JPH04237939A - Automatic focusing method - Google Patents

Automatic focusing method

Info

Publication number
JPH04237939A
JPH04237939A JP520291A JP520291A JPH04237939A JP H04237939 A JPH04237939 A JP H04237939A JP 520291 A JP520291 A JP 520291A JP 520291 A JP520291 A JP 520291A JP H04237939 A JPH04237939 A JP H04237939A
Authority
JP
Japan
Prior art keywords
ratio
scanning
signal
electron beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP520291A
Other languages
Japanese (ja)
Inventor
Atsushi Yamada
篤 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP520291A priority Critical patent/JPH04237939A/en
Publication of JPH04237939A publication Critical patent/JPH04237939A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To realize the automatic focusing method correctly performing an automatic focusing action without being affected by noise. CONSTITUTION:Secondary electrons generated by the face scanning of an electron beam are detected by a detector 6, the detection signal is separated into two signal components according to the frequency by a signal separating circuit 8. The separated signal component and the noise component are fed to a computer 15 to obtain their ratio, and this ratio corresponds to the S/N ratio of the detection signal. When the detected S/N ratio is the stored S/N ratio or above, the computer 15 performs an automatic focusing action by face scanning. When the detected S/N ratio is the stored S/N ratio or below, the computer 15 switches the scanning of the electron beam to line scanning from face scanning to perform the automatic focusing action.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、走査電子顕微鏡などで
自動的にフォーカス合わせを行うためのオートフォーカ
ス方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autofocus method for automatically adjusting focus in a scanning electron microscope or the like.

【0002】0002

【従来の技術】走査電子顕微鏡などのオートフォーカス
では、集束レンズの励磁をステップ状に変化させ、各ス
テップ状の集束レンズの励磁状態において、試料の特定
領域を電子ビームで走査し、各走査毎に試料からの2次
電子あるいは反射電子を検出し、この検出信号強度から
信号強度の最大値の時がフォーカス点として、その時の
励磁状態に集束レンズを固定するようにしている。
[Prior Art] In an autofocus system such as a scanning electron microscope, the excitation of a focusing lens is changed in steps, and a specific region of a sample is scanned with an electron beam in each step of the excitation state of the focusing lens. Secondary electrons or reflected electrons from the sample are detected, and the time of the maximum value of the detected signal intensity is set as the focus point, and the focusing lens is fixed in the excitation state at that time.

【0003】0003

【発明が解決しようとする課題】上述したオートフォー
カスにおいて、2次電子や反射電子の検出信号のSN比
が悪いと信号強度差がノイズの影響によりバラツキが生
じ、信号のピーク値が見つけにくくなる。現在、オート
フォーカスを行う際の試料上の電子ビームの走査は、特
定の2次元領域を走査する面走査と、直線上に電子ビー
ムを走査するライン走査の2段階あり、プローブ電流値
に応じて2種類の走査を切換えて使用している。面走査
とライン走査では、サンプリング時間が同一となってい
るので、面走査に比べライン走査の際の信号量が多くな
り、検出信号のSN比が向上する。しかしながら、この
SN比は、試料表面の状態によっても影響され、プロー
ブ電流値が多くてもSN比が悪い場合がある。
[Problem to be Solved by the Invention] In the above-mentioned autofocus, if the S/N ratio of the detection signal of secondary electrons or reflected electrons is poor, the signal strength difference will vary due to the influence of noise, making it difficult to find the peak value of the signal. . Currently, the scanning of the electron beam on the sample when performing autofocus has two stages: plane scanning, which scans a specific two-dimensional area, and line scanning, which scans the electron beam on a straight line. Two types of scanning are used by switching between them. Since the sampling time is the same for area scanning and line scanning, the amount of signal during line scanning is greater than that for area scanning, and the S/N ratio of the detection signal is improved. However, this SN ratio is also affected by the condition of the sample surface, and even if the probe current value is large, the SN ratio may be poor.

【0004】本発明は、このような点に鑑みてなされた
もので、その目的は、ノイズの影響を受けずに正確にオ
ートフォーカス動作を行うことができるオートフォーカ
ス方法を実現するにある。
The present invention has been made in view of the above-mentioned problems, and its object is to realize an autofocus method that can accurately perform autofocus operations without being affected by noise.

