JPH04236177A - Disposition of vibrating segment of piezoelectric element and shape of driving part - Google Patents

Disposition of vibrating segment of piezoelectric element and shape of driving part

Info

Publication number
JPH04236177A
JPH04236177A JP3003924A JP392491A JPH04236177A JP H04236177 A JPH04236177 A JP H04236177A JP 3003924 A JP3003924 A JP 3003924A JP 392491 A JP392491 A JP 392491A JP H04236177 A JPH04236177 A JP H04236177A
Authority
JP
Japan
Prior art keywords
phase
vibration
piezoelectric element
sections
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3003924A
Other languages
Japanese (ja)
Inventor
Tsuneaki Furukawa
古川 常章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3003924A priority Critical patent/JPH04236177A/en
Priority to DE69228888T priority patent/DE69228888T2/en
Priority to EP92300396A priority patent/EP0495665B1/en
Priority to KR1019920000613A priority patent/KR920015691A/en
Priority to US07/822,485 priority patent/US5343108A/en
Publication of JPH04236177A publication Critical patent/JPH04236177A/en
Priority to US08/012,486 priority patent/US5610468A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a driving area and to obtain an ultrasonic motor having a stable driving state and a high efficiency by bringing the node position of a standing position to be driven in each phase into coincidence with a boundary of vibrating segments, and equalizing the widths. CONSTITUTION:A phase A of a piezoelectric element is formed linearly symmetrically in polarizing segments 5, 6, 9, 10 in good balance, and a phase B is formed linearly symmetrically in polarizing segments 7, 8, 11, 12 in good balance. When an AC voltage of a suitable frequency is applied between an electrode 1 and a common electrode, since the phase A is formed linearly symmetrically in good balance, a standing wave in which a boundary and both ends of the segments 5, 6 of the phase A become nodes, is generated in the entire stator. When the AC voltage is applied between an electrode 2 and the common electrode, since the phase B is formed linearly symmetrically in good balance, a second standing wave in which a boundary and both ends of the segments 7, 8 of the phase B become nodes, is generated in the entire stator. Thus, the node position of the vibrating wave is accurately formed at an expected position in the driving state.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は超音波モータにおける圧
電素子の振動区分配置または駆動部分形状に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibrating section arrangement or drive part configuration of a piezoelectric element in an ultrasonic motor.

【0002】0002

【従来の技術】従来の技術による超音波モータにおける
圧電素子の振動区分配置は、一例として図4に示される
ように振動区分5、6、7で形成されるA相1と振動区
分8、9で形成されるB相2との面積が異なるものであ
った。
BACKGROUND OF THE INVENTION A conventional ultrasonic motor has a vibrating section arrangement of piezoelectric elements, as shown in FIG. The area was different from that of B phase 2 formed in .

【0003】また、他の一例として図5に示されるよう
に、A相1、B相2の両端にそれぞれ振動波長の1/2
の区分より小さい振動区分9、10と11、12が形成
されているものであった。
As another example, as shown in FIG.
Vibration sections 9, 10 and 11, 12 smaller than the sections 11 and 12 were formed.

【0004】0004

【発明が解決しようとする課題】しかし、図4に示され
るような従来の圧電素子の振動区分配置では、振動区分
5、6、7で形成されるA相の面積と、振動区分8、9
で形成されるB相の面積とが異なるため、各相単独に駆
動させた場合、各相で定在波の振幅や共振周波数の差異
、A相B相の合成波の節の位置が予測した位置と一致し
ない等の問題があった。
[Problems to be Solved by the Invention] However, in the conventional vibration section arrangement of a piezoelectric element as shown in FIG.
Since the area of the B phase formed by There were problems such as the location not matching.

【0005】また、図5に示される他の従来の圧電素子
の振動区分配置においては、各相の圧電素子の振動区分
の配置は、全体として線対称となっているため、各相で
の定在波の振幅や共振周波数はほぼ等しくなるが、弾性
体に励振される定在波の波長の1/2より小さい分極区
分9、10、11、12が各相の両端に形成されており
、振動区分9と10、11と12がそれぞれ面積が異な
るため、各相で振動区分が線対称になっておらず、各相
単独に駆動させた場合各相で定在波の節の位置が、A相
では分極区分5と6の境に、B相では分極区分7と8の
境にそれぞれ一致しない等の不都合が生じていた。
In addition, in the other conventional piezoelectric element vibration section arrangement shown in FIG. Although the amplitude and resonance frequency of the standing waves are approximately equal, polarization sections 9, 10, 11, and 12 smaller than 1/2 of the wavelength of the standing wave excited in the elastic body are formed at both ends of each phase. Since vibration sections 9 and 10 and 11 and 12 have different areas, the vibration sections are not line symmetrical in each phase, and when each phase is driven independently, the position of the node of the standing wave in each phase is Inconveniences occurred such as not matching the boundary between polarization sections 5 and 6 in phase A and the boundary between polarization sections 7 and 8 in phase B.

