JPH04237854A - Cylinder injection type internal combustion engine - Google Patents

Cylinder injection type internal combustion engine

Info

Publication number
JPH04237854A
JPH04237854A JP3004835A JP483591A JPH04237854A JP H04237854 A JPH04237854 A JP H04237854A JP 3004835 A JP3004835 A JP 3004835A JP 483591 A JP483591 A JP 483591A JP H04237854 A JPH04237854 A JP H04237854A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
injection valve
load
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3004835A
Other languages
Japanese (ja)
Inventor
Shizuo Sasaki
佐々木 ▲静▼夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3004835A priority Critical patent/JPH04237854A/en
Publication of JPH04237854A publication Critical patent/JPH04237854A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To provide such an internal combustion engine as preventing an amount of fuel flowing into a cylinder from sharply decreasing at time of injection starting of the fuel in an intake pipe by a second fuel injection valve, in the cylinder injection type internal combustion engine which has a first fuel injection valve being set up in the cylinder and the second fuel injection valve being set up in the intake pipe, and changes fuel injection according to the extent of engine load. CONSTITUTION:In a cylinder injection type internal combustion engine which is made so as to inject fuel for stratified combustion at a compression stroke by a first fuel injection valve 4 at the time of engine low load, and to inject the fuel for uniform combustion by a second fuel injection valve 7 at the time of high engine load, fuel injection should be started also from the first fuel injection valve 4, in an intake stroke at the time of a specified load A at the lower side than that to be started of the fuel injection by the second fuel injection valve 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、気筒内に直接燃料噴射
する燃料噴射弁と吸気管に燃料噴射する燃料噴射弁とを
備え、これら燃料噴射弁を機関負荷状態に応じて噴射作
動させ、低負荷時の燃焼性の向上と高負荷時の空気利用
率の向上との両立を図った筒内噴射式内燃機関に関する
[Industrial Field of Application] The present invention comprises a fuel injection valve that injects fuel directly into a cylinder and a fuel injection valve that injects fuel into an intake pipe, and these fuel injection valves are operated according to the engine load condition, This invention relates to a direct injection internal combustion engine that achieves both improved combustibility at low loads and improved air utilization at high loads.

【0002】0002

【従来の技術】気筒内に直接燃料噴射する第1の燃料噴
射弁と、吸気管に燃料噴射する第2の燃料噴射弁とを備
え、以て機関の低負荷時は上記第1燃料噴射弁により圧
縮行程の後期において燃料を筒内に噴射して、いわゆる
成層燃焼を行って燃焼性の向上を図り、機関の高負荷時
は上記第2燃料噴射弁により吸気行程において燃料を吸
気管に噴射し、いわゆる均一燃焼を行い空気利用率の向
上を図った内燃機関が提案されている(特開昭60−3
0416号公報参照)。
2. Description of the Related Art A first fuel injection valve that injects fuel directly into a cylinder and a second fuel injection valve that injects fuel into an intake pipe are provided. This injects fuel into the cylinder in the latter half of the compression stroke to perform so-called stratified combustion to improve combustibility, and when the engine is under high load, the second fuel injection valve injects fuel into the intake pipe during the intake stroke. However, an internal combustion engine that achieves so-called uniform combustion and improves air utilization has been proposed (Japanese Patent Laid-Open No. 60-3
(See Publication No. 0416).

【0003】0003

【発明が解決しようとする課題】ところで上述したよう
な内燃機関では、吸気管内噴射の開始時において、吸気
管内に噴射された燃料の一部が吸気管壁面に付着するた
め、気筒内に流入する燃料量が一瞬少なくなり空燃比が
オーバリーン化し、失火やトルクショック(段差)、或
はエミッションスパイクが発生する。本発明は2つの燃
料噴射弁を有し機関負荷に応じて燃料噴射を切り換える
内燃機関において、上述したような吸気管内燃料噴射開
始時において、筒内に流入する燃料量の変化の影響を受
け上述したような失火等の現象を発生することのないよ
うな内燃機関を提供することを目的とする。
[Problems to be Solved by the Invention] In the above-mentioned internal combustion engine, at the start of intake pipe injection, a portion of the fuel injected into the intake pipe adheres to the wall surface of the intake pipe, and therefore flows into the cylinder. The amount of fuel decreases momentarily and the air-fuel ratio becomes over-lean, causing misfires, torque shocks, or emission spikes. The present invention provides an internal combustion engine that has two fuel injection valves and switches fuel injection according to the engine load, in which the fuel injection in the intake pipe is affected by the change in the amount of fuel flowing into the cylinder at the start of the intake pipe fuel injection as described above. It is an object of the present invention to provide an internal combustion engine that does not cause phenomena such as misfires as described above.