【0005】[0005]

【課題を解決するための手段】本発明に基づくオートフ
ォーカス方法は、電子ビームを試料上に集束するための
集束レンズの励磁をステップ状に変化させ、各励磁状態
において試料上の電子ビームの照射位置を走査し、この
走査に基づいて試料から得られた信号を検出し、各走査
に応じた検出信号強度に基づいて該集束レンズの励磁強
度を決定するようにしたオートフォーカス方法において
、該検出信号を周波数に応じた2成分に分離し、分離さ
れた両成分の強度比に基づいて試料上の電子ビーム走査
の速度を変化させるようにしたことを特徴としている。
[Means for Solving the Problem] The autofocus method based on the present invention changes the excitation of a focusing lens for focusing an electron beam on a sample in steps, and irradiates the electron beam on the sample in each excitation state. In an autofocus method that scans a position, detects a signal obtained from the sample based on this scan, and determines the excitation intensity of the focusing lens based on the detection signal intensity corresponding to each scan, the detection It is characterized in that the signal is separated into two components depending on the frequency, and the scanning speed of the electron beam on the sample is changed based on the intensity ratio of the two separated components.

【0006】[0006]

【作用】本発明に基づくオートフォーカス方法は、オー
トフォーカスのために試料上で電子ビームを走査し、そ
の結果得られた検出信号を周波数に応じて信号成分とノ
イズ成分の2成分に分離し、分離した両成分の強度比に
基づいて試料上の電子ビーム走査の速度を変化させるよ
うにした。
[Operation] The autofocus method based on the present invention scans an electron beam over a sample for autofocus, and separates the resulting detection signal into two components, a signal component and a noise component, according to the frequency. The scanning speed of the electron beam on the sample was changed based on the intensity ratio of the two separated components.

【0007】[0007]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は、本発明のオートフォーカス方法を
実施するための走査電子顕微鏡の一例を示しており、1
は電子銃である。電子銃1から発生した電子ビームは、
集束レンズ2,3によって試料4上に細く集束されると
共に、偏向コイル5によって走査される。6は2次電子
検出器であり、検出器6の出力信号は、増幅器7によっ
て増幅された後、信号分離回路8と絶対値回路9に供給
される。信号分離回路8によって分離された2種類の信
号は、夫々絶対値回路10,11に供給された後、積分
回路12,13によって積分される。該絶対値回路9の
出力信号も積分回路14に供給されて積分され、各積分
回路12,13,14の出力信号は、コンピュータ15
に供給される。該コンピュータ15は、集束レンズ3の
励磁電源16と偏向コイル5に走査信号を供給する偏向
回路17における走査速度を切り換えるための切換回路
18を制御する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a scanning electron microscope for implementing the autofocus method of the present invention.
is an electron gun. The electron beam generated from the electron gun 1 is
The light is narrowly focused onto the sample 4 by the focusing lenses 2 and 3, and scanned by the deflection coil 5. 6 is a secondary electron detector, and the output signal of the detector 6 is amplified by an amplifier 7 and then supplied to a signal separation circuit 8 and an absolute value circuit 9. The two types of signals separated by the signal separation circuit 8 are supplied to absolute value circuits 10 and 11, respectively, and then integrated by integration circuits 12 and 13. The output signal of the absolute value circuit 9 is also supplied to the integration circuit 14 and integrated, and the output signal of each integration circuit 12, 13, 14 is sent to the computer 15.
supplied to The computer 15 controls a switching circuit 18 for switching the scanning speed in the excitation power source 16 of the focusing lens 3 and the deflection circuit 17 that supplies scanning signals to the deflection coil 5.

