JP2012163028A - Fuel injection device of internal combustion engine - Google Patents

Fuel injection device of internal combustion engine Download PDF

Info

Publication number
JP2012163028A
JP2012163028A JP2011023346A JP2011023346A JP2012163028A JP 2012163028 A JP2012163028 A JP 2012163028A JP 2011023346 A JP2011023346 A JP 2011023346A JP 2011023346 A JP2011023346 A JP 2011023346A JP 2012163028 A JP2012163028 A JP 2012163028A
Authority
JP
Japan
Prior art keywords
fuel
injection
fuel injection
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011023346A
Other languages
Japanese (ja)
Other versions
JP5736812B2 (en
Inventor
Takashi Kawabe
敬 川辺
Fumiaki Hiraishi
文昭 平石
Kiyotaka Hosono
清隆 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011023346A priority Critical patent/JP5736812B2/en
Publication of JP2012163028A publication Critical patent/JP2012163028A/en
Application granted granted Critical
Publication of JP5736812B2 publication Critical patent/JP5736812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection device of an internal combustion engine, which prevents the occurrence of defective injection by suppressing the drive change of a first fuel injection valve when the acceleration state from a first engine operational range exceeds the predetermined value.SOLUTION: The fuel injection device includes an in-cylinder direct-injection valve 17, an air intake passage injection valve 18, a fuel injection amount calculator A1, acceleration state detectors A1-A4, and a control unit ECU performing the control so that the total fuel injection amount at which the engine operating range is within the PI only injection range K1 is injected via the air intake passage injection valve, each divided fuel amount of a first fuel injection valve and a second fuel injection valve divided by the predetermined ratio α when the engine operating range is within DI+MPI injection range K2 is obtained, and the fuels of the respective divided fuel amounts are injected via a DI valve 17 and an MPI valve 18, respectively. The control unit performs the control so as to perform the injection via the DI valve 17 and the MPI valve 18 in the DI+MPI injection range K2 after the elapse of the predetermined waiting time tw when the acceleration state from the PI only injection range K1 to the DI+MPI injection range K2 exceeds the predetermined value, and enters the timer zone Et.

Description

本発明は、内燃機関の燃焼室と吸気路とに燃料噴射弁をそれぞれ設けた内燃機関の燃料噴射装置、特に、内燃機関の負荷・回転数域の変化に応じて各燃料噴射弁の駆動状態をそれぞれ切換える内燃機関の燃料噴射装置に関するものである。   The present invention relates to a fuel injection device for an internal combustion engine in which a fuel injection valve is provided in each of a combustion chamber and an intake passage of the internal combustion engine, and in particular, a driving state of each fuel injection valve in accordance with a change in a load / rotation speed range of the internal combustion engine. The present invention relates to a fuel injection device for an internal combustion engine that switches between the two.

内燃機関に採用される燃料噴射装置として、燃焼室内へ燃料を噴射する筒内噴射弁と、吸気通路に燃料を噴射する吸気路噴射弁(ポート噴射弁)と、を適宜噴射駆動させて内燃機関を駆動するようにした筒内及び吸気路へ噴射を行なう燃料噴射装置が知られている。 この筒内噴射弁(DI弁とも記す)と吸気路噴射弁(MPI弁とも記す)の2系統の燃料系をもつ内燃機関の燃料噴射装置では、内燃機関の燃料噴射装置の全負荷・全回転数領域(以後全運転領域と記す)において、筒内噴射弁と吸気路噴射弁を共に噴射駆動させる方式を採るものがある。更に、全運転領域が、MPI弁だけが噴射するMPIオンリー噴射域(噴射モード)と,同時に筒内噴射弁と吸気路噴射弁の両弁を駆動して燃料を噴射するDI+MPI噴射域(噴射モード)とに区分されているものがある。   As a fuel injection device employed in an internal combustion engine, an in-cylinder injection valve that injects fuel into a combustion chamber and an intake passage injection valve (port injection valve) that injects fuel into an intake passage are appropriately driven to be injected. 2. Description of the Related Art There is known a fuel injection device that injects fuel into an in-cylinder and intake passage. In a fuel injection device for an internal combustion engine having two fuel systems, an in-cylinder injection valve (also referred to as DI valve) and an intake passage injection valve (also referred to as MPI valve), the full load and full rotation of the fuel injection device of the internal combustion engine In some areas (hereinafter referred to as the entire operation area), there is a system in which both the in-cylinder injection valve and the intake passage injection valve are driven to inject. Furthermore, the entire operation range includes an MPI only injection region (injection mode) in which only the MPI valve injects, and a DI + MPI injection region (injection mode) in which both the in-cylinder injection valve and the intake passage injection valve are driven simultaneously to inject fuel ).

このような各燃料噴射領域において、筒内噴射弁(直噴弁:DI弁)とポート噴射弁(吸気路噴射弁:MPI)の燃料噴射比率は回転と負荷に応じて設定している。例えば、低回転低負荷域では、DI噴射比率よりMPI噴射比率を大きく設定して少量燃料噴射の安定化を図り、高回転、高負荷域では、DI噴射比率をMPI噴射比率より大きく設定して高負荷運転の容易化、排ガス特性の確保を図っている。
この際、筒内噴射弁と吸気路噴射弁(DI弁とMPI弁)の両噴射モードの変更時には、その変更の判定条件として、DIインジェクタの先端温度やデポジット生成の要件などを考慮して決定している。
In each of these fuel injection regions, the fuel injection ratio between the in-cylinder injection valve (direct injection valve: DI valve) and the port injection valve (intake path injection valve: MPI) is set according to the rotation and load. For example, the MPI injection ratio is set larger than the DI injection ratio in the low rotation and low load range to stabilize the small quantity fuel injection, and the DI injection ratio is set larger than the MPI injection ratio in the high rotation and high load range. It facilitates high-load operation and ensures exhaust gas characteristics.
At this time, when changing both injection modes of the in-cylinder injection valve and the intake passage injection valve (DI valve and MPI valve), it is determined in consideration of the tip temperature of the DI injector, deposit generation requirements, etc. as judgment conditions for the change. is doing.

しかし運転状態、即ち、機関運転域の変更に伴う噴射モードの変更により、噴射比率の変更が頻繁になると、噴射比率の変更過渡時における噴射作動が前後で重なり、A/Fフィードバックが不安定になる懸念がある。
そこで、このような、機関運転域の変更に伴う過渡時の噴射比率の変更の際には、テーリング処理(タイマーゾーン設定)をして、噴射モードの変更を抑制したうえでA/Fフィードバック制御を行なっている。
However, if the injection ratio changes frequently due to changes in the operating state, that is, the injection mode accompanying the change in the engine operating range, the injection operation overlaps before and after the change of the injection ratio, and the A / F feedback becomes unstable. There are concerns.
Therefore, when changing the injection ratio at the time of transition accompanying the change of the engine operating range, tailing processing (timer zone setting) is performed to suppress the change of the injection mode and then A / F feedback control. Is doing.

なお、特許文献1(特開平4−237854号公報)には、低負荷時には圧縮行程で筒内噴射弁が燃料噴射し、高負荷時にはポート噴射弁が燃料を吸気ポートに噴射し、更に、ポート噴射弁での吸気管内噴射が開始される高負荷域よりも所定の低負荷側で、筒内噴射弁によりそれまでの圧縮行程のみの噴射に加えて、吸気行程でも所定量の燃料噴射が追加されるようにして、機関運転域の変更に伴う失火が生じることを防止するという燃料噴射装置が開示される。   In Patent Document 1 (Japanese Patent Application Laid-Open No. 4-237854), the in-cylinder injection valve injects fuel in the compression stroke when the load is low, and the port injection valve injects fuel into the intake port at the high load. A predetermined amount of fuel injection is added in the intake stroke in addition to the compression stroke injection so far by the in-cylinder injection valve on the predetermined low load side from the high load range where the injection in the intake pipe starts at the injection valve Thus, a fuel injection device is disclosed that prevents a misfire caused by a change in the engine operating range.

特開平4−237854号公報JP-A-4-237854

しかし、単に、機関運転域の変更(噴射モードの変更)の場合に、一律にテーリング処理(タイマーゾーン設定)を行うと、運転操作性に違和感が生じ、特に、加速応答性に問題が生じやすい。なお、特許文献1の場合、機関運転域の変更に伴う失火を防止するが、テーリング処理に言及していない。
更に、筒内噴射弁と吸気路噴射弁(DI弁とMPI弁)からなる2系統の燃料系をもつ燃料噴射装置が用いる回転と負荷とで設定される運転領域において、予め設定されたDI弁とMPI弁の燃料噴射比率を運転領域が切り換わる毎に、テーリング処理をして変更するとした場合において、空気量が急変する加速運転の際には、テーリング中のA/Fの不整合が発生し易いし、ノッキングが発生する傾向にあり、改善が望まれている。
However, if the tailing process (timer zone setting) is performed uniformly in the case of simply changing the engine operating range (changing the injection mode), a sense of incongruity occurs in the driving operability, and in particular, a problem is likely to occur in the acceleration response. . In addition, in the case of patent document 1, although the misfire accompanying the change of an engine operating range is prevented, the tailing process is not mentioned.
Further, a preset DI valve is set in an operation region set by rotation and load used by a fuel injection device having two fuel systems including an in-cylinder injection valve and an intake passage injection valve (DI valve and MPI valve). When the fuel injection ratio of the MPI valve is changed by tailing each time the operating range is switched, an A / F mismatch during tailing occurs during acceleration operation in which the air amount changes suddenly. It is easy to do, and there is a tendency for knocking to occur, and improvement is desired.

本発明は以上のような課題に基づきなされたもので、目的とするところは、第1の機関運転域よりの加速の状態が所定値を上回る場合に加速の程度が頻繁に変動したとしても、第1の燃料噴射弁の駆動切換え頻度を抑え、噴射作動不良の発生を防止できる内燃機関の燃料噴射装置を提供することにある。   The present invention has been made based on the problems as described above, and the object of the present invention is that even if the degree of acceleration frequently fluctuates when the state of acceleration from the first engine operating range exceeds a predetermined value, An object of the present invention is to provide a fuel injection device for an internal combustion engine that can suppress the frequency of drive switching of the first fuel injection valve and prevent the occurrence of defective injection operation.