【0004】0004

【課題を解決するための手段】上記目的を達成するため
本発明によれば、気筒内に直接燃料噴射する第1の燃料
噴射弁と、吸気管に燃料を噴射する第2の燃料噴射弁と
を有し、低負荷時は上記第1の燃料噴射弁により機関の
圧縮行程で燃料噴射して成層燃焼し、高負荷時は上記第
2の燃料噴射弁により燃料噴射して均一燃焼するように
した筒内噴射式内燃機関において、上記第2燃料噴射弁
による燃料噴射が開始される負荷よりも低い所定負荷時
の吸気行程において、第1燃料噴射弁からも燃料噴射開
始させることを特徴とする筒内噴射式内燃機関が提供さ
れる。
[Means for Solving the Problems] To achieve the above object, the present invention provides a first fuel injection valve that injects fuel directly into a cylinder, a second fuel injection valve that injects fuel into an intake pipe. When the load is low, the first fuel injection valve injects fuel during the compression stroke of the engine for stratified combustion, and when the load is high, the second fuel injection valve injects fuel for uniform combustion. In the direct injection internal combustion engine, fuel injection is also started from the first fuel injection valve during the intake stroke at a predetermined load lower than the load at which fuel injection from the second fuel injection valve is started. A direct injection internal combustion engine is provided.

【0005】[0005]

【作用】吸気管内燃料噴射が開始される負荷よりも低負
荷側で、第1燃料噴射弁によって、それまでの圧縮行程
のみの噴射に加えて、吸気行程にも所定量の燃料噴射が
開始される。この結果、第2燃料噴射弁による吸気管内
燃料噴射開始時に吸気管壁面に燃料が付着し、筒内流入
燃料量の精度が悪化するようなことがあっても、燃焼に
必要な燃料は第1燃料噴射弁からの吸気行程の燃料噴射
によって賄われる。
[Operation] At a load lower than the load at which intake pipe fuel injection starts, the first fuel injection valve starts injecting a predetermined amount of fuel during the intake stroke in addition to the previous injection only during the compression stroke. Ru. As a result, even if fuel adheres to the intake pipe wall surface when the second fuel injection valve starts injecting fuel into the intake pipe and the accuracy of the amount of fuel flowing into the cylinder deteriorates, the fuel necessary for combustion will be transferred to the first fuel injection valve. This is covered by fuel injection from the fuel injection valve during the intake stroke.

【0006】[0006]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。図1は本発明による内燃機関の概略的構成を
示したものであって、ピストン1の頂部には凹型の燃焼
室2が形成される。又、シリンダヘッド3の内部にはこ
の燃焼室2に向けて直接燃料噴射する第1の燃料噴射弁
(以下、第1燃料噴射弁と呼ぶ)4が装着されており、
更に吸気管5には吸気ポート6内に燃料噴射する第2の
燃料噴射弁(以下、第2燃料噴射弁)7が装着される。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of an internal combustion engine according to the present invention, in which a concave combustion chamber 2 is formed at the top of a piston 1. Furthermore, a first fuel injection valve (hereinafter referred to as the first fuel injection valve) 4 that injects fuel directly into the combustion chamber 2 is installed inside the cylinder head 3.
Further, the intake pipe 5 is equipped with a second fuel injection valve (hereinafter referred to as a second fuel injection valve) 7 that injects fuel into the intake port 6.

【0007】第1燃料噴射弁4には、燃料タンク8から
低圧ポンプ9と高圧ポンプ10を介してリザーバタンク
11に圧送された燃料が供給されるようになっており、
又第2燃料噴射弁7には、低圧ポンプ9から分岐されて
もう1つのリザーバタンク12に圧送された燃料が供給
されるようになっている。
The first fuel injection valve 4 is supplied with fuel that is pumped from a fuel tank 8 to a reservoir tank 11 via a low pressure pump 9 and a high pressure pump 10.
Further, the second fuel injection valve 7 is supplied with fuel that is branched from the low-pressure pump 9 and fed under pressure to another reservoir tank 12.

【0008】これら第1燃料噴射弁4及び第2燃料噴射
弁7は、制御回路13によって噴射開始時期及び噴射量
(開弁期間)が制御されるようになっており、制御回路
13へは機関負荷検出手段としてアクセルペダル(図示
せず)の開度を検出するアクセル開度センサ14からの
アクセル開度信号が入力され、更にディストリビュータ
(図示せず)に設けられたクランク角センサ15からの
クランク回転角信号が入力される。尚、実際の制御回路
13には上記信号の他、機関運転条件を表す種々の信号
が入力され、又種々の信号が出力されるが、本発明とは
直接関係ないため省略する。
The injection start timing and injection amount (valve opening period) of the first fuel injection valve 4 and the second fuel injection valve 7 are controlled by a control circuit 13. An accelerator opening signal is input from an accelerator opening sensor 14 that detects the opening of an accelerator pedal (not shown) as a load detection means, and a crank angle sensor 15 provided in a distributor (not shown) is input. A rotation angle signal is input. In addition to the above-mentioned signals, various signals representing engine operating conditions are input to the actual control circuit 13, and various signals are outputted therefrom, but they are not directly related to the present invention and will therefore be omitted.

【0009】前後するが、ピストン1頂部に形成される
燃焼室2の外周部位であって図1に示すピストン1中央
部分にはプラグポケット16が形成され、ピストン1が
上死点位置にある時、点火プラグ17の先端(ギャップ
部)がこのプラグポケット16内に入ることになる。 尚、上述した燃焼室2及びプラグポケット16を除くピ
ストン1頂面は図示するように凸状曲面で構成されてお
り、更にその外周部には第1燃料噴射弁4から噴射され
た燃料の外方分散を防ぐための堰18が形成され、以上
のようにしてピストン1頂部は筒内に噴射された燃料を
気化させるための、いわゆる蒸発皿としての作用を有す
る。
A plug pocket 16 is formed at the outer circumferential portion of the combustion chamber 2 formed at the top of the piston 1 and at the center of the piston 1 shown in FIG. , the tip (gap portion) of the spark plug 17 enters into this plug pocket 16. The top surface of the piston 1 excluding the combustion chamber 2 and the plug pocket 16 described above is constituted by a convex curved surface as shown in the figure, and furthermore, the outer circumference of the piston 1 has a convex curved surface, and the outer circumferential portion of the piston 1 has a convex curved surface, excluding the combustion chamber 2 and plug pocket 16. A weir 18 is formed to prevent unidirectional dispersion, and as described above, the top of the piston 1 functions as a so-called evaporation plate for vaporizing the fuel injected into the cylinder.