【0008】上記した構成の走査電子顕微鏡におけるオ
ートフォーカス動作を図2のフローチャートと、図3の
信号波系図を参考にして説明する。まず、オートフォー
カス動作をONにすると、コンピュータ15は集束レン
ズ3の励磁電源16を制御し、図3の(a)に示すよう
に、集束レンズ3の励磁強度をステップ状に変化させる
。さらに、コンピュータ15から切換回路18を制御し
、集束レンズ3における各励磁強度毎に、偏向回路17
から偏向コイル5に、面走査信号が供給されるようにす
る。この結果、試料4の特定2次元領域は、電子ビーム
によって走査される。この試料4への電子ビームの照射
によって発生した2次電子は、2次電子検出器6によっ
て検出され、その検出信号は、増幅器7によって増幅さ
れた後、信号分離回路8と絶対値回路9に供給される。 該信号分離回路8は、図1に示すように、低域通過フィ
ルタ19と高域通過フィルタ20とより構成されている
。その結果、入力信号は、その周波数に応じて2種の信
号成分に分離される。ここで、検出信号に含まれる信号
成分の周波数とノイズ成分の周波数に注目すると、信号
成分の周波数はほぼ電子ビームの走査速度に依存した比
較的低い周波数であるのに対し、ノイズ成分の周波数は
、光電子増倍管などの検出器のショットノイズなどに基
づくもので、通常高周波成分となる。従って、特定の周
波数を境として、ノイズ成分と信号成分とを周波数に基
づいて分離することができる。
The autofocus operation in the scanning electron microscope configured as described above will be explained with reference to the flowchart in FIG. 2 and the signal wave diagram in FIG. 3. First, when the autofocus operation is turned on, the computer 15 controls the excitation power source 16 of the focusing lens 3, and changes the excitation intensity of the focusing lens 3 in steps, as shown in FIG. 3(a). Furthermore, the switching circuit 18 is controlled from the computer 15, and the deflection circuit 17 is controlled for each excitation intensity in the focusing lens 3.
A surface scanning signal is supplied from the deflection coil 5 to the deflection coil 5. As a result, a specific two-dimensional area of the sample 4 is scanned by the electron beam. Secondary electrons generated by irradiating the sample 4 with the electron beam are detected by a secondary electron detector 6, and the detection signal is amplified by an amplifier 7 and then sent to a signal separation circuit 8 and an absolute value circuit 9. Supplied. The signal separation circuit 8 is composed of a low-pass filter 19 and a high-pass filter 20, as shown in FIG. As a result, the input signal is separated into two types of signal components according to their frequencies. Here, if we pay attention to the frequency of the signal component and the frequency of the noise component included in the detection signal, the frequency of the signal component is a relatively low frequency that depends almost on the scanning speed of the electron beam, whereas the frequency of the noise component is , is based on shot noise of a detector such as a photomultiplier tube, and is usually a high frequency component. Therefore, noise components and signal components can be separated based on frequency, with a specific frequency as a boundary.

【0009】上述した原理に基づき、信号分離回路8に
よって分離された信号成分とノイズ成分は、夫々絶対値
回路10,11を介して積分回路12,13に供給され
、集束レンズの各励磁強度の時の電子ビームの走査毎に
積分される。この積分回路12,13からは、図3の(
b),(c)に示す信号が得られる。この図(b),(
c)に示す信号は、コンピュータ15に供給され、その
比が求められるが、この比は、検出信号のSN比と対応
したものである。コンピュータ15は、求められたSN
比と、予め面走査の走査速度に対応して記憶されている
SN比とを比較する。この比較の結果、検出されたSN
比が記憶してあったSN比以上であれば、SN比が良好
であり、この場合には、絶対値回路9,積分回路14を
介して供給された全検出信号に基づいてオートフォーカ
ス動作を行う。すなわち、集束レンズ3の励磁強度を図
3(a)のように変化させ、各励磁強度毎に積分回路1
4によって全検出信号を積分する。その結果、図3(d
)に示す信号が得られるが、この信号波形のピークの時
が電子ビームのフォーカスが合っている状態である。コ
ンピュータ15は、励磁電源16を制御し、集束レンズ
3の励磁強度をこの図3(d)の信号のピークの時の値
に設定する。このような動作が終了した後、通常の電子
ビームの走査が開始され、試料4の所望領域の走査電子
顕微鏡像が得られる。
Based on the above-mentioned principle, the signal component and noise component separated by the signal separation circuit 8 are supplied to integration circuits 12 and 13 via absolute value circuits 10 and 11, respectively, and the respective excitation intensities of the focusing lens are It is integrated for each scan of the electron beam. From these integrating circuits 12 and 13, (
The signals shown in b) and (c) are obtained. This figure (b), (
The signal shown in c) is supplied to the computer 15 and its ratio is determined, and this ratio corresponds to the SN ratio of the detection signal. The computer 15 uses the determined SN
The ratio is compared with an SN ratio stored in advance corresponding to the scanning speed of surface scanning. As a result of this comparison, the detected SN
If the ratio is equal to or higher than the stored SN ratio, the SN ratio is good, and in this case, autofocus operation is performed based on all detection signals supplied via the absolute value circuit 9 and the integration circuit 14. conduct. That is, the excitation intensity of the focusing lens 3 is changed as shown in FIG. 3(a), and the integration circuit 1 is
Integrate the entire detected signal by 4. As a result, Figure 3 (d
) is obtained, and the peak of this signal waveform indicates that the electron beam is in focus. The computer 15 controls the excitation power supply 16 and sets the excitation intensity of the focusing lens 3 to the value at the peak of the signal shown in FIG. 3(d). After such an operation is completed, normal electron beam scanning is started, and a scanning electron microscope image of a desired area of the sample 4 is obtained.

