring valve by branching are provided in the line after mixing, and the liquid is guided to the drain measuring tank. Also,
Equipped with a stirrer, weighing meter, and drainage thermometer in the drainage measuring tank, collect only the mixed wastewater during calorimetric measurement, and improve the measurement accuracy by feedback from the equilibrium temperature measurement and accumulated state quantity measurement data. be able to.

【0075】また、微小カプセル系、既知媒体系の共通
系統に排液計量槽系が有ることにより、それぞれの較正
が第3の実施の形態以上に容易となり、精度向上を更に
図ることができる。
Further, since the drainage measuring tank system is provided in the common system of the microcapsule system and the known medium system, the respective calibrations become easier than in the third embodiment, and the accuracy can be further improved.

【0076】[5]第5の実施の形態は、第2〜第4の
実施の形態に共通で微小カプセルスラリーラインに体積
流量計を加えて質量流量と同時計測することにより、比
重計測も行える事が可能となる機能アップ方法を提供す
るものである。
[5] The fifth embodiment is common to the second to fourth embodiments, and a specific gravity can be measured by adding a volume flow meter to the microcapsule slurry line and simultaneously measuring the mass flow rate. It is intended to provide a function-up method that makes it possible.

【0077】[0077]

【発明の効果】(1)本発明の熱量計測方法によれば、
簡易な構成で高精度に凝固熱量、融解熱量を得られる。
(1) According to the calorific value measuring method of the present invention,
With a simple structure, the heat of solidification and heat of fusion can be obtained with high accuracy.

【0078】(2)本発明の熱量計測装置によれば、簡
易な構成で高精度に凝固熱量、融解熱量を得られる。
(2) According to the calorimeter of the present invention, the heat of solidification and the heat of fusion can be obtained with a simple configuration and with high accuracy.

【0079】(3)本発明の熱量計測装置によれば、既
知物性媒体が水である場合、排液槽から微小カプセルス
ラリーを戻し、希釈状態となったスラリーの再計測を行
なうことができる。
(3) According to the calorimeter of the present invention, when the known physical medium is water, it is possible to return the microcapsule slurry from the drainage tank and to re-measure the diluted slurry.

【0080】(4)本発明の熱量計測装置によれば、微
小カプセルスラリーの任意温度幅における融解熱量、凝
固熱量および顕熱量を計測できる。
(4) According to the calorimeter of the present invention, the amount of heat of fusion, the amount of heat of solidification, and the amount of sensible heat of the microcapsule slurry in an arbitrary temperature range can be measured.

【0081】(5)本発明の排液計量装置によれば、熱
量計測の精度を高めることができる。
(5) According to the drainage measuring device of the present invention, the accuracy of calorie measurement can be improved.

【0082】(6)本発明の排液計量方法によれば、熱
量計測の精度を高めることができる。
(6) According to the drainage measuring method of the present invention, the accuracy of calorific value measurement can be improved.

【0083】(7)本発明の熱量計測装置によれば、任
意温度差での熱量計測と同時に比重計測を行なうことが
できる。
(7) According to the calorimeter of the present invention, specific gravity measurement can be performed simultaneously with calorimetry at an arbitrary temperature difference.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る熱量計測方法
を実施するための試験装置の構成を示す図。
FIG. 1 is a diagram showing a configuration of a test apparatus for performing a calorific value measuring method according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態に係る試験により得
られた凝固熱量及び融解熱量を示す図。
FIG. 2 is a diagram showing a heat of solidification and a heat of fusion obtained by a test according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態に係る熱量計測方法
を実施するための試験装置の構成を示す図。
FIG. 3 is a diagram showing a configuration of a test apparatus for performing a calorific value measuring method according to a second embodiment of the present invention.

【図4】本発明の第3の実施の形態に係る熱量計測方法
を実施するための試験装置の構成を示す図。
FIG. 4 is a diagram showing a configuration of a test apparatus for performing a calorific value measuring method according to a third embodiment of the present invention.

【図5】本発明の第4の実施の形態に係る熱量計測方法
を実施するための試験装置の構成を示す図。
FIG. 5 is a diagram showing a configuration of a test apparatus for performing a calorific value measuring method according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施の形態に係る熱量計測方法
を実施するための試験装置の構成を示す図。
FIG. 6 is a diagram showing a configuration of a test apparatus for performing a calorific value measuring method according to a fifth embodiment of the present invention.