本願請求項1の発明は、内燃機関の燃焼室に燃料を噴射する第1の燃料噴射弁と、内燃機関の吸気通路に燃料を噴射する第2の燃料噴射弁と、内燃機関の機関回転数と負荷とに応じた燃料噴射量を算出する燃料噴射量演算手段と、機関の加速情報を出力する加速状態検出手段と、前記機関運転域が前記機関回転数と負荷とに応じた第1の機関運転域にあると前記燃料噴射量の燃料全てを前記第2の燃料噴射弁で噴射し、第1の機関運転域より高回転高負荷側の第2の機関運転域にあると前記燃料噴射量を所定比率で分割して前記第1の燃料噴射弁と前記第2の燃料噴射弁の各分割燃料量を求め、該各分割燃料量の燃料を第1、第2の燃料噴射弁で噴射するよう制御する制御手段と、を具備し、前記制御手段は、第1の機関運転域より第2の機関運転域に向かう加速の状態が所定値を上回る場合であって該第2の運転域との間に設けたタイマーゾーンに入ると、所定待ち時間の経過を待ってから、第2の機関運転域での第1、第2の燃料噴射弁による噴射を行うよう制御する、ことを特徴とする。   The invention of claim 1 of the present application includes a first fuel injection valve for injecting fuel into a combustion chamber of an internal combustion engine, a second fuel injection valve for injecting fuel into an intake passage of the internal combustion engine, and an engine speed of the internal combustion engine. And a fuel injection amount calculating means for calculating a fuel injection amount according to the load, an acceleration state detecting means for outputting engine acceleration information, and a first operating range corresponding to the engine speed and the load. When in the engine operating range, all of the fuel injection amount of fuel is injected by the second fuel injection valve, and when in the second engine operating range on the high rotation high load side from the first engine operating range, the fuel injection is performed. The amount is divided at a predetermined ratio to obtain the divided fuel amounts of the first fuel injection valve and the second fuel injection valve, and the fuel of each divided fuel amount is injected by the first and second fuel injection valves. And a control means for controlling the second engine from the first engine operating range. When the acceleration state toward the operating region exceeds a predetermined value and enters a timer zone provided between the second operating region, the second engine operating region waits for the elapse of a predetermined waiting time. The first and second fuel injection valves are controlled so as to perform injection.

本願請求項2の発明は、請求項1記載の内燃機関の燃料噴射装置において、前記制御手段は、機関運転時における加速程度の段階を大、中、小区分した場合において、前記内燃機関の加速状態が中程度の段階にあると、前記加速の状態が所定値を上回る場合と見做す、ことを特徴とする。   According to a second aspect of the present invention, in the fuel injection device for an internal combustion engine according to the first aspect, the control means accelerates the internal combustion engine when the level of acceleration during engine operation is divided into large, medium, and small sections. If the state is in an intermediate stage, it is considered that the acceleration state exceeds a predetermined value.

本願請求項3の発明は、請求項1又は2記載の内燃機関の燃料噴射装置において、前記制御手段は前記内燃機関の加速状態が所定値を上回ると、所定の加速時噴射比率で第1、第2の燃料噴射弁を噴射駆動する、ことを特徴とする。   According to a third aspect of the present invention, in the fuel injection device for an internal combustion engine according to the first or second aspect, when the acceleration state of the internal combustion engine exceeds a predetermined value, the control means has a first acceleration injection ratio at a predetermined acceleration ratio. The second fuel injection valve is driven for injection.

本願請求項4の発明は、請求項1記載の内燃機関の燃料噴射装置において、前記第2の機関運転域より第1の機関運転域に向かう減速時には、第2の燃料噴射弁のみを噴射駆動する、ことを特徴とする。   According to a fourth aspect of the present invention, in the fuel injection device for an internal combustion engine according to the first aspect, at the time of deceleration from the second engine operating region toward the first engine operating region, only the second fuel injection valve is driven to inject. It is characterized by.

本願請求項5の発明は、請求項1乃至4のいずれか一つに記載の内燃機関の燃料噴射装置において、前記加速情報は前記内燃機関の吸入空気量、アクセル開度、スロットル開度の少なくとも一つ以上により設定される、ことを特徴とする。   According to a fifth aspect of the present invention, in the fuel injection device for an internal combustion engine according to any one of the first to fourth aspects, the acceleration information includes at least an intake air amount, an accelerator opening degree, and a throttle opening degree of the internal combustion engine. It is set by one or more.

本願請求項6の発明は、請求項1、2又は3記載の内燃機関の燃料噴射装置において、
前記燃料噴射量の燃料を分割する前記所定比率は、前記第1の燃料噴射弁の分割噴射量が前記第2の燃料噴射弁の分割噴射量より多くなるように設定することを特徴とする。
The invention of claim 6 of the present application is the fuel injection device for an internal combustion engine according to claim 1, 2 or 3,
The predetermined ratio for dividing the fuel of the fuel injection amount is set so that the divided injection amount of the first fuel injection valve is larger than the divided injection amount of the second fuel injection valve.

請求項1の発明は、第1の機関運転域よりの加速状態が所定値を上回る場合に、タイマーゾーンに入ると、所定待ち時間の経過後に第2の機関運転域での第1、第2の燃料噴射弁による噴射処理を行うので、第1の機関運転域と第2の機関運転域との間で加速の程度が頻繁に変動したとしても、所定待ち時間の経過を待つことで第1の燃料噴射弁の駆動切換え頻度を抑えることが出来、第1の燃料噴射弁の噴口回りにデポジットが生じることによる噴射作動不良の発生を防止できる。   According to the first aspect of the present invention, when the acceleration state from the first engine operating range exceeds a predetermined value, when the timer zone is entered, the first and second in the second engine operating range after the elapse of the predetermined waiting time. Since the fuel injection valve performs the injection process, even if the degree of acceleration frequently fluctuates between the first engine operating range and the second engine operating range, the first waiting time elapses. Therefore, it is possible to suppress the drive switching frequency of the fuel injection valve, and it is possible to prevent the occurrence of defective injection operation due to the deposit generated around the injection port of the first fuel injection valve.

請求項2の発明は、加速状態が中程度であって緩やかな加速運転域において、タイマーゾーンに入ると、所定待ち時間の経過後に第1、第2の燃料噴射弁を噴射駆動するので、緩やかな加速運転域で安定したテーリングを行え、第1の燃料噴射弁の駆動切換え頻度を抑えることが出来、第1の燃料噴射弁噴口回りにデポジットが堆積することを防止でき、噴射作動不良の発生を確実に防止できる。   According to the second aspect of the present invention, the first and second fuel injection valves are driven for injection after a predetermined waiting time has elapsed when the timer zone is entered in a moderate acceleration operation range where the acceleration state is moderate. Stable tailing can be performed in a wide acceleration operating range, the drive switching frequency of the first fuel injection valve can be suppressed, deposits can be prevented from being accumulated around the first fuel injection valve nozzle, and injection operation failure occurs. Can be reliably prevented.

請求項3の発明は、内燃機関の加速の状態が所定値を上回る場合に、所定の加速時噴射比率で第1、第2の燃料噴射弁を噴射駆動するので、加速応答性が改善される。   In the third aspect of the invention, when the acceleration state of the internal combustion engine exceeds a predetermined value, the first and second fuel injection valves are driven for injection at a predetermined acceleration injection ratio, so that the acceleration response is improved. .

請求項4の発明は、内燃機関の減速時には第2の燃料噴射弁のみを噴射駆動し、減速時に第1の燃料噴射弁にデポジットが付着することを抑制することができる。   According to the fourth aspect of the present invention, only the second fuel injection valve is driven for injection when the internal combustion engine is decelerated, and deposits can be prevented from adhering to the first fuel injection valve during deceleration.

請求項5の発明は、加速情報が所定置を上回る運転域を、吸入空気量、アクセル開度、スロットル開度の少なくとも一つ以上が所定値を上回る場合に容易に判定することができる。   The invention of claim 5 can easily determine the operating range where the acceleration information exceeds a predetermined position when at least one of the intake air amount, the accelerator opening, and the throttle opening exceeds a predetermined value.

請求項6の発明は、燃焼室に燃料を噴射する第1の燃料噴射弁の分割噴射量が多くなるので、加速応答性が改善され、しかも、オーバーラップ時の排気路への未燃燃料の放出を抑制でき無駄な燃料噴射を防止できる。   In the invention of claim 6, since the divided injection amount of the first fuel injection valve that injects the fuel into the combustion chamber is increased, the acceleration response is improved, and the unburned fuel to the exhaust passage at the time of overlap is improved. Release can be suppressed and useless fuel injection can be prevented.

本発明の一実施形態としての内燃機関の燃料噴射装置の全体構成図である。1 is an overall configuration diagram of a fuel injection device for an internal combustion engine as an embodiment of the present invention. 図1の内燃機関の燃料噴射装置の制御機能部のブロック図である。It is a block diagram of the control function part of the fuel-injection apparatus of the internal combustion engine of FIG. 図1の内燃機関の燃料噴射装置で用いる運転域設定マップm1の特性説明図である。FIG. 3 is a characteristic explanatory diagram of an operation range setting map m1 used in the fuel injection device for the internal combustion engine of FIG. 1. 図1の内燃機関の燃料噴射装置で用いる運転域設定マップm2の特性説明図である。FIG. 3 is a characteristic explanatory diagram of an operation range setting map m2 used in the fuel injection device for the internal combustion engine of FIG. 1. 図1の内燃機関の燃料噴射装置で用いる4気筒の噴射時期及び点火時期の説明図で、(a)はクランキング時のモードを、(b)は暖気or低負荷域のモードを示す。4A and 4B are explanatory diagrams of the injection timing and ignition timing of the four cylinders used in the fuel injection device of the internal combustion engine of FIG. 1, wherein (a) shows a mode during cranking, and (b) shows a mode of a warm air or low load region. 図1の内燃機関の燃料噴射装置で用いる4気筒の噴射時期及び点火時期の説明図で、(a)は低負荷で加速後2燃焼サイクル内のモードを、(b)は中、高負荷域のモードを示す。4A and 4B are explanatory diagrams of the injection timing and ignition timing of the four cylinders used in the fuel injection device of the internal combustion engine of FIG. 1, wherein (a) shows a mode within two combustion cycles after acceleration at low load, and (b) shows a middle and high load range. Indicates the mode. 図1の内燃機関の燃料噴射装置の加速時の運転域の経時的な変動説明図である。FIG. 2 is an explanatory diagram of a change over time of an operating region during acceleration of the fuel injection device for the internal combustion engine of FIG. 図1の内燃機関の燃料噴射装置の駆動時の燃料分割比率の経時的な変化説明図で、(a)はテーリング時を、(b)は加速時を示す。FIGS. 2A and 2B are explanatory views of changes over time in the fuel split ratio during driving of the fuel injection device of the internal combustion engine of FIG. 1, in which (a) shows tailing and (b) shows acceleration. 図1の内燃機関の燃料噴射装置が行う制御処理ルーチンのフローチャートである。It is a flowchart of the control processing routine which the fuel-injection apparatus of the internal combustion engine of FIG. 1 performs.