【0010】次に、検出されたSN比が予め記憶された
SN比以下の悪い状態の時、コンピュータ15は、切換
回路18を制御し、電子ビームの走査を面走査からライ
ン走査へと切り換える。従って、電子ビームは、集束レ
ンズ3の各励磁強度毎にライン走査され、各ライン走査
によって発生した2次電子が検出器6によって検出され
る。この検出信号のSN比は、面走査とライン走査の時
間を一定とした場合には、ライン走査の走査速度は遅く
なるため、向上することになる。この検出信号は、絶対
値回路9,積分回路14を介してコンピュータ15に供
給され、上記した面走査のときと同様に、オートフォー
カス動作が行われる。
[0010] Next, when the detected SN ratio is in a bad state below the pre-stored SN ratio, the computer 15 controls the switching circuit 18 to switch the scanning of the electron beam from surface scanning to line scanning. Therefore, the electron beam is line-scanned for each excitation intensity of the focusing lens 3, and the secondary electrons generated by each line-scanning are detected by the detector 6. The S/N ratio of this detection signal is improved if the time for surface scanning and line scanning is kept constant because the scanning speed for line scanning becomes slower. This detection signal is supplied to the computer 15 via the absolute value circuit 9 and the integration circuit 14, and an autofocus operation is performed in the same manner as in the above-mentioned area scanning.

【0011】以上本発明の一実施例を詳述したが、本発
明はこの実施例に限定されない。例えば、2次電子を検
出したが、反射電子を検出してもよい。また、走査速度
を面走査とライン走査の2段階に切り換えるようにした
が、各走査毎に走査速度を任意に変えるようにしても良
い。その場合、各走査速度に応じた標準的なSN比を検
出したSN比との比較のためにコンピュータ15に記憶
しておくことが望ましい。更にまた、信号分離回路8で
分離した信号は、SN比の検出のみに用い、オートフォ
ーカス用の全検出信号は、別のルートでコンピュータ1
5に供給するようにしたが、分離した信号成分とノイズ
成分を加算した信号をオートフォーカス用に用いても良
い。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment. For example, although secondary electrons were detected, reflected electrons may also be detected. Further, although the scanning speed is switched between two stages, surface scanning and line scanning, the scanning speed may be arbitrarily changed for each scanning. In that case, it is desirable to store a standard SN ratio corresponding to each scanning speed in the computer 15 for comparison with the detected SN ratio. Furthermore, the signal separated by the signal separation circuit 8 is used only for detecting the S/N ratio, and all detection signals for autofocus are sent to the computer 1 via another route.
5, however, a signal obtained by adding the separated signal component and the noise component may be used for autofocus.

【0012】0012

【発明の効果】以上説明したように、本発明に基づくオ
ートフォーカス方法は、オートフォーカスのために試料
上で電子ビームを走査し、その結果得られた検出信号を
周波数に応じて信号成分とノイズ成分の2成分に分離し
、分離した両成分の強度比に基づいて試料上の電子ビー
ム走査の速度を変化させるようにしたので、常に実際の
SN比に基づいて最適な電子ビームの走査速度を設定す
ることができ、正確なオートフォーカスを行うことがで
きる。
[Effects of the Invention] As explained above, the autofocus method based on the present invention scans an electron beam over a sample for autofocus, and the detection signal obtained as a result is divided into signal components and noise according to the frequency. The electron beam is separated into two components, and the scanning speed of the electron beam on the sample is changed based on the intensity ratio of the two separated components, so the optimum scanning speed of the electron beam can always be determined based on the actual S/N ratio. It is possible to set and perform accurate autofocus.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明のオートフォーカス方法を実施する
ための走査電子顕微鏡の一例を示す図である。
FIG. 1 is a diagram showing an example of a scanning electron microscope for implementing the autofocus method of the present invention.