【0010】図2は本発明の特徴となる、各燃料噴射弁
の噴射時期制御例を示しており、横軸に機関負荷(例え
ば、アクセル開度θA)をとり、縦軸に行程時期(排気
上死点〜圧縮上死点)をとったものである。又、図にお
いて斜線部の縦軸方向長さは該当する燃料噴射弁の噴射
期間を示している。
FIG. 2 shows an example of injection timing control for each fuel injector, which is a feature of the present invention. (top dead center to compression top dead center). Further, in the figure, the length of the hatched portion in the vertical axis direction indicates the injection period of the corresponding fuel injection valve.

【0011】この図から明らかなように、負荷0から負
荷Bまでの所謂、低・中負荷運転域では燃料供給を第1
燃料噴射弁4で賄うようになっており、負荷Bにおいて
初めて第2燃料噴射弁7による吸気行程での燃料噴射が
開始されるが、負荷0〜Bの区間の内、0から負荷Aま
では圧縮行程においてのみ第1燃料噴射弁4から燃料噴
射された成層燃焼が行われる。そして圧縮行程燃料噴射
量(噴射期間)は負荷Aまで漸次増大せしめられる。
As is clear from this figure, in the so-called low and medium load operating range from load 0 to load B, the fuel supply is
The fuel injection valve 4 starts to inject fuel in the intake stroke by the second fuel injection valve 7 for the first time at load B, but from 0 to load A within the range of load 0 to B. Stratified combustion in which fuel is injected from the first fuel injection valve 4 is performed only in the compression stroke. Then, the compression stroke fuel injection amount (injection period) is gradually increased up to load A.

【0012】しかしながら負荷Aにおいては、圧縮行程
燃料噴射量は着火に必要な燃料量Qdまで急激に減少さ
れると共に、今度は減少された燃料分だけ第1燃料噴射
弁4によって吸気行程でも燃料噴射が開始される。この
結果、吸気行程において噴射された燃料は先のピストン
1頂面に付着することとなり、吸気から圧縮行程に至る
時間に気化し点火時期までにはほぼ均一なリーン混合気
が生成されることになる。そして圧縮行程後期において
噴射された燃料は、点火プラグ17の先端近傍にリッチ
な混合気を生成することにより着火が確保され、以上の
ようにして成層燃焼が達成されるのである。そしてこの
第1燃料噴射弁4による吸気行程前期の燃料噴射量は負
荷Bまで漸次増大せしめられる。
However, at load A, the compression stroke fuel injection amount is rapidly reduced to the fuel amount Qd required for ignition, and the first fuel injection valve 4 injects fuel by the reduced amount of fuel even during the intake stroke. is started. As a result, the fuel injected during the intake stroke adheres to the top surface of the piston 1, vaporizes from the intake to the compression stroke, and creates a nearly uniform lean mixture by the ignition timing. Become. Ignition of the fuel injected in the latter half of the compression stroke is ensured by generating a rich air-fuel mixture near the tip of the spark plug 17, thereby achieving stratified combustion. The amount of fuel injected by the first fuel injection valve 4 in the first half of the intake stroke is gradually increased up to load B.

【0013】次に負荷Bから始まる高負荷運転域におい
ては、燃料噴射量の増大が必要となるために、それまで
の第1燃料噴射弁4からの吸気行程前期噴射に加えて、
吸気管5に装着された第2燃料噴射弁7からも吸気行程
内で燃料噴射される。そしてこの第2燃料噴射弁7から
噴射された燃料は、既に噴射された第1燃料噴射弁4か
らの燃料とほぼ均一に混合され負荷AB間よりも比較的
リッチな混合気を生成し、圧縮行程後期の第1燃料噴射
弁4による燃料噴射により点火が確保され燃焼されるの
である。
Next, in the high-load operating range starting from load B, it is necessary to increase the amount of fuel injection, so in addition to the previous injection from the first fuel injection valve 4 in the first half of the intake stroke,
Fuel is also injected from the second fuel injection valve 7 attached to the intake pipe 5 during the intake stroke. The fuel injected from the second fuel injection valve 7 is almost uniformly mixed with the fuel already injected from the first fuel injection valve 4, producing a relatively rich air-fuel mixture than between the loads AB, and compressing the fuel. Ignition is ensured by fuel injection by the first fuel injection valve 4 in the latter half of the stroke, and combustion occurs.