以下、本発明の第1の実施の形態である内燃機関の燃料噴射装置について説明する。
図1は、本発明の内燃機関の燃料噴射装置を適用した内燃機関(以後エンジンと記す)1の全体構成図である。このエンジン1はエンジン本体2の上部のシリンダヘッド3の左右側壁面に吸気マニホールド4及び排気マニホールド5が一体結合され、吸気マニホールド4には吸気路Riが、排気マニホールド5には排気路Reが接続される。
図1に示すように、エンジン1は4気筒であり、各気筒は主要部をなす燃焼室6を備え、各燃焼室6の吸気路Ri側はそれぞれ対応する吸気マニホールド4を介して共通のサージタンク7に接続されている。
Hereinafter, a fuel injection device for an internal combustion engine according to a first embodiment of the present invention will be described.
FIG. 1 is an overall configuration diagram of an internal combustion engine (hereinafter referred to as an engine) 1 to which a fuel injection device for an internal combustion engine of the present invention is applied. In this engine 1, an intake manifold 4 and an exhaust manifold 5 are integrally coupled to the left and right side wall surfaces of the cylinder head 3 at the top of the engine body 2, and an intake passage Ri is connected to the intake manifold 4 and an exhaust passage Re is connected to the exhaust manifold 5. Is done.
As shown in FIG. 1, the engine 1 has four cylinders, and each cylinder has a combustion chamber 6 that forms a main part, and the intake passage Ri side of each combustion chamber 6 has a common surge via a corresponding intake manifold 4. It is connected to the tank 7.

サージタンク7は、吸気ダクト8を介してエアクリーナ9に接続され、エアクリーナ9には、吸入吸気量Qa情報を得るエアフローメータ11が取り付けられる。吸気ダクト8には電動モータ121によって駆動されるスロットルバルブ12が配置されている。このスロットルバルブ12は、アクセルペダル13とは独立してエンジン制御装置(以後単にECUと記す)14の出力信号に基づいてその開度が制御される。さらに、スロットルバルブ12にはスロットル開度センサ28が配備され、同センサのスロットル開度θs情報がECU14に出力される。なお、図1において、エンジン本体2には同本体内の水温Tw情報を検出する水温センサ43が配備され、その検出信号はECU14に出力されている。   The surge tank 7 is connected to an air cleaner 9 via an intake duct 8, and an air flow meter 11 for obtaining intake air intake amount Qa information is attached to the air cleaner 9. A throttle valve 12 driven by an electric motor 121 is disposed in the intake duct 8. The throttle valve 12 has its opening degree controlled independently of the accelerator pedal 13 based on an output signal of an engine control device (hereinafter simply referred to as ECU) 14. Further, the throttle valve 12 is provided with a throttle opening sensor 28, and throttle opening θs information of the sensor is output to the ECU 14. In FIG. 1, the engine body 2 is provided with a water temperature sensor 43 that detects water temperature Tw information in the body, and the detection signal is output to the ECU 14.

ECU14は、デジタルコンピュータから構成され、双方向性バス141を介して相互に接続されたROM142、RAM143、CPU144、入力ポート145および出力ポート146を備え、後述する制御機能を備える。
なお、アクセルペダル13の踏込み量に比例した出力を発生するアクセル開度センサ41、エンジン回転数Neを表わす出力パルスを発生する回転数センサ42の各検出信号は入力ポート145に入力される。ここで、ECU14のROM142には、上述のアクセル開度センサ41および回転数センサ42により得られる機関負荷率および機関回転数に基づき、運転状態に対応させて設定されている燃料噴射量の値Qfや機関冷却水温Twに応じた補正値などが予めマップ化されて記憶されている。
The ECU 14 is composed of a digital computer, and includes a ROM 142, a RAM 143, a CPU 144, an input port 145, and an output port 146 connected to each other via a bidirectional bus 141, and has a control function described later.
The detection signals of the accelerator opening sensor 41 that generates an output proportional to the depression amount of the accelerator pedal 13 and the rotation speed sensor 42 that generates an output pulse representing the engine rotation speed Ne are input to the input port 145. Here, in the ROM 142 of the ECU 14, the value Qf of the fuel injection amount set corresponding to the operating state based on the engine load factor and the engine speed obtained by the accelerator opening sensor 41 and the engine speed sensor 42 described above. Further, a correction value corresponding to the engine coolant temperature Tw is mapped and stored in advance.

図1に示すように、エンジン本体2の上部のシリンダヘッド3には機関駆動に連動する動弁系(一部のみ図示する)31の吸気カムシャフト32及び排気カムシャフト33が配備される。両シャフト32、33が駆動されることで不図示の吸排バルブが開閉駆動され、これにより燃焼室6に対して吸気路Ri側の吸気ポートip及び排気路Re側の排気ポートepをそれぞれ開閉作動させ、吸気及び排気作動を行う。
エンジン1の各燃焼室6から延びる排気路Re側は排気マニホールド5にそれぞれ連結され、この排気マニホールド5の合流部501の下流は排気管16を介して三元触媒15、マフラー161が順次接続されている。
図1に示すように、各気筒の燃焼室6には、燃焼室6に燃料を噴射する第1の燃料噴射弁である筒内噴射弁(DI噴射弁)17が設けられ、吸気マニホールド4に連通する吸気ポートip(吸気路Ri側)に燃料を噴射する第2の燃料噴射弁である吸気路噴射弁(MPI噴射弁)18が設けられ、全気筒が同様に構成される。
As shown in FIG. 1, an intake camshaft 32 and an exhaust camshaft 33 of a valve train system (only a part of which is shown) 31 interlocked with engine driving are arranged on the cylinder head 3 at the upper part of the engine body 2. When the shafts 32 and 33 are driven, an intake / exhaust valve (not shown) is driven to open and close, thereby opening and closing the intake port ip on the intake passage Ri side and the exhaust port ep on the exhaust passage Re side with respect to the combustion chamber 6. Intake and exhaust operations are performed.
The exhaust passage Re side extending from each combustion chamber 6 of the engine 1 is connected to the exhaust manifold 5, and the three-way catalyst 15 and the muffler 161 are sequentially connected to the downstream of the merging portion 501 of the exhaust manifold 5 through the exhaust pipe 16. ing.
As shown in FIG. 1, a cylinder injection valve (DI injection valve) 17 that is a first fuel injection valve for injecting fuel into the combustion chamber 6 is provided in the combustion chamber 6 of each cylinder. An intake passage injection valve (MPI injection valve) 18 that is a second fuel injection valve for injecting fuel is provided in the intake port ip (intake passage Ri side) in communication, and all cylinders are similarly configured.

各噴射弁17、18はECU14の燃料制御信号を高圧、低圧駆動回路(インジェクタドライバ)37、38を介して受けて、燃料供給源から供給された燃料をその噴射量を制御して燃焼室6、吸気ポートipにそれぞれ噴射する。なお、このような燃料供給系が筒内及び吸気路へ噴射を行なう燃料噴射装置の要部を構成する。
ここで、燃焼室6に燃料を噴射する第1の燃料噴射弁である筒内噴射弁17は、共通の第1燃料分配管(コモンレール)19に接続されており、この第1燃料分配管19は、機関駆動式の高圧燃料ポンプ21に接続されている。
燃料供給源側の高圧燃料ポンプ21の吐出側は燃圧調整手段である電磁スピル弁22を介して吸入側に戻されており、この電磁スピル弁22の開度が小さいときほど、高圧燃料ポンプ21から第1燃料分配管19に供給される燃料量が増大され、全開にされると燃料供給が停止され、同弁はECU14からの燃圧信号を受けて所定燃圧の燃料を筒内噴射弁17に供給する。
Each of the injection valves 17 and 18 receives a fuel control signal from the ECU 14 via high and low pressure drive circuits (injector drivers) 37 and 38, and controls the injection amount of the fuel supplied from the fuel supply source to control the combustion chamber 6. , And injected into the intake port ip. Such a fuel supply system constitutes a main part of a fuel injection device that injects fuel into the cylinder and into the intake passage.
Here, the in-cylinder injection valve 17, which is a first fuel injection valve for injecting fuel into the combustion chamber 6, is connected to a common first fuel distribution pipe (common rail) 19, and this first fuel distribution pipe 19. Is connected to an engine-driven high-pressure fuel pump 21.
The discharge side of the high-pressure fuel pump 21 on the fuel supply side is returned to the suction side via an electromagnetic spill valve 22 that is a fuel pressure adjusting means. The smaller the opening of the electromagnetic spill valve 22, the higher the pressure of the high-pressure fuel pump 21. The amount of fuel supplied to the first fuel distribution pipe 19 is increased and the fuel supply is stopped when the first fuel distribution pipe 19 is fully opened. The valve receives a fuel pressure signal from the ECU 14 and supplies fuel of a predetermined fuel pressure to the in-cylinder injection valve 17. Supply.