【図2】  本発明に基づくオートフォーカス動作のフ
ローチャートを示す図である。
FIG. 2 is a diagram showing a flowchart of an autofocus operation according to the present invention.

【図3】  本発明の一実施例を説明するために用いた
信号波形図である。
FIG. 3 is a signal waveform diagram used to explain one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電子銃              2,3…集束
レンズ4…試料                5…
偏向コイル6…検出器              7
…増幅器8…信号分離回路 9,10,11…絶対値回路 12,13,14…積分回路
1... Electron gun 2, 3... Focusing lens 4... Sample 5...
Deflection coil 6...Detector 7
…Amplifier 8…Signal separation circuit 9, 10, 11…Absolute value circuit 12, 13, 14…Integrator circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電子ビームを試料上に集束するための
集束レンズの励磁をステップ状に変化させ、各励磁状態
において試料上の電子ビームの照射位置を走査し、この
走査に基づいて試料から得られた信号を検出し、各走査
に応じた検出信号強度に基づいて該集束レンズの励磁強
度を決定するようにしたオートフォーカス方法において
、該検出信号を周波数に応じた2成分に分離し、分離さ
れた両成分の強度比に基づいて試料上の電子ビーム走査
の速度を変化させるようにしたオートフォーカス方法。
Claim 1: The excitation of a focusing lens for focusing an electron beam on a sample is changed stepwise, the irradiation position of the electron beam on the sample is scanned in each excitation state, and the irradiation position of the electron beam on the sample is scanned based on this scanning. In an autofocus method, the detection signal is detected and the excitation intensity of the focusing lens is determined based on the detection signal intensity corresponding to each scan. An autofocus method that changes the scanning speed of the electron beam on the sample based on the intensity ratio of both components.
JP520291A 1991-01-21 1991-01-21 Automatic focusing method Withdrawn JPH04237939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP520291A JPH04237939A (en) 1991-01-21 1991-01-21 Automatic focusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP520291A JPH04237939A (en) 1991-01-21 1991-01-21 Automatic focusing method

Publications (1)

Publication Number Publication Date
JPH04237939A true JPH04237939A (en) 1992-08-26

Family

ID=11604611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP520291A Withdrawn JPH04237939A (en) 1991-01-21 1991-01-21 Automatic focusing method

Country Status (1)

Country Link
JP (1) JPH04237939A (en)

Similar Documents

Publication Publication Date Title
US5084618A (en) Autofocus method and apparatus for electron microscope
JPH0689687A (en) Automatic focusing device for scanning electron microscope
US4978856A (en) Automatic focusing apparatus
JP3021917B2 (en) Automatic focusing and astigmatism correction method in electron beam device
JPH0475242A (en) Auto-focusing method of scanning electron microscope
JPH0766770B2 (en) Electron beam irradiation device
JPH06243812A (en) Scanning electron microscope
JPH04237939A (en) Automatic focusing method
JP3101089B2 (en) Brightness correction method for scanning electron microscope
JPH0756786B2 (en) Electron microscope focusing device
JP3236433B2 (en) Focusing method in charged particle beam device
JP2001006599A (en) Method for controlling electron beam in electron beam device
JP3114416B2 (en) Focusing method in charged particle beam device
JPH10172489A (en) Adjusting method of electron beam in scan electron microscope
JP2001110347A (en) Automated focusing method for charged-particle beam apparatus
JPH073772B2 (en) Electronic beam focusing device
JP3414602B2 (en) Scanning electron microscope and control method thereof
JP2002334678A (en) Auto-focus method in scanned type charged particle beam device and scanned type charged particle beam device
JPH0831364A (en) Scanning electron microscope
JPH113676A (en) Scanning electron microscope
JPH05114378A (en) Scanning electron microscope
JPH05128989A (en) Scanning electron microscope for observing three-dimensional figure
JPH05290780A (en) Focusing method and astigmatism correcting method in charged particle beam device
JPH10162761A (en) Method for adjusting electron beam in scanning electron microscope
JPH08138605A (en) Focusing method and astigmatism correcting method in electron beam device, and electron beam device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514