【0014】即ち本実施例によれば、第2燃料噴射弁7
による吸気管5への燃料噴射開始時期(負荷Bの時)に
おいても、第1燃料噴射弁4により、それだけで充分火
炎伝播可能な燃料が吸気行程に供給されることになるた
め、開始直後、噴射燃料の吸気管壁面付着等による気筒
内への燃料吸入不足現象が発生しても、失火を防止でき
スムーズな燃焼を継続することができる。
That is, according to this embodiment, the second fuel injection valve 7
Even at the start timing of fuel injection into the intake pipe 5 (at the time of load B), the first fuel injection valve 4 supplies enough fuel to the intake stroke to allow flame propagation. Even if insufficient fuel intake into the cylinder occurs due to adhesion of injected fuel to the intake pipe wall, misfires can be prevented and smooth combustion can be continued.

【0015】尚、噴射制御例としては上述したパターン
の他、例えば図3に示すように、予混合気部分の濃度が
充分リッチになる負荷C以上の運転域において、第1燃
料噴射弁4による圧縮行程後期の燃料噴射を中止したり
、或は図4に示すように、図3のパターンに、負荷D以
上となる極高負荷運転域では第2燃料噴射弁7のみによ
る吸気管内噴射を実行するパターンを加えたものでも良
い。
As an example of injection control, in addition to the above-mentioned pattern, for example, as shown in FIG. Either the fuel injection in the latter half of the compression stroke is stopped, or, as shown in FIG. 4, in the extremely high-load operating range where the load is D or higher, the intake pipe injection is performed using only the second fuel injection valve 7, as shown in the pattern of FIG. It is also possible to add a pattern.

【0016】以下、図2の噴射パターンに例をとり、こ
のような噴射を実行するルーチンを図5に示す。尚、こ
のルーチンは一定クランク角度毎の割り込みルーチンと
して実行されるものである。
Taking the injection pattern of FIG. 2 as an example, FIG. 5 shows a routine for executing such injection. Note that this routine is executed as an interrupt routine at every fixed crank angle.

【0017】図5を参照すると、まずステップ51にお
いて機関回転数NEとアクセル開度θAが、前出のクラ
ンク角センサ15とアクセル開度センサ14からの信号
より夫々読み込まれる。次にステップ52では読み込ま
れたNE及びθAより、例えば図6に示すようなマップ
1を用いて要求燃料噴射量Qが算出される。
Referring to FIG. 5, first, in step 51, the engine speed NE and the accelerator opening θA are read from the signals from the aforementioned crank angle sensor 15 and accelerator opening sensor 14, respectively. Next, in step 52, the required fuel injection amount Q is calculated from the read NE and θA using, for example, map 1 as shown in FIG.

【0018】そして続くステップ53では、ステップ5
1で検出された機関負荷、即ちθAが所定負荷A(図2
参照)以下か否か判定される。ここでYesと判定され
た場合、ルーチンはステップ54に進み、要求燃料噴射
量Qの全量を第1燃料噴射弁4から圧縮行程後期に噴射
するべく、圧縮行程燃料噴射量Qcに噴射量Qが格納さ
れる。そして続くステップ55では吸気行程燃料噴射量
Qiを0とする。
[0018] In the following step 53, step 5
The engine load detected in step 1, that is, θA, is the predetermined load A (Fig. 2
Reference) It is determined whether or not the following is true. If the determination is Yes here, the routine proceeds to step 54, in which the injection amount Q is added to the compression stroke fuel injection amount Qc in order to inject the entire required fuel injection amount Q from the first fuel injection valve 4 in the latter half of the compression stroke. Stored. Then, in the subsequent step 55, the intake stroke fuel injection amount Qi is set to zero.

【0019】次にステップ56では設定された燃料噴射
量Qcだけの燃料噴射を達成する圧縮行程燃料噴射期間
Tcが図7に示すようなマップ2により算出され、同様
に、続くステップ57では吸気行程燃料噴射期間Tiが
0に設定される。
Next, in step 56, the compression stroke fuel injection period Tc for achieving fuel injection of the set fuel injection amount Qc is calculated using map 2 as shown in FIG. The fuel injection period Ti is set to zero.

【0020】ステップ57に続くステップ58では、例
えば図8に示すようなマップを用いて、圧縮行程燃料噴
射量Qc(或は負荷θA)と機関回転数NEから圧縮行
程燃料噴射開始時期TScが算出され、以上のようにし
て本ルーチンが終了される。尚、図8においてTScは
圧縮上死点からの噴射進角で示されており、Qc又はθ
Aが増大するにつれ点火時期と同様に早められる。
In step 58 following step 57, the compression stroke fuel injection start timing TSc is calculated from the compression stroke fuel injection amount Qc (or load θA) and the engine speed NE using a map as shown in FIG. 8, for example. This routine is then completed as described above. In addition, in FIG. 8, TSc is shown as the injection advance angle from compression top dead center, and Qc or θ
As A increases, the ignition timing is advanced as well.

【0021】一方、ステップ53でNo、即ちθA>A
の場合、ルーチンはステップ59に進み、今度は第2の
所定負荷B(図2参照)以下か否かが判定される。そし
てここでYesと判定されたならば、ステップ60以下
に進み、要求燃料噴射量Qは第1燃料噴射弁4によって
吸気行程と圧縮行程とに分割されて噴射される。
On the other hand, in step 53, No, that is, θA>A
In this case, the routine proceeds to step 59, where it is determined whether or not the second predetermined load B (see FIG. 2) is lower than or equal to the second predetermined load B (see FIG. 2). If the determination is Yes here, the process proceeds to step 60 and subsequent steps, and the required fuel injection amount Q is divided and injected into an intake stroke and a compression stroke by the first fuel injection valve 4.