一方、吸気ポートipに燃料を噴射する第2の燃料噴射弁である吸気路噴射弁18は、共通する低圧側の第2燃料分配管(コモンレール)23に接続されており、第2燃料分配管23および高圧燃料ポンプ21は共通の燃料圧レギュレータ24を介して、低圧燃料ポンプ25に接続されている。さらに、燃料供給源側である低圧燃料ポンプ25は燃料フィルタ26を介して燃料タンク27に接続されている。燃料圧レギュレータ24は低圧燃料ポンプ25から吐出された燃料の燃料圧が予め定められた設定燃料圧よりも高くなると、燃料の一部を燃料タンク27に戻すように構成されており、したがって吸気路噴射弁18に供給されている燃料圧および高圧燃料ポンプ21に供給されている燃料圧が設定燃料圧よりも高くなるのを阻止している。   On the other hand, an intake passage injection valve 18, which is a second fuel injection valve for injecting fuel into the intake port ip, is connected to a common low-pressure side second fuel distribution pipe (common rail) 23, and the second fuel distribution pipe. 23 and the high-pressure fuel pump 21 are connected to a low-pressure fuel pump 25 via a common fuel pressure regulator 24. Further, the low pressure fuel pump 25 on the fuel supply side is connected to a fuel tank 27 via a fuel filter 26. The fuel pressure regulator 24 is configured to return a part of the fuel to the fuel tank 27 when the fuel pressure of the fuel discharged from the low pressure fuel pump 25 becomes higher than a predetermined set fuel pressure. The fuel pressure supplied to the injection valve 18 and the fuel pressure supplied to the high-pressure fuel pump 21 are prevented from becoming higher than the set fuel pressure.

図1に示すように、第1燃料分配管(コモンレール)19には管内の燃料圧に比例した出力電圧を発生する燃料圧センサ43が取り付けられ、この燃料圧センサ43の出力電圧は、入力ポート145に入力される。
図1に示すように、エンジン本体2内に配備される4つの燃焼室6には筒内噴射弁17のほかに点火プラグ29が取り付けられる。
点火プラグ29には高電圧を出力する点火ユニット31が接続されている。この点火ユニット31は不図示のタイミング制御回路と高圧電源回路と点火コイルとで構成され、ECU14の点火信号Tspに応じて点火コイルに高電圧を発生し、所定点火時期に点火処理を行う。
As shown in FIG. 1, a fuel pressure sensor 43 that generates an output voltage proportional to the fuel pressure in the pipe is attached to the first fuel distribution pipe (common rail) 19, and the output voltage of the fuel pressure sensor 43 is 145 is input.
As shown in FIG. 1, in addition to the in-cylinder injection valve 17, a spark plug 29 is attached to the four combustion chambers 6 provided in the engine body 2.
An ignition unit 31 that outputs a high voltage is connected to the spark plug 29. The ignition unit 31 includes a timing control circuit (not shown), a high voltage power supply circuit, and an ignition coil. The ignition unit 31 generates a high voltage in the ignition coil in response to an ignition signal Tsp from the ECU 14 and performs an ignition process at a predetermined ignition timing.

図1に示す排気路Reの上流側に位置する排気マニホールド5には、排気ガス中の酸素濃度に比例した出力電圧を発生する空燃比センサ(以下、A/Fセンサとも記す)44が取付けられ、このA/Fセンサ44の検出信号は入力ポート145に入力される。なお、A/Fセンサ44は空燃比に比例した出力電圧を発生するリニア空燃比センサであるが、これに代えて、空燃比が理論空燃比に対してリッチであるかリーンであるかを三元触媒15の下流側でオン−オフ情報として検出するO2センサ45を代用してもよい。   An air-fuel ratio sensor (hereinafter also referred to as an A / F sensor) 44 that generates an output voltage proportional to the oxygen concentration in the exhaust gas is attached to the exhaust manifold 5 located upstream of the exhaust passage Re shown in FIG. The detection signal of the A / F sensor 44 is input to the input port 145. The A / F sensor 44 is a linear air-fuel ratio sensor that generates an output voltage proportional to the air-fuel ratio, but instead of this, it is determined whether the air-fuel ratio is rich or lean with respect to the stoichiometric air-fuel ratio. An O2 sensor 45 that detects on / off information downstream of the original catalyst 15 may be used instead.

図1に示すように、三元触媒15は理論空燃比(ストイキオ)近傍において排気中のCO、HCの酸化とNOxの還元を行なって排気を浄化することができる。この三元触媒15の不図示の担持体に担持された触媒(プラチナ、ロジウム、パラジウム等)は、ある程度の温度(高温)にならないと、活性化せず、浄化機能が作用しない。そこで、エンジン1の燃料噴射装置では、エンジン1の冷態始動時には、三元触媒15の早期活性化を図るように、後述の暖気増量運転を実施している。   As shown in FIG. 1, the three-way catalyst 15 can purify the exhaust gas by oxidizing CO and HC in the exhaust gas and reducing NOx in the vicinity of the stoichiometric air-fuel ratio (stoichio). A catalyst (platinum, rhodium, palladium, etc.) carried on a carrier (not shown) of the three-way catalyst 15 is not activated and does not have a purification function unless it reaches a certain temperature (high temperature). Therefore, in the fuel injection device of the engine 1, when the engine 1 is cold-started, a warm-air increasing operation described later is performed so as to activate the three-way catalyst 15 at an early stage.

なお、三元触媒15が活性化したか否かは、三元触媒15の排気下流側で、排気中の酸素濃度を検知して、判断することができる。これは、三元触媒15の下流側に設けられる酸素センサ45を用い、これが三元触媒15の活性化を示す領域の出力を発した際に、出口側排気温度の上昇(酸化反応)が生じたことによるものとして判断している。また、エンジン冷却水の水温もしくはエンジンオイルの油温等を検知して三元触媒の温度を推定し、その結果に基づいて三元触媒15の活性化を判断することができる。   Whether or not the three-way catalyst 15 is activated can be determined by detecting the oxygen concentration in the exhaust on the exhaust downstream side of the three-way catalyst 15. This is because an oxygen sensor 45 provided on the downstream side of the three-way catalyst 15 uses an output of a region indicating activation of the three-way catalyst 15, and an increase in the outlet side exhaust temperature (oxidation reaction) occurs. It is judged that this is due. Further, it is possible to estimate the temperature of the three-way catalyst by detecting the water temperature of the engine cooling water or the oil temperature of the engine oil, and determine the activation of the three-way catalyst 15 based on the result.

次に、ECU14の制御機能を説明する。図2に示すように、ECU14は、運転情報に応じて設定された噴射燃料量Qfの燃料を筒内噴射弁(第1の燃料噴射弁)17と吸気路噴射弁(第2の燃料噴射弁)18とが所定比率αで分割し、各分割噴射量Qf1,Qf2の燃料噴射をそれぞれが行うよう制御する燃料噴射制御手段A1と、点火順序(図5(b)参照)が1−3−4−2の各気筒の点火プラグ21の点火時期Tspを制御する点火時期制御手段A2と、エンジン回転数Neを制御するエンジン回転数制御手段A3としての機能を備える。   Next, the control function of the ECU 14 will be described. As shown in FIG. 2, the ECU 14 uses the in-cylinder injection valve (first fuel injection valve) 17 and the intake passage injection valve (second fuel injection valve) to inject the fuel of the injected fuel amount Qf set according to the operation information. ) 18 is divided by a predetermined ratio α, and the fuel injection control means A1 that controls the fuel injection of each of the divided injection amounts Qf1 and Qf2 and the ignition sequence (see FIG. 5B) are 1-3. Functions of ignition timing control means A2 for controlling the ignition timing Tsp of the ignition plug 21 of each cylinder 4-2 and engine speed control means A3 for controlling the engine speed Ne are provided.

ここで燃料噴射制御手段A1は、図3に示す運転域マップm1を予め設定する。この運転域マップm1では、エンジン回転数(機関回転数)Neと負荷(アクセルペダル開度)θaとに応じた機関運転域が所定の負荷θa1・回転数Ne1以下の低出力側であって、アイドル運転域(ID域)を含む低負荷域EL、この低負荷域ELより所定量大きい負荷θa2・回転数域Ne2にある中出力側の中負荷域EMと、この中負荷域EMより大きい中出力側の高負荷域EHとに分割している。   Here, the fuel injection control means A1 presets an operation range map m1 shown in FIG. In this operating range map m1, the engine operating range corresponding to the engine speed (engine speed) Ne and the load (accelerator pedal opening) θa is the low output side below a predetermined load θa1 and the rotational speed Ne1, A low load range EL including an idle operation range (ID range), a medium output side medium load range EM in a load θa2 and a rotational speed range Ne2 that is larger by a predetermined amount than the low load range EL, and a medium larger than the medium load range EM This is divided into a high load region EH on the output side.

その上で、アイドル運転域(ID域)を含む低負荷域ELを吸気路噴射弁18のみで噴射するMPIオンリー噴射域K1と設定する。更に、MPIオンリー噴射域K1を超えた高出力側の中、高負荷・回転数域EM,EHを筒内噴射弁17と吸気路噴射弁18が共に噴射するDI+MPI噴射域K2と設定する。ここでは、低負荷域ELと中、高負荷・回転数域EM,EHとを設定負荷ラインL1により区分けする。ここでは、DI+MPI噴射域を比較的大きく設定しており、中、高負荷・回転数域EM,EHでの加速特性を優先する運転域を拡大している。   After that, the low load range EL including the idling operation range (ID range) is set as the MPI only injection range K1 in which injection is performed only by the intake passage injection valve 18. Further, on the high output side exceeding the MPI-only injection range K1, the high load / rotational speed range EM, EH is set as the DI + MPI injection range K2 in which both the in-cylinder injection valve 17 and the intake passage injection valve 18 inject. Here, the low load region EL and the middle, high load / rotational speed regions EM, EH are divided by the set load line L1. Here, the DI + MPI injection region is set to be relatively large, and the operation region in which priority is given to the acceleration characteristics in the medium and high load / rotational speed regions EM, EH is expanded.