【図7】従来例に係る微小カプセルスラリーの熱量計測
方法の事例を示す図。
FIG. 7 is a diagram showing an example of a calorimetric measurement method for a microcapsule slurry according to a conventional example.

【符号の説明】[Explanation of symbols]

1…恒温槽、 2…ビーカー、 21…微小カプセルスラリー、 3…スターター、 31…軸、 32…プロペラ、 4…データロガー、 41…熱電対 301,401…微小カプセルスラリー槽 302…スラリーポンプ 303…スラリー熱交換器 310,410…スラリー温調系 311…スラリー循環弁 312…スラリー供給弁 320,420…スラリー質量流量調節系 330,430…スラリー温度計 351,451…既知物性媒体槽 352…既知媒体ポンプ 353…既知媒体熱交換器 360,460…既知媒体温調系 361…媒体循環弁 362…媒体供給弁 370,470…媒体流量調節系 380,480…媒体温度計 390,490…混合器 391,491…混合温度計 392,492…排液槽 393,493…制御・演算装置 394…排液戻しポンプ 395…冷却系 396…加熱系 398…戻し弁 411…温調コントローラ 412…加熱・冷却ジャケット 413,463…撹拌装置 414,464…秤量計 440…排液計量槽 441…撹拌装置 442…排液温度計 443…秤量計 444…排液弁 445…排液計量弁 461…温調コントローラ 462…加熱・冷却ジャケット 495…体積流量計 DESCRIPTION OF SYMBOLS 1 ... Constant temperature bath, 2 ... Beaker, 21 ... Microcapsule slurry, 3 ... Starter, 31 ... Shaft, 32 ... Propeller, 4 ... Data logger, 41 ... Thermocouple 301, 401 ... Microcapsule slurry tank 302 ... Slurry pump 303 ... Slurry heat exchangers 310, 410 ... Slurry temperature control system 311 ... Slurry circulation valve 312 ... Slurry supply valve 320,420 ... Slurry mass flow rate control system 330,430 ... Slurry thermometer 351,451 ... Known physical medium tank 352 ... Known medium Pump 353 ... known medium heat exchanger 360,460 ... known medium temperature control system 361 ... medium circulation valve 362 ... medium supply valve 370,470 ... medium flow control system 380,480 ... medium thermometer 390,490 ... mixer 391, 491: Mixing thermometer 392, 492 Drainage tank 393, 493 Control / calculation equipment 394 Drain return pump 395 Cooling system 396 Heating system 398 Return valve 411 Temperature controller 412 Heating / cooling jacket 413,463 Stirring device 414,464 Weighing meter 440 Drainage measuring tank 441 Stirring Device 442: drainage thermometer 443: weighing meter 444: drainage valve 445: drainage measuring valve 461: temperature controller 462: heating / cooling jacket 495: volume flow meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田代 敏雄 千葉県成田市木の根字神台24 新東京国 際空港公団内 (72)発明者 横瀬 隆夫 千葉県成田市木の根字神台24 新東京国 際空港公団内 (72)発明者 澁谷 誠司 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 角谷 修二 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 白方 芳典 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 入谷 陽一郎 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (56)参考文献 特開 平2−265642(JP,A) 特開 平7−98290(JP,A) 特開 平11−30599(JP,A) 特開 平8−50063(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 25/20 F28D 20/00 G01K 17/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio Tashiro 24, Kinone Jindai, Narita City, Chiba Prefecture Inside the Tokyo International Airport Corporation (72) Inventor Takao Yokose 24, Kinone Jindai, Kinoki, Narita City, Chiba Prefecture Inside the Airport Authority (72) Inventor Seiji Shibuya 2-1-1 Shinama, Araimachi, Takasago City, Hyogo Prefecture Inside the Takasago Works, Mitsubishi Heavy Industries, Ltd. Inside Takasago Machinery Co., Ltd. No. Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-2-265642 (JP, A) JP-A-7-98290 (JP, A JP-A-11-30599 (JP, A) JP-A-8-50063 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 25/20 F28D 20/00 G01K 17 / 00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】相変化を伴う潜熱蓄熱物質を主成分とする
芯物質が封入された有機系膜物質からなる微小なカプセ
ルと液体とで構成された蓄熱材であるスラリーを所定
量、所定温度に維持し、 前記スラリーと所定量、所定温度の既知の物性の冷却媒
体または加熱媒体とを混合し、 混合後の前記スラリーの温度を測定し、 その温度を基に前記芯物質の凝固熱量及び融解熱量の少
なくとも一方を計測することを特徴とする熱量計測方
法。
1. A predetermined amount of a slurry, which is a heat storage material composed of a microcapsule made of an organic film material in which a core material mainly containing a latent heat storage material accompanied by a phase change is sealed and a liquid, and a predetermined temperature. The slurry is mixed with a predetermined amount, a cooling medium or a heating medium having known physical properties at a predetermined temperature, and the temperature of the slurry after mixing is measured. Based on the temperature, the heat of solidification of the core material and A calorimetric method comprising measuring at least one of the heats of fusion.
【請求項2】前記スラリーを貯える微小カプセルスラリ
ー槽とスラリー熱交換器、スラリ温調系、質量調節系と
それらを結ぶ配管系よりなる微小カプセルスラリー系と