【0022】ステップ60では圧縮行程燃料噴射量Qc
にQd(図2参照)が格納される。この噴射量Qdは点
火プラグからの燃料着火を確実に達成できる量であって
、実験的に求めることのできる一定値である。そして、
ステップ61では吸気行程燃料噴射量QiにQ−Qdが
格納される。即ち、この負荷域(A<θA≦B)では吸
気行程燃料噴射量Qiと圧縮行程燃料噴射量Qcとの和
がステップ52で算出された要求燃料噴射量Qになるよ
うに設定される。
In step 60, the compression stroke fuel injection amount Qc
Qd (see FIG. 2) is stored in . This injection amount Qd is an amount that can reliably achieve fuel ignition from the spark plug, and is a constant value that can be determined experimentally. and,
In step 61, Q-Qd is stored in the intake stroke fuel injection amount Qi. That is, in this load range (A<θA≦B), the sum of the intake stroke fuel injection amount Qi and the compression stroke fuel injection amount Qc is set to be the required fuel injection amount Q calculated in step 52.

【0023】そして次のステップ62では先のマップ2
(図7)からQcに基づいて圧縮行程燃料噴射期間Tc
が算出され、続くステップ63ではQiに基づいて吸気
行程燃料噴射期間Tiが算出される。
[0023] In the next step 62, the previous map 2
(Fig. 7), the compression stroke fuel injection period Tc is based on Qc.
is calculated, and in the subsequent step 63, the intake stroke fuel injection period Ti is calculated based on Qi.

【0024】次に、ステップ64では図9のマップ4か
ら要求燃料噴射量Q及び機関回転数NEに基づいて圧縮
行程燃料噴射開始時期TScが算出される。そして続く
ステップ65では、図10に示すマップ5を用いて、吸
気行程燃料噴射量Qi及び機関回転数NEに基づく吸気
行程燃料噴射開始時期TSiが算出される。尚、このマ
ップ5からも明らかなように、通常、TSiはNEが増
大するにつれて早められるように設定されているが、吸
気行程噴射では混合気生成に充分時間がとれるため、圧
縮行程燃料噴射量Qiによっては変化しない。
Next, in step 64, the compression stroke fuel injection start timing TSc is calculated from the map 4 in FIG. 9 based on the required fuel injection amount Q and the engine speed NE. In subsequent step 65, the intake stroke fuel injection start timing TSi is calculated based on the intake stroke fuel injection amount Qi and the engine speed NE using the map 5 shown in FIG. As is clear from Map 5, TSi is normally set to advance as NE increases, but since intake stroke injection allows sufficient time for mixture generation, the compression stroke fuel injection amount It does not change depending on Qi.

【0025】以上のようにして吸気・圧縮行程、夫々の
燃料噴射期間及び噴射開始時期が求められたならば、本
ルーチンは終了される。最後にステップ59でNoと判
定された場合、即ちθA>Bとなるような高負荷運転域
の場合、本ルーチンはステップ66以下に進み、これま
での第1燃料噴射弁4からの燃料噴射に加えて第2燃料
噴射弁7からの燃料噴射が開始される。即ちステップ5
2で算出された要求燃料噴射量Qは、第1燃料噴射弁4
による吸気・圧縮行程噴射と、第2燃料噴射弁7による
吸気行程噴射の計3噴射に分割されて噴射される。
[0025] Once the intake and compression strokes, their respective fuel injection periods, and injection start timings have been determined in the manner described above, this routine is terminated. Finally, if the determination in step 59 is No, that is, in the case of a high-load operating range where θA>B, the routine proceeds to step 66 and subsequent steps, and the previous fuel injection from the first fuel injection valve 4 is continued. In addition, fuel injection from the second fuel injection valve 7 is started. i.e. step 5
The required fuel injection amount Q calculated in step 2 is calculated by the first fuel injection valve 4.
The injection is divided into a total of three injections: intake/compression stroke injection by the second fuel injection valve 7 and intake stroke injection by the second fuel injection valve 7.

【0026】ステップ66では引き続き圧縮行程燃料噴
射量QcにQd(図2参照)が格納される。そして、ス
テップ67では第1燃料噴射弁4による吸気行程燃料噴
射量Q1iに、予め設定された負荷B以上の時の一定値
Qaが格納される。又、続くステップ68では第2燃料
噴射弁7による吸気行程燃料噴射量Q2iにQ−(Qd
+Qa)が格納される。即ち、この負荷域(θA>B)
では第1燃料噴射弁4と第2燃料噴射弁7による吸気行
程燃料噴射量Q1i+Q2iと、第1燃料噴射弁4によ
る圧縮行程燃料噴射量Qcとの和がステップ52で算出
された要求燃料噴射量Qになるように設定される。
In step 66, Qd (see FIG. 2) is subsequently stored in the compression stroke fuel injection amount Qc. Then, in step 67, a constant value Qa when the load is equal to or higher than a preset load B is stored as the intake stroke fuel injection amount Q1i by the first fuel injection valve 4. In the subsequent step 68, the intake stroke fuel injection amount Q2i by the second fuel injection valve 7 is changed to Q-(Qd
+Qa) is stored. That is, this load range (θA>B)
Then, the sum of the intake stroke fuel injection amount Q1i+Q2i by the first fuel injection valve 4 and the second fuel injection valve 7 and the compression stroke fuel injection amount Qc by the first fuel injection valve 4 is the required fuel injection amount calculated in step 52. It is set to be Q.