更に、MPIオンリー噴射域K1とDI+MPI噴射域K2の間、即ち設定負荷ラインL1と重なる位置には、所定幅で後述のテーリング処理域Etが設定される。
図3のような運転域マップm1を備えた燃料噴射制御手段A1は、低負荷域ELであるMPIオンリー噴射域K1の噴射制御を行う低負荷制御部(MPIオンリー噴射制御部とも記す)A1−1と、中、高負荷回転数域EM,EHであるDI+MPI噴射域K2の噴射制御を行う中、高負荷制御部(DI+MPI噴射制御部とも記す)A1−2と、冷態始動時にID域において、暖気促進のため、所定の暖機時燃料量の燃料噴射を吸気路噴射弁18が行うよう制御する始動制御部A1−3と、低負荷域ELであるMPIオンリー噴射域内で加速値(δθan=θan−θan−1)を大、中、小の加速判定値δθaH,δθaM,δθaLにより区分けすると共に、現加速値δθanに応じて加速増量噴射制御を行う加速制御部A1−4とを備える。
Further, a tailing processing area Et, which will be described later, is set with a predetermined width between the MPI only injection area K1 and the DI + MPI injection area K2, that is, at a position overlapping the set load line L1.
The fuel injection control means A1 having the operation range map m1 as shown in FIG. 3 is a low load control unit (also referred to as an MPI only injection control unit) A1- that performs injection control of the MPI only injection range K1, which is the low load range EL. 1, middle, high load rotation speed range EM, during the injection control of DI + MPI injection range K2 which is EH, high load control unit (also referred to as DI + MPI injection control unit) A1-2, in the ID range at cold start In order to promote warm-up, a start control unit A1-3 that controls the intake passage injection valve 18 to perform fuel injection of a predetermined warm-up fuel amount, and an acceleration value (δθan) within the MPI-only injection region that is the low load region EL = Θan−θan−1) is divided into large, medium, and small acceleration determination values δθaH, δθaM, and δθaL, and an acceleration control unit A1-4 that performs acceleration increase injection control according to the current acceleration value δθan.

ここで、低負荷制御部A1−1は、低負荷域ELであるMPIオンリー域K1において、エンジン回転数Neとアクセルペダル踏込量θaに応じた燃料噴射量Qfを所定の定常燃料量演算マップ(不図示)より求める。更に、この燃料噴射量Qfの燃料を各気筒の吸気路噴射弁(MPI弁)18のみで噴射するMPIオンリー噴射制御(図5(b)参照)を実行し、エンジン1の低負荷域における回転安定化を図る。   Here, in the MPI only region K1, which is the low load region EL, the low load control unit A1-1 determines the fuel injection amount Qf corresponding to the engine speed Ne and the accelerator pedal depression amount θa in a predetermined steady fuel amount calculation map ( Obtained from (not shown). Further, MPI-only injection control (see FIG. 5B) in which fuel of this fuel injection amount Qf is injected only by the intake passage injection valve (MPI valve) 18 of each cylinder is executed, and the engine 1 rotates in a low load region. Stabilize.

中、高負荷制御部(DI+MPI噴射制御部)A1−2は、中、高負荷回転数域EM,EHからなるDI+MPI噴射域K2において、エンジン回転数Neとアクセルペダル踏込量θaに応じた燃料噴射量Qfを所定の定常燃料量演算マップ(不図示)より求める。更に、その燃料噴射量Qfの燃料を筒内噴射弁17と吸気路噴射弁18が共に噴射するDI+MPI噴射制御(図6(b)参照)により噴射する。この際、予め設定した分配比率α、例えば、筒内噴射弁17の噴射量Qf1が吸気路噴射弁18の噴射量Qf2に対し多くなるよう、例えば、6(α):4(1−α)の比率となるように設定して、中、高負荷回転数域EM,EHであるDI+MPI噴射域でのエンジン1の回転安定化を図る。   The medium / high load control unit (DI + MPI injection control unit) A1-2 performs fuel injection in accordance with the engine speed Ne and the accelerator pedal depression amount θa in the DI + MPI injection region K2 including the medium / high load rotation speed regions EM and EH. The amount Qf is obtained from a predetermined steady fuel amount calculation map (not shown). Further, the fuel of the fuel injection amount Qf is injected by DI + MPI injection control (see FIG. 6B) in which both the cylinder injection valve 17 and the intake passage injection valve 18 inject. At this time, for example, 6 (α): 4 (1-α) is set so that the preset distribution ratio α, for example, the injection amount Qf1 of the in-cylinder injection valve 17 is larger than the injection amount Qf2 of the intake passage injection valve 18. In order to stabilize the rotation of the engine 1 in the DI + MPI injection range, which is the middle and high load speed ranges EM, EH.

更に、始動制御部A1−3は、始動制御域(ID域:図2参照)において、クランキング完了前はクランキング時燃料噴射を行なう。ここでは所定の始動時燃料量Qfsを所定の冷態始動用燃料量演算マップ(不図示)で求める。更に、図5(a)に示すように、始動時燃料量Qfsの1/2の噴射量の燃料を1燃焼サイクルあたり2度(360度毎)の分割噴射時期I1、に分けて全筒に同時噴射を行う。なお、この際、点火時期制御手段A2が180度毎の点火時期(Tsp)に全筒同時点火を行い、クランキングが成され早期始動が成される。 Further, the start control unit A1-3 performs fuel injection during cranking in the start control region (ID region: see FIG. 2) before the cranking is completed. Here, a predetermined starting fuel amount Qfs is obtained by a predetermined cold starting fuel amount calculation map (not shown). Further, as shown in FIG. 5 (a), the fuel with the injection amount ½ of the starting fuel amount Qfs is divided into divided injection timings I 1 and I 2 of 2 degrees per combustion cycle (every 360 degrees). Simultaneous injection is performed on all cylinders. At this time, the ignition timing control means A2 performs all cylinder simultaneous ignition at the ignition timing (Tsp) every 180 degrees, cranking is performed, and early start is performed.

更に、始動制御部A1−3は、クランキング後の始動制御域(ID域)では、冷態始動時であれば冷態始動時のID時燃料噴射量Qfd1を、暖気後であれば暖気後のID時燃料噴射量Qfd2を読み取り、このID時燃料噴射量Qfdの燃料を各気筒の吸気路噴射弁18のみで噴射するMPIオンリー噴射制御(図5(b)参照)を実行し、エンジン1のアイドル運転域における回転安定化を図る。   Further, in the start control region (ID region) after cranking, the start control unit A1-3 sets the fuel injection amount Qfd1 at the time of cold start at the time of cold start, and after warming up after the warming up. The fuel injection amount Qfd2 at the time of ID is read, and MPI-only injection control (see FIG. 5B) for injecting the fuel of the fuel injection amount Qfd at the time of ID only by the intake passage injection valve 18 of each cylinder is executed. To stabilize the rotation in the idle operation range.

次に、加速制御部A1−4は、エンジン1が低負荷域ELであるMPIオンリー噴射域K1内で運転中に、アクセルペダル踏み込み量である負荷θaの前後制御周期での変化量としての加速度Acc(=θa(n)−θa(n−1))を算出し、この加速度Accが所定値Acc1(加速意思を判定できる値として予め設定する)以上の加速判定が成されると加速増量噴射に入り、設定負荷ラインL1と重なるテーリング処理域Etに入ると、テーリング処理と加速運転処理が加速の程度に応じて下記のように、行なわれる。
ここでのテーリング処理では、図3に示すように、運転域がMPIオンリー噴射域K1よりDI+MPI噴射域K2に向かう際に、その変化時のアクセルペダル開度θaの変化より加速度Accを求める。
Next, the acceleration control unit A1-4 performs acceleration as the amount of change in the longitudinal control cycle of the load θa, which is the accelerator pedal depression amount, while the engine 1 is operating in the MPI-only injection region K1, which is the low load region EL. Acc (= θa (n) −θa (n−1) ) is calculated, and when this acceleration Acc is determined to be greater than or equal to a predetermined value Acc1 (preliminarily set as a value capable of determining the intention to accelerate), acceleration increasing injection Then, when entering the tailing process area Et overlapping the set load line L1, the tailing process and the acceleration operation process are performed as follows according to the degree of acceleration.
In the tailing process here, as shown in FIG. 3, when the operating region moves from the MPI-only injection region K1 to the DI + MPI injection region K2, the acceleration Acc is obtained from the change in the accelerator pedal opening θa at the time of the change.

ここでは予め、車両の走行時におけるアクセルペダル開度θaの変化の程度である加速度Accのレベル(加速程度の段階)を図7に示すように、大、中、小のほぼ同等比率で区分して設定している。
ここで、判定された加速(符号a1,a2参照)の状態が所定値を上回る場合、即ち、加速程度が中程度、以上の段階にあると、加速の状態が所定値を上回る場合と見做す。その場合を、図3中に符号a2として示す。
Here, as shown in FIG. 7, the level of the acceleration Acc, which is the degree of change in the accelerator pedal opening θa when the vehicle is running, is divided into roughly equal ratios of large, medium, and small as shown in FIG. Is set.
Here, when the state of the determined acceleration (see symbols a1 and a2) exceeds a predetermined value, that is, when the degree of acceleration is at a medium level or above, it is considered that the state of acceleration exceeds a predetermined value. The Such a case is shown as a2 in FIG.

このように、加速の状態が所定値を上回る場合は、テーリング処理のための待ち時間twの経過を待ってから、図8(a)での時点ta2の経過の後に、DI+MPI噴射域K2での筒内噴射弁(第1の燃料噴射弁)17と吸気路噴射弁(第2の燃料噴射弁)18による噴射を行うよう制御する。なお、図8(a)には、加速判定時ta1よりテーリングを実施し、DI弁(非作動)とMPI弁の噴射比率αを0:10の状態より7:3に段階的に変更し、時点ta2でDI+MPI噴射域K2に入ることで、テーリングを終えて、DI+MPI噴射域K2での通常噴射比率6:4に戻る制御の流れを概略的に示した。   Thus, when the acceleration state exceeds a predetermined value, after waiting for the elapse of the waiting time tw for the tailing process, after the elapse of the time point ta2 in FIG. 8A, the DI + MPI injection region K2 Control is performed so that injection is performed by the in-cylinder injection valve (first fuel injection valve) 17 and the intake passage injection valve (second fuel injection valve) 18. In FIG. 8 (a), tailing is performed from the acceleration determination time ta1, and the injection ratio α between the DI valve (non-actuated) and the MPI valve is changed stepwise from 0:10 to 7: 3, By entering the DI + MPI injection region K2 at the time point ta2, tailing is finished, and the flow of control to return to the normal injection ratio 6: 4 in the DI + MPI injection region K2 is schematically shown.