既知物性媒体を貯える既知物性媒体槽と媒体熱交換器、
既知媒体温調系、媒体流量調節系とそれらを結ぶ配管系
よりなる既知物性媒体系を混合器で結び混合後の平衡温
度を計測する少なくとも1個の温度計を設置し、請求項
1に記載の混合法により微小カプセルスラリーの任意温
度幅の融解、凝固熱量および顕熱量を計測することを特
徴とする熱量計測装置。
2. A microcapsule slurry tank for storing the slurry, a microcapsule slurry system comprising a slurry heat exchanger, a slurry temperature control system, a mass control system and a piping system connecting them, and a known physical medium tank for storing a known physical medium. Medium heat exchanger,
The at least one thermometer for measuring the equilibrium temperature after mixing by connecting a known physical medium system consisting of a known medium temperature control system, a medium flow control system and a piping system connecting them with a mixer, is provided, according to claim 1. Calorimeter characterized by measuring the melting, coagulating calorie and sensible calorie of the microcapsule slurry at an arbitrary temperature range by the mixing method of (1).
【請求項3】既知物性媒体を清水とし混合後のラインに
排液槽を設け、希釈後の微小カプセルスラリーを前記微
小カプセルスラリー槽へ戻す管路を設けたことを特徴と
する請求項2に記載の熱量計測装置。
3. The method according to claim 2, wherein a drainage tank is provided in a line after mixing the known physical medium as fresh water, and a conduit for returning the diluted microcapsule slurry to the microcapsule slurry tank is provided. A calorimetric device as described.
【請求項4】請求項1の既知物性媒体との混合法による
スラリーの熱量計測法を用い、微小カプセルスラリー撹
拌部、スラリー温調部、秤量計を有する微小カプセルス
ラリー槽とスラリー質量流量調節系からなる微小カプセ
ルスラリー系と、既知物性媒体撹拌部、媒体温調系、秤
量計を有する既知物性媒体槽と、媒体流量調節系からな
る既知媒体系を混合器で結び、混合後の平衡温度を計測
する少なくとも1個の温度計を設置し、請求項1の混合
法により微小カプセルスラリーの任意温度幅における融
解、凝固熱量および顕熱量を計測することを特徴とする
熱量計測装置。
4. A microcapsule slurry tank having a microcapsule slurry stirring section, a slurry temperature control section, a weighing scale, and a slurry mass flow rate control system using the slurry calorimetric method by mixing with the known physical medium of claim 1. A microcapsule slurry system consisting of a known physical medium stirrer, a medium temperature control system, a known physical medium tank having a weighing scale, and a known medium system consisting of a medium flow rate control system are connected by a mixer, and the equilibrium temperature after mixing is adjusted. A calorie measuring device, comprising at least one thermometer for measuring, and measuring the melting, coagulating heat and sensible heat of the microcapsule slurry in an arbitrary temperature range by the mixing method according to claim 1.
【請求項5】請求項4の熱量計測装置を用い、混合後の
ラインに排液弁を設けかつ、分岐と排液計量弁を設け、
熱量計測条件下の混合後スラリーを排液撹拌部、秤量
計、排液温度計を有する排液計量槽に取り込むよう構成
したことを特徴とした排液計量装置。
5. An apparatus according to claim 4, wherein a drain valve is provided in the line after mixing, and a branch and a drain measuring valve are provided.
A drainage measuring device characterized in that the slurry after mixing under calorimetric conditions is taken into a drainage measuring tank having a drainage stirring section, a weighing meter, and a drainage thermometer.
【請求項6】請求項5の排液計量装置により排液を計量
することを特徴とする排液計量方法。
6. A drainage measuring method, comprising measuring drainage by the drainage measuring device according to claim 5.
【請求項7】前記微小カプセルスラリー系において体積
流量を同時計測する機能を付加し、微小カプセルスラリ
ーの任意温度幅における熱量および顕熱量計測とともに
比重計測を行なえるよう構成したことを特徴とする請求
項2乃至4のいずれかに記載の熱量計測装置。
7. The microcapsule slurry system is provided with a function of simultaneously measuring a volume flow rate, so that a specific gravity measurement can be performed together with a calorie measurement and a sensible heat measurement at an arbitrary temperature range of the microcapsule slurry. Item 5. A calorimetric device according to any one of Items 2 to 4.
JP11142799A 1999-04-19 1999-04-19 Calorimetric measuring method, calorimetric measuring device, drainage measuring method, and drainage measuring device Expired - Lifetime JP3327866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11142799A JP3327866B2 (en) 1999-04-19 1999-04-19 Calorimetric measuring method, calorimetric measuring device, drainage measuring method, and drainage measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11142799A JP3327866B2 (en) 1999-04-19 1999-04-19 Calorimetric measuring method, calorimetric measuring device, drainage measuring method, and drainage measuring device