【0027】そして次のステップ69では先のマップ2
(図7)からQc(=Qd)に基づいて圧縮行程燃料噴
射期間Tc(負荷域A,B間と同一)が算出され、続く
ステップ70ではQ1i(=Qa)に基づいて、同様に
図7マップ2を用いて吸気行程燃料噴射期間T1iが算
出される。又、ステップ71では図7マップ2と同じよ
うに、第2燃料噴射弁7に対して設定された燃料噴射量
Q2iと吸気行程燃料噴射期間のマップ6(図11参照
)を用いて噴射期間T2iを算出する。
[0027] In the next step 69, the previous map 2
(FIG. 7), the compression stroke fuel injection period Tc (same as between load ranges A and B) is calculated based on Qc (=Qd), and in the following step 70, based on Q1i (=Qa), The intake stroke fuel injection period T1i is calculated using map 2. Further, in step 71, similarly to map 2 in FIG. 7, the injection period T2i is determined using the fuel injection amount Q2i set for the second fuel injection valve 7 and the map 6 (see FIG. 11) of the intake stroke fuel injection period. Calculate.

【0028】以上のようにして各燃料噴射弁の噴射期間
が決定されたならば、次に本ルーチンはステップ72に
進み、図9のマップ4から要求燃料噴射量Q及び機関回
転数NEに基づいて圧縮行程燃料噴射開始時期TScが
算出される。そして続くステップ73では、図10に示
すマップ5を用いて、吸気行程燃料噴射量Q1i及び機
関回転数NEに基づく第1燃料噴射弁4による吸気行程
燃料噴射開始時期TS1iが算出され、続くステップ7
4では図12に示すような燃料噴射量Q2iと機関回転
数NEに基づく吸気行程燃料噴射開始時期TS2iとの
マップ7を用いて、第2燃料噴射弁7による燃料噴射時
期TS2iを決定する。
Once the injection period of each fuel injection valve has been determined as described above, the routine proceeds to step 72, where the injection period is determined based on the required fuel injection amount Q and engine speed NE from map 4 in FIG. The compression stroke fuel injection start timing TSc is calculated. Then, in the subsequent step 73, the intake stroke fuel injection start timing TS1i by the first fuel injection valve 4 is calculated based on the intake stroke fuel injection amount Q1i and the engine speed NE, using the map 5 shown in FIG. 10, and the following step 7
4, the fuel injection timing TS2i by the second fuel injection valve 7 is determined using a map 7 of the fuel injection amount Q2i and the intake stroke fuel injection start timing TS2i based on the engine speed NE as shown in FIG.

【0029】そして以上のようにして吸気・圧縮行程、
夫々の燃料噴射期間及び噴射開始時期が求められたなら
ば、本ルーチンは終了される。又、このようにして決定
された噴射特性による実際の燃料噴射は、図示しない他
の燃料噴射実行ルーチンによって実行されることになる
が、これら各燃料噴射弁の作動制御は従来のそれと同様
なため説明を省略する。
[0029] As described above, the intake/compression stroke,
Once each fuel injection period and injection start timing are determined, this routine ends. Further, actual fuel injection based on the injection characteristics determined in this way will be executed by another fuel injection execution routine (not shown), but the operation control of each of these fuel injection valves is the same as that of the conventional one. The explanation will be omitted.

【0030】以上、図2に示す噴射パターンに例をとり
、この場合の燃料噴射期間及び燃料噴射開始時期を求め
る制御回路作動例を説明したが、図3や図4に示す噴射
パターンを実行する場合には、当然ながら図5ルーチン
に対し、新たに負荷判定処理、及び各負荷域に対応する
燃料噴射期間、噴射開始時期の演算ルーチンを加えれば
良い。又、本発明は図2〜図4に示す各噴射パターンか
らも明らかなように、高負荷時において、第1及び第2
燃料噴射弁双方から燃料噴射されているため、例えば同
運転域において第1燃料噴射弁による吸気行程噴射だけ
で第2燃料噴射弁による燃料噴射量を賄おうとする場合
と比較して、第1燃料噴射弁の燃料噴射量が少なくて済
み、燃料噴射量の精度を高めることができる。又、これ
に伴って、第1燃料噴射弁や高圧ポンプの小型化が可能
となる。尚、上述した第1燃料噴射弁のみの燃料供給の
場合、吸気行程噴射量が多くなるような負荷運転域では
、吸気行程噴射終了時期と圧縮行程噴射開始時期との間
の時間が短くなり、噴射弁自体にかなり高い応答性を課
すことになり、通常の電磁弁タイプの燃料噴射弁では制
御不可能となる場合がある。
An example of the operation of the control circuit for determining the fuel injection period and fuel injection start timing in this case has been explained using the injection pattern shown in FIG. 2 as an example, but the injection pattern shown in FIGS. 3 and 4 is executed. In this case, it is natural to add a new load determination process and a calculation routine for the fuel injection period and injection start timing corresponding to each load range to the routine shown in FIG. Furthermore, as is clear from the injection patterns shown in FIGS. 2 to 4, the present invention provides the first and second
Since fuel is injected from both fuel injection valves, the amount of fuel injected from the first fuel injection valve is lower than that in the case where, for example, the intake stroke injection from the first fuel injection valve alone covers the fuel injection amount from the second fuel injection valve in the same operating range. The amount of fuel injected by the injection valve is small, and the accuracy of the amount of fuel injected can be improved. Further, along with this, it becomes possible to downsize the first fuel injection valve and the high pressure pump. In addition, in the case of fuel supply from only the first fuel injector as described above, in a load operation range where the intake stroke injection amount is large, the time between the intake stroke injection end time and the compression stroke injection start time becomes short. This imposes a fairly high response on the injection valve itself, which may make it impossible to control with a normal electromagnetic valve type fuel injection valve.