なお、図8(a)には1の燃焼サイクルBSを矩形枠で示し、1の燃焼サイクルBSにおけるエンジン1の運転状態θa,Neに応じ算出された燃料噴射量Qfの燃料を所定の噴射比率α、即ち、DI弁と、MPI弁との各分割噴射量に分けた比率値(0〜10)を上下に分けて記載した。   In FIG. 8 (a), one combustion cycle BS is indicated by a rectangular frame, and fuel of a fuel injection amount Qf calculated in accordance with the operating state θa, Ne of the engine 1 in one combustion cycle BS is set to a predetermined injection ratio. α, that is, the ratio values (0 to 10) divided into the respective divided injection amounts of the DI valve and the MPI valve are described separately in the upper and lower directions.

次に、加速度Accのレベル(加速程度の段階)が大程度と判断され、図2中に符号a1として示す高レベルにあると判断すると、上述のテーリング処理ではなく、図8(b)に示すように、加速制御処理に入る、という制御の流れを概略的に示した。
この場合、加速判定時点ta1より、DI+MPI噴射域K2に入るまで、運転情報θa,Neに応じた加速時の加速燃料量Qfaを演算し、加速時噴射比率α(7:3)でDI弁とMPI弁を燃料噴射作動させる。DI+MPI噴射域K2に時点ta3に達した場合、レベル(加速程度の段階)が大程度のままであれば、図8(b)に2点差線で示すようにその加速状態を継続し、レベルが大の状態を離脱すると、DI+MPI噴射域K2での通常噴射比率6:4に戻って噴射作動する。
Next, if it is determined that the level of acceleration Acc (the level of acceleration) is high, and it is determined that it is at the high level indicated by reference numeral a1 in FIG. 2, the tailing process described above is shown in FIG. 8B. Thus, the control flow of entering the acceleration control process is schematically shown.
In this case, the acceleration fuel amount Qfa at the time of acceleration corresponding to the operation information θa, Ne is calculated from the acceleration determination time ta1 until the DI + MPI injection region K2 is entered, and the DI valve is operated at the acceleration injection ratio α (7: 3). The MPI valve is operated for fuel injection. When the time point ta3 is reached in the DI + MPI injection region K2, if the level (acceleration level) remains large, the acceleration state is continued as indicated by a two-dot chain line in FIG. When the large state is left, the normal injection ratio 6: 4 in the DI + MPI injection region K2 is returned to perform the injection operation.

次に、本発明の実施の形態に係るエンジン1の燃料噴射装置の作動を、ECU14が行う図9に示す燃料噴射制御処理に沿って説明する。ここで、燃料噴射制御ルーチンに先立ち不図示のメインルーチンではメインキースイッチのオンと同時に各種の運転情報データを取り込み、所定の格納エリアにストアしている。
しかも、エンジン1が始動時におけるクランキングに入ったことを検出した所定のタイミングで燃料噴射制御ルーチンのステップs1に達する。
Next, the operation of the fuel injection device of the engine 1 according to the embodiment of the present invention will be described along the fuel injection control process shown in FIG. Here, in the main routine (not shown) prior to the fuel injection control routine, various operation information data are taken in simultaneously with the main key switch being turned on and stored in a predetermined storage area.
Moreover, the routine reaches step s1 of the fuel injection control routine at a predetermined timing when it is detected that the engine 1 has entered cranking at the time of start.

ステップs1では、燃料噴射制御でのエンジン回転数Ne、アクセル開度θa、スロットル開度θs、水温Tw、空燃比A/F、酸素濃度O等のエンジン運転情報や、各運転情報に応じた設定値のデータを取り込み、最新データとしてストアし、ステップs2に進む。 In step s1, engine operation information such as engine speed Ne, fuel accelerator opening θa, throttle opening θs, water temperature Tw, air-fuel ratio A / F, oxygen concentration O 2, and the like in the fuel injection control are determined according to each operation information. The set value data is taken in and stored as the latest data, and the process proceeds to step s2.

ここでエンジンがクランキング完了か否か判断し、前はステップs3に進む。クランキング処理中でステップs3に達すと、冷態始動時あるいは暖気後のID時の燃料噴射量Qfcを読み取り、図5(a)に示すように、始動時燃料量Qfcの噴射を1燃焼サイクルBSあたり2度(360度毎)の分割噴射時期I1、(=1/2Qfc)に分けて全筒に同時噴射し、点火プラグ29が180度毎の全筒同時点火を行い、クランキングが成され、完了するとステップs1、s2と戻り、ステップs4に進む。
ステップs4では中、高負荷域EM,EHのDI+MPI噴射域K2かを判断し、Yesでステップs7に進み、Noでステップs5に進む。ステップs5では低負荷域ELのMPIオンリー域K1内か否かを判断し、Noでは中、高負荷域に入ったと見做し、ステップs7に進む。
Here, it is determined whether or not the engine is cranked, and the process proceeds to step s3. When step s3 is reached during the cranking process, the fuel injection amount Qfc at the time of cold start or ID after warm-up is read, and as shown in FIG. 5A, the injection of the fuel amount Qfc at the start is performed for one combustion cycle. The injection is divided into two injection times I 1 and I 2 (= 1 / 2Qfc) per BS (every 360 °) and simultaneously injected into all cylinders. The spark plug 29 performs all cylinder simultaneous ignition every 180 degrees and When the ranking is completed, the process returns to steps s1 and s2, and proceeds to step s4.
In step s4, it is determined whether the DI + MPI injection region K2 is in the middle and high load regions EM, EH. If yes, the process proceeds to step s7, and if no, the process proceeds to step s5. In step s5, it is determined whether or not the MPI is in the MPI-only area K1 of the low load area EL.

ステップs7では燃料量演算マップ(不図示)より、現在のエンジン回転数Neとアクセルペダル踏込量θaに応じた燃料噴射量Qfを求める。ステップs6より低負荷域ELとしてステップs7に達した場合、図5(b)に示すMPIオンリー噴射域K1での燃料噴射量を設定して噴射作動させる。すなわち、Qf(:10(α))でMPI弁のみが噴射駆動を実行し、低負荷での走行中のエンジン1の回転安定化を図る。一方、中、高負荷域EM,EHのDI+MPI噴射域K2であるとしてここに達した場合は、図6(b)に示すDI+MPI噴射域での噴射量を設定し、すなわち、筒内噴射弁17の噴射量Qfが6(α)、吸気路噴射弁18の噴射量Qfが4(1−α)の比率となるように設定する。この設定状態で、DI+MPI噴射域での噴射を行なって走行中のエンジンの回転安定化を図り、メインルーチンにリターンする。   In step s7, a fuel injection amount Qf corresponding to the current engine speed Ne and accelerator pedal depression amount θa is obtained from a fuel amount calculation map (not shown). When step s7 is reached as the low load region EL from step s6, the fuel injection amount in the MPI only injection region K1 shown in FIG. In other words, only the MPI valve executes the injection drive at Qf (: 10 (α)) to stabilize the rotation of the engine 1 during traveling at a low load. On the other hand, when reaching here as being the DI + MPI injection region K2 of the middle and high load regions EM, EH, the injection amount in the DI + MPI injection region shown in FIG. 6B is set, that is, the in-cylinder injection valve 17 Is set such that the injection amount Qf is 6 (α) and the injection amount Qf of the intake passage injection valve 18 is 4 (1-α). In this set state, injection in the DI + MPI injection region is performed to stabilize the rotation of the running engine, and the process returns to the main routine.

次に、ステップs5よりステップs6に達すると、その際、低負荷域ELでの加速判定がなされる。前回と今回のアクセル開度差である現加速値Acc(=θan−θan−1)が所定の加速判定値Acc1を上回るか否か判断し、上回ることがないと低負荷域ELの状態でステップs7に、上回ると低負荷域ELでの加速時としてステップs8に進む。   Next, when step s6 is reached from step s5, acceleration determination in the low load region EL is made at that time. It is determined whether or not the current acceleration value Acc (= θan−θan−1), which is the difference between the accelerator opening of the previous time and the current time, exceeds a predetermined acceleration determination value Acc1. If it exceeds s7, the routine proceeds to step s8 as acceleration in the low load range EL.

加速判定がなされてステップs8に達すると、ここでの加速が低負荷域ELのMPIオンリー域K1より中、高負荷域EM,EHのDI+MPI噴射域K2への中加速レベル(図7参照)か判断し、即ち、図2の符号a1、a2の加速か否か判断し、Yesでステップs9へ、Noでステップs10に進む。
ステップs9、ステップs11では中加速レベルであり、テーリング処理を図8(a)に示すように行なう。即ち、DI弁17とMPI弁18の噴射率を、加速判定時点ta1より経時的に、α=(0/10〜7/3)を段階的に変化させ、テーリング処理のための待ち時間twの経過を待ってから、ステップs12に進み、ここで、テーリング中止し、メインルーチンにリターンする。
When the acceleration determination is made and step s8 is reached, whether the acceleration here is a medium acceleration level from the MPI only region K1 of the low load region EL to the DI + MPI injection region K2 of the high load region EM, EH (see FIG. 7). Judgment is made, that is, it is judged whether or not the acceleration is indicated by reference signs a1 and a2 in FIG. 2, and the process proceeds to step s9 with Yes and proceeds to step s10 with No.
Steps s9 and s11 are medium acceleration levels, and tailing processing is performed as shown in FIG. That is, the injection rates of the DI valve 17 and the MPI valve 18 are changed in stages from α to (0/10 to 7/3) over time from the acceleration determination time ta1, and the waiting time tw for tailing processing is changed. After waiting for the progress, the process proceeds to step s12, where tailing is stopped and the process returns to the main routine.