【0006】以上の差異や不都合により、各相を単独で
駆動した場合は言うまでもなく、A相とB相を同時に駆
動して励振される合成波や振動波の節の位置を利用した
超音波モータにおいても、合成波の節の位置が予測した
位置にできなかったり、モータの回転体の動作が不安定
になり、効率が低下してしまう等、重大な問題が生じて
いた。
Due to the above-mentioned differences and inconveniences, it goes without saying that when each phase is driven individually, an ultrasonic motor that uses the node positions of synthetic waves and vibration waves that are excited by driving the A and B phases simultaneously is not suitable. However, serious problems have arisen, such as the nodes of the composite wave not being at the predicted positions, the operation of the rotating body of the motor becoming unstable, and the efficiency decreasing.

【0007】そこで本考案はこれらの問題を解決するも
のであり、その目的とするところは、弾性体に励振され
る定在波の節位置を要求される位置と一致させ、かつ駆
動面積をより大きく得られるようにし、または、駆動面
積をより小さくし低消費電流駆動とし、安定した駆動状
態と高効率な超音波モータを提供することにある。
The present invention is intended to solve these problems, and its purpose is to match the node position of the standing wave excited in the elastic body with the required position, and to further increase the driving area. The object of the present invention is to provide an ultrasonic motor with a stable driving state and high efficiency by making the driving area larger or by making the driving area smaller and driving the current consumption lower.

【0008】[0008]

【課題を解決するための手段】前述した課題を解決する
ために、本発明は (1)電圧を印加することにより圧電効果を有する圧電
素子が接合された弾性体と、該弾性体に摩擦接触して回
転駆動される回転体と、該回転体を前記弾性体に加圧接
触させる加圧手段とを有し、前記圧電素子は幾つかの振
動区分からなり、該振動区分により前記弾性体に振動波
が励振される超音波モータにおいて、前記圧電素子は複
数の振動区分からなる駆動部分A相とB相を有し、それ
ぞれの駆動部分における前記振動区分の形状は、ほぼ線
対称であることを特徴とする。 (2)特許請求範囲第1項記載の駆動部分A相とB相に
おける振動区分の形状は、相互にほぼ等しい事を特徴と
する。 (3)特許請求範囲第1項記載の超音波モータにおける
圧電素子が複数の振動区分からなり、該振動区分を複数
使用して駆動部分を形成する場合において、該振動区分
により形成された前記駆動部分の形状がほぼ線対称であ
ることを特徴とする。 (4)特許請求範囲第3項記載の駆動部分の形状は、前
述の弾性体に励振する振動波の半波長分の範囲において
、該振動波の腹の位置に対してほぼ線対称になっている
ことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides (1) an elastic body to which a piezoelectric element having a piezoelectric effect is joined by applying a voltage, and a frictional contact with the elastic body. The piezoelectric element includes a rotating body that is rotationally driven and a pressurizing means that brings the rotating body into pressure contact with the elastic body, and the piezoelectric element is composed of several vibrating sections, and the vibrating sections cause the elastic body to be pressed against the elastic body. In an ultrasonic motor in which vibration waves are excited, the piezoelectric element has drive portions A phase and B phase consisting of a plurality of vibration sections, and the shapes of the vibration sections in each drive section are approximately line symmetrical. It is characterized by (2) The shape of the vibration sections in the A-phase and B-phase of the drive portion described in claim 1 is characterized by being substantially equal to each other. (3) In the case where the piezoelectric element in the ultrasonic motor according to claim 1 is composed of a plurality of vibrating sections and a plurality of the vibrating sections are used to form a driving part, the driving portion formed by the vibrating sections It is characterized by the shape of the part being almost line symmetrical. (4) The shape of the driving portion described in claim 3 is approximately line symmetrical with respect to the antinode position of the vibration wave in the range of half the wavelength of the vibration wave excited in the elastic body. It is characterized by the presence of