【0031】[0031]

【発明の効果】以上のように本発明によれば、吸気管内
燃料噴射が開始される負荷よりも低負荷側で、第1燃料
噴射弁によって、それまでの圧縮行程のみの噴射に加え
て、吸気行程にも所定量の燃料噴射が開始されるため、
第2燃料噴射弁による吸気管内燃料噴射開始時に吸気管
壁面に燃料が付着するようなことがあっても、燃焼に必
要な燃料は第1燃料噴射弁から確保されているため、急
激な供給燃料減少は回避され、失火・トルク段差・エミ
ションスパイク等の発生は防止できる。
As described above, according to the present invention, at a load lower than the load at which intake pipe fuel injection starts, the first fuel injection valve performs injection only during the compression stroke, and Since a predetermined amount of fuel injection also starts during the intake stroke,
Even if fuel adheres to the wall of the intake pipe when the second fuel injection valve starts injecting fuel into the intake pipe, the fuel necessary for combustion is secured from the first fuel injection valve, so the sudden supply of fuel This will prevent the occurrence of misfires, torque differences, emission spikes, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の内燃機関の一実施例を示す概略的構成
図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an internal combustion engine of the present invention.

【図2】本発明の燃料噴射制御パターンの一例を示す線
図である。
FIG. 2 is a diagram showing an example of a fuel injection control pattern of the present invention.

【図3】図2とは異なる燃料噴射制御パターン例を示す
線図である。
FIG. 3 is a diagram showing an example of a fuel injection control pattern different from that in FIG. 2;

【図4】図3パターンと異なり、極高負荷域では第2燃
料噴射弁のみの燃料噴射をするパターン例を示す線図で
ある。
4 is a diagram showing an example of a pattern in which fuel is injected only from the second fuel injection valve in an extremely high load range, unlike the pattern in FIG. 3; FIG.

【図5】図2燃料噴射制御パターンに対応する制御回路
作動を説明するフローチャート図である。
FIG. 5 is a flowchart illustrating the operation of the control circuit corresponding to the fuel injection control pattern shown in FIG. 2;

【図6】アクセル開度と要求燃料噴射量との関係を示す
図である。
FIG. 6 is a diagram showing the relationship between accelerator opening and required fuel injection amount.

【図7】第1燃料噴射弁の燃料噴射量と燃料噴射期間と
の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the fuel injection amount of the first fuel injection valve and the fuel injection period.

【図8】第1燃料噴射弁の圧縮行程燃料噴射量と圧縮行
程燃料噴射開始時期との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the compression stroke fuel injection amount and the compression stroke fuel injection start timing of the first fuel injection valve.

【図9】要求燃料噴射量と第1燃料噴射弁の圧縮行程燃
料噴射開始時期との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the required fuel injection amount and the compression stroke fuel injection start timing of the first fuel injection valve.

【図10】第1燃料噴射弁の吸気行程燃料噴射量と吸気
行程燃料噴射開始時期との関係を示す図である。
FIG. 10 is a diagram showing the relationship between the intake stroke fuel injection amount and the intake stroke fuel injection start timing of the first fuel injection valve.

【図11】第2燃料噴射弁の燃料噴射量と燃料噴射期間
との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the fuel injection amount of the second fuel injection valve and the fuel injection period.

【図12】第2燃料噴射弁の吸気行程燃料噴射量と吸気
行程燃料噴射開始時期との関係を示す図である。
FIG. 12 is a diagram showing the relationship between the intake stroke fuel injection amount and the intake stroke fuel injection start timing of the second fuel injection valve.

【符号の説明】[Explanation of symbols]

4…第1燃料噴射弁 5…吸気管 7…第2燃料噴射弁 13…制御回路 4...First fuel injection valve 5...Intake pipe 7...Second fuel injection valve 13...Control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  気筒内に直接燃料噴射する第1の燃料
噴射弁と、吸気管に燃料を噴射する第2の燃料噴射弁と
を有し、低負荷時は上記第1の燃料噴射弁により機関の
圧縮行程で燃料噴射して成層燃焼し、高負荷時は上記第
2の燃料噴射弁により燃料噴射して均一燃焼するように
した筒内噴射式内燃機関において、上記第2燃料噴射弁
による燃料噴射が開始される負荷よりも低い所定負荷時
の吸気行程において、第1燃料噴射弁からも燃料噴射開
始させることを特徴とする筒内噴射式内燃機関。
Claim 1: A first fuel injection valve that injects fuel directly into a cylinder, and a second fuel injection valve that injects fuel into an intake pipe, and when the load is low, the first fuel injection valve In a direct injection internal combustion engine, in which fuel is injected during the compression stroke of the engine to perform stratified combustion, and when the load is high, fuel is injected by the second fuel injection valve to achieve uniform combustion. A direct injection internal combustion engine characterized in that fuel injection is started from a first fuel injection valve during an intake stroke at a predetermined load lower than a load at which fuel injection is started.
JP3004835A 1991-01-21 1991-01-21 Cylinder injection type internal combustion engine Pending JPH04237854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004835A JPH04237854A (en) 1991-01-21 1991-01-21 Cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004835A JPH04237854A (en) 1991-01-21 1991-01-21 Cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04237854A true JPH04237854A (en) 1992-08-26