この時点では、運転域が中、高負荷域EM,EHのDI+MPI噴射域K2に達しているので、次の制御周期ではステップs4よりステップs7に達し、そこでは、図6(b)に示すように、筒内噴射弁17の噴射量Qfが6(α)、吸気路噴射弁18の噴射量Qfが4(1−α)の比率となるように設定する。この設定状態で、DI+MPI噴射域での噴射を行なって走行中のエンジンの回転安定化を図り、メインルーチンにリターンする。   At this time, since the operation range has reached the DI + MPI injection range K2 in the middle and high load range EM, EH, the step reaches step s7 from step s4 in the next control cycle, as shown in FIG. 6 (b). Further, the injection amount Qf of the in-cylinder injection valve 17 is set to a ratio of 6 (α) and the injection amount Qf of the intake passage injection valve 18 is set to a ratio of 4 (1−α). In this set state, injection in the DI + MPI injection region is performed to stabilize the rotation of the running engine, and the process returns to the main routine.

一方、ステップs8での加速度Accのレベル(加速程度の段階)の判断が大程度と判断され、ステップs10に達すると、ここでは、まず、減速時−Accか否か判断し、減速時にはステップs15に、加速時にはステップs13に進む。
減速時にステップs15、s16に達すると、テーリング処理中止とし、MPI弁18のみを、即ち、噴射比率αをMPI弁18(α:10)に変更し、MPIオンリー噴射域K1での噴射作動に入り、これにより、減速時にDI弁17の噴口回りにデポジットが生じることによる噴射作動不良の発生を防止でき、メインルーチンにリターンする。
On the other hand, when it is determined that the level of acceleration Acc (the level of acceleration) in step s8 is large and step s10 is reached, it is first determined whether or not the vehicle is decelerating-Acc. Furthermore, the process proceeds to step s13 during acceleration.
When steps s15 and s16 are reached during deceleration, the tailing process is stopped, only the MPI valve 18 is changed, that is, the injection ratio α is changed to the MPI valve 18 (α: 10), and the injection operation is started in the MPI-only injection region K1. As a result, it is possible to prevent the occurrence of defective injection operation due to deposits occurring around the injection hole of the DI valve 17 during deceleration, and the process returns to the main routine.

ステップs10からステップs13、s14に達するとする。
ここでは、図8(b)に示すように、高負荷での加速制御処理に入る。この運転域では、加速判定時点ta1より、DI+MPI噴射域K2に入るまで、運転情報θa,Neに応じた加速時の加速燃料量Qfaを演算し、加速時噴射比率α(7:3)でDI弁とMPI弁を燃料噴射作動させる処理を繰り返す。
Assume that steps s10 to s13 and s14 are reached.
Here, as shown in FIG. 8B, the acceleration control process under a high load is started. In this operating range, the acceleration fuel amount Qfa at the time of acceleration corresponding to the operating information θa and Ne is calculated from the acceleration determination time ta1 to the DI + MPI injection range K2, and DI is calculated at the acceleration injection ratio α (7: 3). The process of fuel injection operation of the valve and the MPI valve is repeated.

DI+MPI噴射域K2に時点ta3に達した場合、レベル(加速程度の段階)が大程度のままであれば、ステップs8に戻り、図8(b)に2点差線で示すようにその加速状態を継続し、レベルが大の状態を離脱すると、No側に進み、メインルーチンにリターンする。この際、現運転域が高負荷域EM,EHのDI+MPI噴射域K2に達しているので、次の制御周期ではステップs4よりステップs7に達し、そこで、図6(b)に示すように、筒内噴射弁17の噴射量Qfが6(α)、吸気路噴射弁18の噴射量Qfが4(1−α)の比率に設定され、この設定状態で、DI+MPI噴射域での噴射を行なって走行中のエンジンの回転安定化を図り、メインルーチンにリターンする。   When the time point ta3 is reached in the DI + MPI injection region K2, if the level (stage of acceleration) remains large, the process returns to step s8, and the acceleration state is changed as shown by a two-dot chain line in FIG. If it continues and leaves the state of a large level, it will progress to No side and will return to a main routine. At this time, since the current operation range has reached the DI + MPI injection range K2 of the high load range EM, EH, the step reaches step s7 from step s4 in the next control cycle, and as shown in FIG. The injection amount Qf of the inner injection valve 17 is set to 6 (α) and the injection amount Qf of the intake passage injection valve 18 is set to a ratio of 4 (1−α). In this setting state, injection is performed in the DI + MPI injection region. Stabilize the running engine and return to the main routine.

このように、第1実施形態では、タイマーゾーンに入ると、所定待ち時間twの経過後にDI+MPI噴射域K2でのDI弁17とMPI弁18による噴射を行うので、MPIオンリー噴射域K1とDI+MPI噴射域K2との間で加速の程度が頻繁に変動したとしても、所定待ち時間の経過を待つことで第1の燃料噴射弁の駆動切換え頻度を抑えることが出来、DI弁17の噴口回りにデポジットが生じることによる噴射作動不良の発生を防止できる。
更に、加速状態が中程度であって緩やかな加速運転域でステップs9、s11に達すると、テーリング処理(タイマーゾーンEt)に入り、所定待ち時間twの経過後にDI弁17とMPI弁18を噴射駆動するので、緩やかな加速運転域では安定したテーリングを行え、DI弁17の駆動切換え頻度を抑えることが出来、DI弁17の噴口回りにデポジットが堆積することを防止でき、噴射作動不良の発生を確実に防止できる。
As described above, in the first embodiment, when entering the timer zone, the DI valve 17 and the MPI valve 18 perform the injection in the DI + MPI injection region K2 after the elapse of the predetermined waiting time tw. Therefore, the MPI only injection region K1 and the DI + MPI injection Even if the degree of acceleration frequently fluctuates with the region K2, it is possible to suppress the drive switching frequency of the first fuel injection valve by waiting for the elapse of the predetermined waiting time, and deposit around the injection port of the DI valve 17 It is possible to prevent the occurrence of defective injection operation due to the occurrence of.
Further, when steps s9 and s11 are reached in a moderate acceleration operation region where the acceleration state is moderate, tailing processing (timer zone Et) is entered, and DI valve 17 and MPI valve 18 are injected after a predetermined waiting time tw has elapsed. Since it is driven, stable tailing can be performed in a moderate acceleration operating range, the frequency of switching the drive of the DI valve 17 can be suppressed, deposits can be prevented from being accumulated around the injection port of the DI valve 17, and an injection operation failure occurs. Can be reliably prevented.

更に、エンジン1の加速の状態Accが所定値Acc1を上回る場合に、所定の加速時噴射比率αでDI弁17とMPI弁18を噴射駆動するので(ステップs9、s13参照)、加速応答性が改善される。
更に、エンジン1の減速時にはステップs15、s16に示すように、MPI弁18のみを噴射駆動し、減速時にDI弁17にデポジットが付着することを抑制することができる。
更に、MPIオンリー噴射域K1での加速時には、燃焼室6に燃料を噴射するDI弁17の分割噴射量が多くなるので(図8(a)参照)、加速応答性が改善され、しかも、オーバーラップ時の排気路への未燃燃料の放出を抑制でき無駄な燃料噴射を抑制できる。
Further, when the acceleration state Acc of the engine 1 exceeds the predetermined value Acc1, the DI valve 17 and the MPI valve 18 are driven to be driven at a predetermined acceleration injection ratio α (see steps s9 and s13), so that the acceleration response is Improved.
Further, as shown in steps s15 and s16, when the engine 1 is decelerated, only the MPI valve 18 is driven for injection, and deposits can be prevented from adhering to the DI valve 17 during deceleration.
Furthermore, when accelerating in the MPI-only injection region K1, the divided injection amount of the DI valve 17 that injects fuel into the combustion chamber 6 increases (see FIG. 8 (a)). It is possible to suppress the release of unburned fuel to the exhaust passage at the time of lap and to suppress useless fuel injection.

上述のように、第1実施形態では、低負荷・低回転数域のような比較的狭い燃料噴射域をオンリー噴射域としたが、場合により、図4に示すマップm2のように、低、中負荷・低、中回転数域をオンリー噴射域とし比較的広く設定し、高負荷・高回転数域のみDI+MPI噴射域として設定しても良い。この場合も実施形態1と同様の作用効果が得られ、特に、図4に示すマップm2のように、MPIオンリー噴射域(低、中負荷運転域)が比較的広く、その運転中の加速時において、燃料噴射モードが切り換わる閾線L1での切換えを抑制することとなり、運転域の過度の変更による違和感を低減できる。
更に、第1実施形態でのステップs13、s14における加速制御処理の際、これの変形制御処理として、特に、加速の程度が図7に示すように、増減頻繁に変動する場合を想定して制御を追加しても良い。
As described above, in the first embodiment, a relatively narrow fuel injection region such as a low load / low rotation speed region is set as an only injection region. However, depending on the case, as shown in a map m2 shown in FIG. The medium load / low / medium rotational speed range may be set as a relatively wide injection range, and only the high load / high rotational speed range may be set as the DI + MPI injection range. In this case as well, the same effects as those of the first embodiment can be obtained. In particular, as shown in the map m2 shown in FIG. 4, the MPI-only injection region (low, medium load operation region) is relatively wide, and during acceleration during the operation. Therefore, the switching at the threshold line L1 at which the fuel injection mode is switched is suppressed, and the uncomfortable feeling due to the excessive change of the driving range can be reduced.
Further, during the acceleration control process in steps s13 and s14 in the first embodiment, as the deformation control process, the control is performed on the assumption that the degree of acceleration fluctuates frequently as shown in FIG. May be added.