【0009】[0009]

【実施例】以下に本発明の実施例を図面にもとづいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0010】図1は本発明による圧電素子の分極区分の
配置図の一実施例である。図中の+、−の付号は圧電素
子の分極処理の方向を示すものである。図1(a)は圧
電素子の表側、図1(b)は裏側を示している。図中5
、6、7、8は弾性体に励振される振動波の波長の1/
2の部分に相当する分極区分である。図1の場合は弾性
体の円周上に3波長分の振動波が励振されるようになっ
ているため、分極区分5、6、7、8はそれぞれ円周の
1/6の区分となっており、振動波の波長の1/2をし
めることになる。分極区分9、10、11、12は、分
極区分5、6、7、8より小さく、振動波の波長の1/
8の区分となっている。また分極区分9、10はA相の
、11、12はB相のそれぞれ両端に位置し、A相は分
極区分5、6、9、10で線対称にバランス良く構成さ
れ、B相は分極区分7、8、11、12で線対称にバラ
ンス良く構成されている。A相、B相は円周上で位置的
に振動波の1/3波長分位相差をもって構成されている
。分極区分3−bは、弾性体上に励振される振動波の状
態を検知するための検出区分であり、表側の1はA電極
、2はB電極、3−aは検出電極である。
FIG. 1 is an embodiment of a layout diagram of polarization sections of a piezoelectric element according to the present invention. The + and - symbols in the figure indicate the direction of polarization treatment of the piezoelectric element. FIG. 1(a) shows the front side of the piezoelectric element, and FIG. 1(b) shows the back side. 5 in the diagram
, 6, 7, and 8 are 1/1 of the wavelength of the vibration wave excited in the elastic body.
This is a polarization division corresponding to part 2. In the case of Figure 1, vibration waves of three wavelengths are excited on the circumference of the elastic body, so polarization sections 5, 6, 7, and 8 are each 1/6 of the circumference. This corresponds to 1/2 of the wavelength of the vibration wave. Polarization sections 9, 10, 11, and 12 are smaller than polarization sections 5, 6, 7, and 8, and are 1/1/2 of the wavelength of the vibration wave.
There are 8 categories. In addition, polarization sections 9 and 10 are located at both ends of the A phase, and 11 and 12 are located at both ends of the B phase. 7, 8, 11, and 12 are arranged line-symmetrically and in a well-balanced manner. The A phase and the B phase are configured to have a positional phase difference of 1/3 wavelength of the vibration wave on the circumference. The polarization section 3-b is a detection section for detecting the state of vibration waves excited on the elastic body, and 1 on the front side is an A electrode, 2 is a B electrode, and 3-a is a detection electrode.

【0011】次に、以上説明した分極区分が形成されて
いる圧電素子を弾性体に接合し、超音波モータを構成し
た場合の動作状態の一実施例を説明する。
[0011] Next, an embodiment of the operating state in which an ultrasonic motor is constructed by bonding the piezoelectric element in which the polarization sections described above are formed to an elastic body will be described.

【0012】前述した圧電素子の裏面を弾性体に接合し
、超音波モータのステータを構成すると圧電素子の裏面
には同電位の電圧を印加することができる。これを共通
電極とする。
If the back surface of the piezoelectric element described above is bonded to an elastic body to form the stator of an ultrasonic motor, voltages of the same potential can be applied to the back surface of the piezoelectric element. This is used as a common electrode.

【0013】まず、前記電極1と共通電極の間に適当な
周波数の交流電圧を印加すると、A相は線対称にバラン
ス良く形成されているため、A相の分極区分5、6の境
と両端が節となるような定在波がステータ全体に生じる
。これを第1の定在波とし、この駆動状態を第1の駆動
状態とする。次に、第2の駆動状態として、前記電極2
と共通電極の間に、前記周波数の交流電圧を印加すると
、B相も線対称にバランス良く形成されているため、B
相の分極区分7、8の境と両端がその節になるような第
2の定在波がステータ全体に生じる。更に第3の駆動状
態として、前記電極1と共通電極の間及び前記電極2と
共通電極の間にそれぞれ同位相の前記周波数の交流電圧
を印加すると、前記第1の定在波と第2の定在波との合
成波がステータ全体に生じ、該合成波の節は第1の定在
波の節と第2の定在波の節との中間に位置する。
First, when an AC voltage of an appropriate frequency is applied between the electrode 1 and the common electrode, since the A phase is formed line-symmetrically and well-balanced, the boundary between the polarization sections 5 and 6 of the A phase and both ends Standing waves such as nodes are generated throughout the stator. This is defined as a first standing wave, and this drive state is defined as a first drive state. Next, as a second driving state, the electrode 2
When an AC voltage of the above frequency is applied between the B phase and the common electrode, the B phase is also formed line symmetrically and well balanced.
A second standing wave is generated throughout the stator such that the boundaries and both ends of the phase polarization sections 7 and 8 serve as nodes. Further, as a third driving state, when AC voltages having the same phase and frequency are applied between the electrode 1 and the common electrode and between the electrode 2 and the common electrode, the first standing wave and the second standing wave are applied. A composite wave with the standing wave is generated throughout the stator, and the node of the composite wave is located midway between the first standing wave node and the second standing wave node.