Publications (2)

Publication Number Publication Date
JP2000304714A JP2000304714A (en) 2000-11-02
JP3327866B2 true JP3327866B2 (en) 2002-09-24

Family

ID=14560921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11142799A Expired - Lifetime JP3327866B2 (en) 1999-04-19 1999-04-19 Calorimetric measuring method, calorimetric measuring device, drainage measuring method, and drainage measuring device

Country Status (1)

Country Link
JP (1) JP3327866B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605955B (en) * 2016-01-28 2018-07-03 西安交通大学 A kind of fused salt heat exchanging experimental provision and its control method
CN106018469A (en) * 2016-05-13 2016-10-12 十堰双齐科技有限公司 Stirring, heating and heat preserving device for heat treatment medium cooling speed detection
CN114441587B (en) * 2022-01-27 2023-09-26 天津大学 Experimental device for measure phase change material at temperature difference energy utilization process performance

Also Published As

Publication number Publication date
JP2000304714A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
Cabeza et al. Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties
Allouche et al. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank
Lu et al. Experimental study of the thermal characteristics of phase change slurries for active cooling
Huang et al. Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications
Tay et al. Experimental validation of a CFD model for tubes in a phase change thermal energy storage system
García-Romero et al. Influence of the experimental conditions on the subcooling of Glauber's salt when used as PCM
Miyazawa et al. Homogeneous nucleation of crystalline gallium from liquid gallium
Chen et al. An experimental investigation of nucleation probability of supercooled water inside cylindrical capsules
Kousksou et al. Equilibrium liquidus temperatures of binary mixtures from differential scanning calorimetry
Rathgeber et al. Enthalpy-temperature plots to compare calorimetric measurements of phase change materials at different sample scales
D'Avignon et al. Experimental assessment of a phase change material storage tank
Torregrosa-Jaime et al. Experimental analysis of a paraffin-based cold storage tank
JP4807922B2 (en) Calorimeter
Fatahi et al. Experimental investigation of the rheological and phase change behavior of adipic acid as a phase change material (PCM) for thermal energy storage at 150° C
JP3327866B2 (en) Calorimetric measuring method, calorimetric measuring device, drainage measuring method, and drainage measuring device
US3695093A (en) Device for measuring the solidification temperature of liquids
US6571604B2 (en) Method and device for evaluating during drilling the capacity of well fluids to form hydrates
Louanate et al. Characterization of the rheological behavior of a paraffin-based phase change material under steady and oscillatory shear
US5174655A (en) Calorimeter sensor
Stoessel Applications of reaction calorimetry in chemical engineering
Ayel et al. Using undercooling to measure the freezing points of aqueous solutions
Krimmel et al. Experimental characterization of the heat transfer in a latent direct contact thermal energy storage with one nozzle in labor scale
Huang et al. A spinning disc study of fouling of cold heat transfer surfaces by gel formation from model food fat solutions
EP4067759A1 (en) Heat transfer system and method for operating a heat transfer system
Kousksou et al. Thermal analysis of phase change emulsion

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term