即ち、この変形例では、図7に示すように、MPIオンリー噴射域K1での加速時において、運転域が中レベルに時点ta4に達した際に、不図示のタイマーをセットし、中レベルに入ってから小レベルに増減頻繁に戻る場合は、その区間の時間をカウントし、戻り時間δtが設定値δt1より小さい場合は、運転域がMPIオンリー噴射域K1と見做して、DI弁の作動を抑制するように制御しても良い。この場合、DI弁の微小燃料の噴射を抑えるので、DI弁にデポジットが付着することを抑制することができる。
なお、本発明は上述の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
That is, in this modified example, as shown in FIG. 7, when accelerating in the MPI-only injection range K1, when the operating range reaches the time point ta4, a timer (not shown) is set and set to the intermediate level. If the return time δt is smaller than the set value δt1, the operating range is regarded as the MPI only injection range K1, and the DI valve You may control so that an action | operation may be suppressed. In this case, since the injection of minute fuel from the DI valve is suppressed, it is possible to suppress deposits from adhering to the DI valve.
The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

1 エンジン(燃料噴射装置)
6 燃焼室
11 エアフローメータ
17 DI弁(筒内噴射弁:第1の燃料噴射弁)
18 MPI弁(吸気路噴射弁:第2の燃料噴射弁)
28 スロットル開度センサ
31 点火装置
37 高圧駆動回路(インジェクタドライバ)
38 低圧駆動回路(インジェクタドライバ)
41 アクセル開度センサ(運転情報検出手段)
tw 待ち時間
α 所定比率
θa 負荷
A1 燃料噴射量演算手段
A1−4 加速状態検出手段
Acc 加速情報
Et タイマーゾーン
ECU 制御手段
K1 MPIオンリー噴射域
K2 DI+MPI噴射域
Ne 機関回転数
Qf 燃料噴射量
1 Engine (fuel injection device)
6 Combustion chamber 11 Air flow meter 17 DI valve (in-cylinder injection valve: first fuel injection valve)
18 MPI valve (intake channel injection valve: second fuel injection valve)
28 Throttle opening sensor 31 Ignition device 37 High pressure drive circuit (injector driver)
38 Low voltage drive circuit (Injector driver)
41 Accelerator opening sensor (driving information detection means)
tw waiting time α predetermined ratio θa load A1 fuel injection amount calculation means A1-4 acceleration state detection means Acc acceleration information Et timer zone ECU control means K1 MPI only injection area K2 DI + MPI injection area Ne engine speed Qf fuel injection quantity

Claims (6)

内燃機関の燃焼室に燃料を噴射する第1の燃料噴射弁と、内燃機関の吸気通路に燃料を噴射する第2の燃料噴射弁と、内燃機関1の機関回転数と負荷とに応じた燃料噴射量を算出する燃料噴射量演算手段と、機関の加速情報を出力する加速状態検出手段と、前記機関運転域が前記機関回転数と負荷とに応じた第1の機関運転域にあると前記燃料噴射量の燃料全てを前記第2の燃料噴射弁で噴射し、第1の機関運転域より高回転高負荷側の第2の機関運転域にあると前記燃料噴射量を所定比率で分割して前記第1の燃料噴射弁と前記第2の燃料噴射弁の各分割燃料量を求め、該各分割燃料量の燃料を第1、第2の燃料噴射弁で噴射するよう制御する制御手段と、を具備し、
前記制御手段は、第1の機関運転域より第2の機関運転域に向かう加速の状態が所定値を上回る場合であって該第2の運転域との間に設けたタイマーゾーンに入ると、所定待ち時間の経過を待ってから、第2の機関運転域での第1、第2の燃料噴射弁による噴射を行うよう制御する、ことを特徴とする内燃機関1の燃料噴射装置。
A first fuel injection valve that injects fuel into the combustion chamber of the internal combustion engine, a second fuel injection valve that injects fuel into the intake passage of the internal combustion engine, and fuel according to the engine speed and load of the internal combustion engine 1 A fuel injection amount calculating means for calculating an injection amount; an acceleration state detecting means for outputting engine acceleration information; and the engine operating range in a first engine operating range corresponding to the engine speed and load. All fuel of the fuel injection amount is injected by the second fuel injection valve, and the fuel injection amount is divided by a predetermined ratio when the fuel injection amount is in the second engine operation region on the high rotation and high load side from the first engine operation region. Control means for determining the divided fuel amounts of the first fuel injection valve and the second fuel injection valve and controlling the fuel of the divided fuel amounts to be injected by the first and second fuel injection valves; , And
The control means is a case where the acceleration state from the first engine operating range toward the second engine operating range exceeds a predetermined value and enters a timer zone provided between the second operating range, A fuel injection device for an internal combustion engine, wherein control is performed so as to perform injection by the first and second fuel injection valves in the second engine operating range after waiting for a predetermined waiting time.
前記制御手段は、機関運転時における加速程度の段階を大、中、小区分した場合において、前記内燃機関1の加速状態が中程度の段階にあると、前記加速の状態が所定値を上回る場合と見做す、ことを特徴とする請求項1記載の内燃機関の燃料噴射装置。   In the case where the acceleration means during engine operation is divided into large, medium, and small stages, and the acceleration state of the internal combustion engine 1 is in a medium stage, the acceleration state exceeds a predetermined value. The fuel injection device for an internal combustion engine according to claim 1, characterized in that: 前記制御手段は前記内燃機関の加速状態が所定値を上回ると、所定の加速時噴射比率で第1、第2の燃料噴射弁を噴射駆動する、ことを特徴とする請求項1又は2記載の内燃機関の燃料噴射装置。   3. The control device according to claim 1, wherein when the acceleration state of the internal combustion engine exceeds a predetermined value, the control means drives the first and second fuel injection valves at a predetermined acceleration injection ratio. A fuel injection device for an internal combustion engine. 前記第2の機関運転域より第1の機関運転域に向かう減速時には、第2の燃料噴射弁のみを噴射駆動する、ことを特徴とする、請求項1記載の内燃機関の燃料噴射装置。   2. The fuel injection device for an internal combustion engine according to claim 1, wherein only the second fuel injection valve is driven for injection during deceleration from the second engine operating range toward the first engine operating range. 前記加速情報は前記内燃機関の吸入空気量、アクセル開度、スロットル開度の少なくとも一つ以上により設定される、ことを特徴とする請求項1乃至4のいずれか一つに記載の内燃機関の燃料噴射装置。   5. The internal combustion engine according to claim 1, wherein the acceleration information is set based on at least one of an intake air amount, an accelerator opening, and a throttle opening of the internal combustion engine. Fuel injection device. 前記燃料噴射量の燃料を分割する前記所定比率は、前記第1の燃料噴射弁の分割噴射量が前記第2の燃料噴射弁の分割噴射量より多くなるように設定することを特徴とする請求項1、2又は3記載の内燃機関の燃料噴射装置。   The predetermined ratio for dividing the fuel of the fuel injection amount is set so that the divided injection amount of the first fuel injection valve is larger than the divided injection amount of the second fuel injection valve. Item 4. The fuel injection device for an internal combustion engine according to Item 1, 2 or 3.
JP2011023346A 2011-02-04 2011-02-04 Fuel injection device for internal combustion engine Active JP5736812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011023346A JP5736812B2 (en) 2011-02-04 2011-02-04 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023346A JP5736812B2 (en) 2011-02-04 2011-02-04 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012163028A true JP2012163028A (en) 2012-08-30
JP5736812B2 JP5736812B2 (en) 2015-06-17

Family

ID=46842651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023346A Active JP5736812B2 (en) 2011-02-04 2011-02-04 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5736812B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255539A (en) * 1987-04-10 1988-10-21 Mazda Motor Corp Fuel control device of engine
JPH02115542A (en) * 1988-10-26 1990-04-27 Mazda Motor Corp Fuel feed device for engine
JPH04237854A (en) * 1991-01-21 1992-08-26 Toyota Motor Corp Cylinder injection type internal combustion engine
JPH10252512A (en) * 1997-03-13 1998-09-22 Toyota Motor Corp Compressed ignition internal combustion engine
JP2001020837A (en) * 1999-07-07 2001-01-23 Nissan Motor Co Ltd Fuel injection control device for engine
JP2004060474A (en) * 2002-07-25 2004-02-26 Hitachi Ltd Combustion control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255539A (en) * 1987-04-10 1988-10-21 Mazda Motor Corp Fuel control device of engine
JPH02115542A (en) * 1988-10-26 1990-04-27 Mazda Motor Corp Fuel feed device for engine
JPH04237854A (en) * 1991-01-21 1992-08-26 Toyota Motor Corp Cylinder injection type internal combustion engine
JPH10252512A (en) * 1997-03-13 1998-09-22 Toyota Motor Corp Compressed ignition internal combustion engine
JP2001020837A (en) * 1999-07-07 2001-01-23 Nissan Motor Co Ltd Fuel injection control device for engine
JP2004060474A (en) * 2002-07-25 2004-02-26 Hitachi Ltd Combustion control device for internal combustion engine

Also Published As

Publication number Publication date
JP5736812B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
RU2349783C1 (en) Control device for internal combustion engine
JP5779331B2 (en) In-cylinder injection gasoline engine controller
JP3827814B2 (en) In-cylinder fuel control system
JP4466337B2 (en) Control device for internal combustion engine
US7343900B2 (en) Ignition timing controller of internal combustion engine
JP5447350B2 (en) Control device for internal combustion engine
JP2000205006A (en) Control apparatus of direct injection type engine
JP5235739B2 (en) Fuel injection control device for internal combustion engine
WO2016088191A1 (en) Controlling device for internal combustion engines
JP5835364B2 (en) Fuel injection device for internal combustion engine
JP5617988B2 (en) Control device for internal combustion engine
JP5703802B2 (en) Fuel injection device for internal combustion engine
JP5821819B2 (en) Control device for internal combustion engine
WO2012128047A1 (en) Combustion control device
JP5594420B2 (en) Control device for internal combustion engine
JP5736812B2 (en) Fuel injection device for internal combustion engine
JP2007032318A (en) Controller of internal combustion engine
JP4789291B2 (en) Internal combustion engine temperature rising operation control device
CN104204506B (en) The ignition timing of internal combustion engine controls device
JP2010163930A (en) Control device of direct-injection spark ignition internal combustion engine
JP2007077857A (en) Operation mode control device for internal combustion engine
JP2006258011A (en) Control device of internal combustion engine
JP2008298028A (en) Fuel injection control device of in cylinder injection type internal combustion engine
JP2004316482A (en) Control device for cylinder injection internal combustion engine
JP4839267B2 (en) Fuel injection control device for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5736812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350