【0014】一方、図2は上述した超音波モータのロー
タの一実施例であり、円周上に6ヶ所の切欠き部または
6ヶ所の突出部13−aを有している。この様に形成さ
れたロータを前述したステータに押圧接触させて、該ス
テータに定在波を励振させると特願平2−70324に
述べられているように、該ロータの突出部は定在波の腹
から節に向かう方向に力を受け最終的に節の位置で安定
し停止する。したがって、前述した駆動状態を第1、2
、3の駆動状態の順またはその逆の順で順次駆動してい
くと節位置がそれに伴ないステータの円周上を回転移動
するため、ステータに押圧接触させたロータも節ととも
に回転していくことになる。ここでA相とB相は1/3
波長分の位相差、すなわち40°の位相差をもって構成
されているため、ロータは20°間隔の間欠駆動となる
On the other hand, FIG. 2 shows an embodiment of the rotor of the ultrasonic motor described above, which has six notches or six protrusions 13-a on the circumference. When the rotor formed in this manner is pressed into contact with the stator described above to excite standing waves in the stator, as described in Japanese Patent Application No. 2-70324, the protruding portions of the rotor will cause standing waves to be excited. Force is applied in the direction from the antinode toward the node, and it finally stabilizes and stops at the node. Therefore, the above-mentioned driving states are
, 3, or in the reverse order, the node position rotates on the circumference of the stator accordingly, so the rotor that is in pressure contact with the stator also rotates with the node. It turns out. Here, A phase and B phase are 1/3
Since the rotor is configured to have a phase difference equal to the wavelength, that is, a phase difference of 40 degrees, the rotor is driven intermittently at intervals of 20 degrees.

【0015】以上説明した超音波モータにおいては、各
相単独駆動による定在波の共振周波数はもちろん、その
節位置や振幅の大小も重要になる。
In the ultrasonic motor described above, not only the resonant frequency of the standing wave caused by driving each phase independently, but also the node position and the magnitude of the amplitude are important.

【0016】尚、本実施例ではA相とB相の位相差を1
/3波長(=40°)として説明したが、本発明はこれ
に限定されるものではない。
In this embodiment, the phase difference between phase A and phase B is set to 1.
/3 wavelength (=40°), but the present invention is not limited to this.

【0017】前述した実施例は、A相、B相の定在波と
その合成定在波を利用した間欠駆動の超音波モータであ
る。
The embodiment described above is an intermittent drive ultrasonic motor that utilizes A-phase and B-phase standing waves and their composite standing waves.

【0018】次に、他の実施例として合成波を使用せず
定在波のみを利用した間欠駆動の超音波モータについて
説明する。
Next, as another embodiment, an intermittent drive ultrasonic motor that uses only standing waves without using composite waves will be described.