Family

ID=11594752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004835A Pending JPH04237854A (en) 1991-01-21 1991-01-21 Cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04237854A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009062A1 (en) * 1996-08-28 1998-03-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of in-cylinder injection spark ignition internal combustion engine
JPH10169489A (en) * 1996-12-09 1998-06-23 Toyota Motor Corp Fuel injection controller for stratified combustion internal combustion engine
US5878713A (en) * 1995-12-27 1999-03-09 Mitsubushi Denki Kabushiki Kaisha Fuel control system for cylinder injection type internal combustion engine
US5954023A (en) * 1996-12-18 1999-09-21 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling combustion in internal combustion engines
DE19757351C2 (en) * 1997-01-16 2002-01-10 Mitsubishi Electric Corp Fuel injection control method for a direct injection internal combustion engine and system for carrying it out
JP2012163028A (en) * 2011-02-04 2012-08-30 Mitsubishi Motors Corp Fuel injection device of internal combustion engine
JP2014077375A (en) * 2012-10-09 2014-05-01 Mitsubishi Motors Corp Internal combustion engine
WO2014208137A1 (en) 2013-06-28 2014-12-31 三菱自動車工業株式会社 Engine control device
WO2014208136A1 (en) 2013-06-28 2014-12-31 三菱自動車工業株式会社 Engine control device
WO2014208138A1 (en) 2013-06-28 2014-12-31 三菱自動車工業株式会社 Engine control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878713A (en) * 1995-12-27 1999-03-09 Mitsubushi Denki Kabushiki Kaisha Fuel control system for cylinder injection type internal combustion engine
WO1998009062A1 (en) * 1996-08-28 1998-03-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of in-cylinder injection spark ignition internal combustion engine
US5988137A (en) * 1996-08-28 1999-11-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Controller of in-cylinder injection spark ignition internal combustion engine
JPH10169489A (en) * 1996-12-09 1998-06-23 Toyota Motor Corp Fuel injection controller for stratified combustion internal combustion engine
US5954023A (en) * 1996-12-18 1999-09-21 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling combustion in internal combustion engines
DE19757351C2 (en) * 1997-01-16 2002-01-10 Mitsubishi Electric Corp Fuel injection control method for a direct injection internal combustion engine and system for carrying it out
JP2012163028A (en) * 2011-02-04 2012-08-30 Mitsubishi Motors Corp Fuel injection device of internal combustion engine
JP2014077375A (en) * 2012-10-09 2014-05-01 Mitsubishi Motors Corp Internal combustion engine
WO2014208137A1 (en) 2013-06-28 2014-12-31 三菱自動車工業株式会社 Engine control device
WO2014208136A1 (en) 2013-06-28 2014-12-31 三菱自動車工業株式会社 Engine control device
WO2014208138A1 (en) 2013-06-28 2014-12-31 三菱自動車工業株式会社 Engine control device
US9518517B2 (en) 2013-06-28 2016-12-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine control device
US10066569B2 (en) 2013-06-28 2018-09-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine control device that controls amount of fuel injected from port injection valve and cylinder injection valve based on load
US10107179B2 (en) 2013-06-28 2018-10-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine control device

Similar Documents

Publication Publication Date Title
JP2765305B2 (en) Internal combustion engine
JP2917617B2 (en) Internal combustion engine
US5170759A (en) Fuel injection control device for an internal combustion engine
US7198031B2 (en) Control device of internal combustion engine
US20060144365A1 (en) Dual injection type internal combustion engine
US7318412B2 (en) Control device for internal combustion engine
JPH05113146A (en) Internal combustion engine
JP3534634B2 (en) Control device for internal combustion engine
US6145489A (en) Torque controller for internal combustion engine
JP2010196506A (en) Cylinder injection internal combustion engine
US5101785A (en) Control device for an internal combustion engine
JP2002089324A (en) Fuel injection control device of cylinder injection engine
JPH04237854A (en) Cylinder injection type internal combustion engine
JP2007154853A (en) Control device of spark-ignition direct-injection internal combustion engine
JP2001207892A (en) Fuel pressure setting method of direct injection gasoline engine
JPS60230544A (en) Fuel injector for engine
JP4918889B2 (en) Fuel injection control device for internal combustion engine
JP2987925B2 (en) In-cylinder direct injection spark ignition engine
JP3500876B2 (en) Fuel injection device for direct injection spark ignition engine
JP4285224B2 (en) Fuel injection control device for internal combustion engine
JP4046068B2 (en) Fuel injection control device for internal combustion engine
JP2836353B2 (en) In-cylinder internal combustion engine
JP3196674B2 (en) In-cylinder injection spark ignition engine
JPH0238047Y2 (en)
JP2751637B2 (en) Control device for internal combustion engine