【0019】駆動原理については前述したものと同一の
原理であるため説明は省き、ここでは、振動区分と駆動
部分について述べる。図3は本一実施例の圧電素子であ
り、12個の振動区分21から32が形成されている。 この様に構成された圧電素子において、弾性体上に2波
長分の定在波を、その腹が振動区分31、22、25、
28の位置にできるように励振させたい場合は、例えば
図3(a)の斜線部で示される振動区分を駆動すればよ
い。ここで図中の+、−の符号はある時間における駆動
電圧の極性を示しており、また駆動部分は全体として線
対称になっている。また図3(b)においては図3(a
)の駆動部分に加え、振動区分23、27も駆動してお
り、その駆動部分は全体として線対称になっている。更
に図3(c)においては図の斜線部で示される振動区分
を駆動しており、振動波の半波長分にあたる振動区分2
7、28、29のうち、27と29を駆動している。し
たがってこの半波長分の振動区分において駆動部分は線
対称となっている。以上説明した駆動状態では振動波の
節位置は期待された位置に精度良くできる。
Since the driving principle is the same as that described above, the explanation will be omitted, and the vibration section and the driving portion will be described here. FIG. 3 shows a piezoelectric element according to this embodiment, in which twelve vibration sections 21 to 32 are formed. In the piezoelectric element configured in this way, a standing wave of two wavelengths is generated on the elastic body, and the antinode of the standing wave is the vibration section 31, 22, 25,
If it is desired to cause vibration to occur at the position 28, for example, the vibration section shown by the shaded area in FIG. 3(a) may be driven. Here, the + and - signs in the figure indicate the polarity of the driving voltage at a certain time, and the driving portion is line-symmetrical as a whole. Also, in Fig. 3(b), Fig. 3(a)
), the vibrating sections 23, 27 are also driven, the drive parts being line-symmetrical as a whole. Furthermore, in Fig. 3(c), the vibration section shown by the hatched part in the figure is driven, and vibration section 2, which corresponds to half the wavelength of the vibration wave, is driven.
7, 28, and 29, 27 and 29 are being driven. Therefore, the driving portion is line symmetrical in this half-wavelength vibration section. In the driving state described above, the node position of the vibration wave can be accurately positioned at the expected position.

【0020】また、以上2つの実施例では超音波モータ
の定在波による間欠駆動のみで説明したが、本発明はこ
れに限定されるものではなく、例えば、A相B相にそれ
ぞれ時間的位相の異なる交流電圧を印加し進行波を励振
させて、駆動電圧の出力時間を間欠にし、進行波により
ロータを間欠駆動させ、一定または任意の時間毎に前述
した定在波を励振させる駆動法も考えられる。この駆動
方法の場合、進行波間欠駆動時に発生する回転誤差が、
定在波を励振した時に打消され、回転の累積誤差がなく
なる効果がある。
Furthermore, in the above two embodiments, only the intermittent driving of the ultrasonic motor by the standing waves has been explained, but the present invention is not limited to this. There is also a driving method in which different alternating current voltages are applied to excite a traveling wave, the output time of the drive voltage is made intermittently, the rotor is intermittently driven by the traveling wave, and the standing wave described above is excited at constant or arbitrary intervals. Conceivable. With this drive method, the rotation error that occurs during intermittent traveling wave drive is
When a standing wave is excited, it is canceled out, which has the effect of eliminating cumulative errors in rotation.

【0021】[0021]

【発明の効果】本発明は以上説明した通りであるが、本
発明によれば以下に述べるような効果がある。
[Effects of the Invention] The present invention has been described above, and the present invention has the following effects.

【0022】従来の圧電素子の振動区分配置では、A相
B相それぞれがしめる面積が異なるため、各相単独に駆
動させた場合、各相で振動波の振幅や共振周波数に差異
が生じる等の問題や、合成波の節の位置が予測した位置
に一致しない等の問題が生じていたが、本発明によれば
、A相とB相とは線対称になっており、面積も等しいた
め、上述のような問題はなくなる。
[0022] In the conventional vibrating arrangement of piezoelectric elements, the areas covered by the A and B phases are different, so when each phase is driven independently, differences occur in the amplitude and resonance frequency of the vibration waves of each phase. However, according to the present invention, since the A phase and B phase are line symmetrical and have the same area, Problems such as those mentioned above are eliminated.

【0023】また、従来の他の圧電素子の分極配置とし
て、駆動面積をより多く得るために、振動波の波長の1
/2より大または小なる振動区分を、各相の両端に形成
していたが、各相の両端で該分極区分の面積が異なって
いた。そのため、各相のバランスがくずれ、各相単独に
駆動した場合各相で振動波の節の位置が振動区分の境に
一致しない等の問題があったが、本発明による振動区分
の配置によれば、振動波長の1/2より大または小なる
分極区分は各相の両端に等しい面積で配置されるため、
各相のバランスが良くなり、振動波の節は振動区分の境
の位置にでき、上記の問題は解決される。更に、本発明
では各相で駆動される定在波の節位置が振動区分の境に
一致し、かつ、それぞれの振幅が等しくなるため、それ
ら定在波の合成波の節位置も予測した位置にでき、また
、駆動面積も等しく大きくなるため、安定した駆動状態
で効率の高い超音波モータが実現できる。
[0023] In addition, as for the polarization arrangement of other conventional piezoelectric elements, in order to obtain a larger driving area, one of the wavelengths of the vibration waves is
Vibration sections larger or smaller than /2 were formed at both ends of each phase, but the areas of the polarization sections were different at both ends of each phase. Therefore, there were problems such as the balance of each phase being lost and the position of the vibration wave node of each phase not matching the boundary of the vibration section when each phase was driven independently.However, with the arrangement of the vibration section according to the present invention, For example, since the polarization sections larger or smaller than 1/2 of the vibration wavelength are arranged with equal area at both ends of each phase,
The balance of each phase is improved, the nodes of the vibration waves are located at the boundaries of the vibration sections, and the above problem is solved. Furthermore, in the present invention, the nodal positions of the standing waves driven by each phase coincide with the boundaries of the vibration sections, and the amplitudes of each are equal, so the nodal positions of the composite wave of these standing waves are also at the predicted positions. In addition, since the driving area becomes equally large, a highly efficient ultrasonic motor with stable driving conditions can be realized.

【0024】また、図3に示した実施例では、期待され
る振動波の節位置をずらすことなく駆動面積を小さくで
きるため、低消費電力の超音波モータが実現できる。
Furthermore, in the embodiment shown in FIG. 3, the driving area can be reduced without shifting the expected node positions of the vibration waves, so an ultrasonic motor with low power consumption can be realized.

【0025】尚、本実施例では定在波のみを利用した駆
動方法のみで説明したが、本発明はこれに限定されるも
のではなく、進行波または進行波と定在波を混用した駆
動方法でも同様の効果が得られることは言うまでもない
In this embodiment, only a driving method using only standing waves has been described, but the present invention is not limited to this, and may include driving methods using traveling waves or a mixture of traveling waves and standing waves. But it goes without saying that the same effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1、図3】本発明の一実施例における圧電素子の分
極区分配置図。
FIGS. 1 and 3 are diagrams showing the polarization division arrangement of a piezoelectric element in an embodiment of the present invention.

【図2】一実施例におけるロータの平面図。FIG. 2 is a plan view of a rotor in one embodiment.

【図4、図5】従来の圧電素子の振動区分配置図を示す
図。
FIGS. 4 and 5 are diagrams showing the vibration division layout of a conventional piezoelectric element.

【符号の説明】[Explanation of symbols]

1  A電極 2  B電極 3−a  検出電極 3−b  検出用分極区分 4  A相、B相の位相差部分 5、6、7、8、9、10、11、12、21、22、
23、24、25、26、27、28、29、30、3
1、32  振動区分 13  ロータ 13−a  突出部 13−b  ロータかな 13−c  ロータ軸
1 A electrode 2 B electrode 3-a Detection electrode 3-b Detection polarization section 4 A phase and B phase phase difference portions 5, 6, 7, 8, 9, 10, 11, 12, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 3
1, 32 Vibration section 13 Rotor 13-a Projection 13-b Rotor pinion 13-c Rotor shaft

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電圧を印加することにより圧電効果を有す
る圧電素子が接合された弾性体と、該弾性体に摩擦接触
して回転駆動される回転体と、該回転体を前記弾性体に
加圧接触させる加圧手段とを有し、前記圧電素子は幾つ
かの振動区分からなり、該振動区分により前記弾性体に
振動波が励振される超音波モータにおいて、前記圧電素
子は複数の振動区分からなる駆動部分A相とB相を有し
、それぞれの駆動部分における前記振動区分の形状は、
ほぼ線対称であることを特徴とする圧電素子の振動区分
配置。
1. An elastic body to which a piezoelectric element having a piezoelectric effect is bonded by applying a voltage; a rotating body that is rotationally driven by frictional contact with the elastic body; and a rotating body that is driven to rotate by frictionally contacting the elastic body. the piezoelectric element includes a plurality of vibration sections, and the vibration section excites vibration waves in the elastic body, the piezoelectric element includes a plurality of vibration sections; The shape of the vibration section in each drive part is as follows:
A vibration segmented arrangement of piezoelectric elements characterized by approximately line symmetry.
【請求項2】請求項1記載の駆動部分A相とB相におけ
る振動区分の形状は、相互にほぼ等しい事を特徴とする
圧電素子の振動区分配置。
2. The vibration section arrangement of piezoelectric elements according to claim 1, wherein the shapes of the vibration sections in the A-phase and B-phase drive portions are substantially equal to each other.
【請求項3】請求項1記載の超音波モータにおける圧電
素子が複数の振動区分からなり、該振動区分を複数使用
して駆動部分を形成する場合において、該振動区分によ
り形成された前記駆動部分の形状がほぼ線対称であるこ
とを特徴とする圧電素子の駆動部分の形状。
3. In the ultrasonic motor according to claim 1, in the case where the piezoelectric element comprises a plurality of vibrating sections and a plurality of the vibrating sections are used to form a driving section, the driving section is formed by the vibrating sections. A shape of a driving portion of a piezoelectric element characterized in that the shape is almost line symmetrical.
【請求項4】請求項3記載の駆動部分の形状は、前述の
弾性体に励振する振動波の半波長分の範囲において、該
振動波の腹の位置に対してほぼ線対称になっていること
を特徴とする圧電素子の駆動部分の形状。
4. The shape of the driving portion according to claim 3 is approximately line symmetrical with respect to the position of the antinode of the vibration wave within a half wavelength range of the vibration wave excited in the elastic body. The shape of the driving part of the piezoelectric element is characterized by:
JP3003924A 1990-10-22 1991-01-17 Disposition of vibrating segment of piezoelectric element and shape of driving part Pending JPH04236177A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3003924A JPH04236177A (en) 1991-01-17 1991-01-17 Disposition of vibrating segment of piezoelectric element and shape of driving part
DE69228888T DE69228888T2 (en) 1991-01-17 1992-01-16 Ultrasonic stepper motor
EP92300396A EP0495665B1 (en) 1991-01-17 1992-01-16 Ultrasonic stepping motor
KR1019920000613A KR920015691A (en) 1991-01-17 1992-01-17 Ultrasonic Stepping Motor and Oscillator Driving Method
US07/822,485 US5343108A (en) 1991-01-17 1992-01-17 Ultrasonic step motor
US08/012,486 US5610468A (en) 1990-10-22 1993-02-01 Ultrasonic step motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3003924A JPH04236177A (en) 1991-01-17 1991-01-17 Disposition of vibrating segment of piezoelectric element and shape of driving part

Publications (1)

Publication Number Publication Date
JPH04236177A true JPH04236177A (en) 1992-08-25

Family

ID=11570694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3003924A Pending JPH04236177A (en) 1990-10-22 1991-01-17 Disposition of vibrating segment of piezoelectric element and shape of driving part

Country Status (1)

Country Link
JP (1) JPH04236177A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027718A (en) * 2012-07-24 2014-02-06 Nikon Corp Vibration actuator, lens, barrel, and camera
JP2017163837A (en) * 2017-05-01 2017-09-14 株式会社ニコン Vibration actuator, lens barrel and camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027718A (en) * 2012-07-24 2014-02-06 Nikon Corp Vibration actuator, lens, barrel, and camera
JP2017163837A (en) * 2017-05-01 2017-09-14 株式会社ニコン Vibration actuator, lens barrel and camera

Similar Documents

Publication Publication Date Title
US8063538B2 (en) Ultrasonic motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH04236177A (en) Disposition of vibrating segment of piezoelectric element and shape of driving part
JP2532425B2 (en) Ultrasonic motor
JP2694142B2 (en) Ultrasonic motor input control device
JPH03164077A (en) Ultrasonic motor
JP4497980B2 (en) Piezoelectric body and polarization method thereof
JPS62247770A (en) Ultrasonic motor
JPH04138084A (en) Ultrasonic motor and oscillator thereof
JPS62247771A (en) Oscillatory-wave motor
JP2537874B2 (en) Ultrasonic motor
JPS63283475A (en) Ultrasonic motor
JP2752105B2 (en) Vibration wave device
JP2746578B2 (en) Ultrasonic motor
JPH01238476A (en) Vibration wave motor
JP2669013B2 (en) Electrode structure of ultrasonic motor
JP2000060152A (en) Ultrasonic motor
JPS63268476A (en) Oscillatory wave motor
JPH04172975A (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JPH0458272B2 (en)
JPH0714275B2 (en) Vibration wave motor device
JPH0479238B2 (en)
JP2710803B2 (en) Piezo actuator
JP2601268B2 (en) Ultrasonic motor