JPH04236067A - Two-stage compression refrigerating cycle device - Google Patents

Two-stage compression refrigerating cycle device

Info

Publication number
JPH04236067A
JPH04236067A JP3005041A JP504191A JPH04236067A JP H04236067 A JPH04236067 A JP H04236067A JP 3005041 A JP3005041 A JP 3005041A JP 504191 A JP504191 A JP 504191A JP H04236067 A JPH04236067 A JP H04236067A
Authority
JP
Japan
Prior art keywords
refrigerant
stage
heat exchanger
low
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3005041A
Other languages
Japanese (ja)
Inventor
Yuji Yoshida
雄二 吉田
Kazuo Nakatani
和生 中谷
Shozo Funakura
正三 船倉
Minoru Tagashira
実 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3005041A priority Critical patent/JPH04236067A/en
Publication of JPH04236067A publication Critical patent/JPH04236067A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To increase the capacity and efficiency of the title device by a method wherein the refrigerant inlet ports for low-stage and high-stage of a refrigerant heat exchanger are connected to first and second throttle devices and the refrigerant outlet port for low-stage is connected between first and second non-return valves and a throttle device while a refrigerant outlet port for high-stage is connected to an intermediate point between a low-stage side compressing mechanism and a high-stage side compressing mechanism. CONSTITUTION:Upon heating operation, the refrigerant of a load side heat exchanger 4 is branched through first throttle devices 5 and a first non-return valve 11 and refrigerant for low-stage flows from a refrigerant/refrigerant heat exchanger 9 into a heat source side heat exchanger 7 through a fourth non-return valve 14 and a second throttle device 6 while refrigerant for high-stage flows to an intermediate point between a low-stage side compressing mechanism 1 and a high-stage side compressing mechanism 2 through an auxiliary throttle device 10 and the refrigerant/refrigerant heat exchanger 9. Upon cooling operation, the refrigerant of a heat source side heat exchanger 7 is branched through the second throttle device 6 and a second non-return valve 12 and refrigerant for low-stage flows from the refrigerant/ refrigerant heat exchanger 9 into the load side heat exchanger 4 through a third non-return value 13 and the first throttle devices 5 while the refrigerant for high-stage flows to an intermediate point between compressing mechanisms 1, 2 through the refrigerant/refrigerant heat exchanger 9. According to this method, the circulating amount of refregerant is increased and the capacity as well as the efficiently of the title device can be increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷凍サイクルの循環冷
媒を低段側圧縮機構と高段側圧縮機構で圧縮する二段圧
縮冷凍サイクル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-stage compression refrigeration cycle system for compressing circulating refrigerant in a refrigeration cycle using a low-stage compression mechanism and a high-stage compression mechanism.

【0002】0002

【従来の技術】近年、冷凍サイクルの循環冷媒を低段側
圧縮機構と高段側圧縮機構で圧縮する二段圧縮冷凍サイ
クル装置は、複数の負荷側熱交換器をもつ装置にも適用
されてきており、動作条件が大きく変動する場合にも対
応できることが求められている。
[Prior Art] In recent years, two-stage compression refrigeration cycle devices that compress circulating refrigerant in a refrigeration cycle using a low-stage compression mechanism and a high-stage compression mechanism have been applied to devices with multiple load-side heat exchangers. Therefore, it is required to be able to cope with large fluctuations in operating conditions.

【0003】従来、低温冷凍装置や高温ヒートポンプの
ように冷凍サイクルの蒸発圧力と凝縮圧力との比(圧縮
比)が大きい場合には、吐出温度上昇の防止および圧縮
機効率を向上させるために一段の圧縮機を二台直列に設
けた二段圧縮冷凍サイクル装置が広く使われている。こ
の場合、低段側圧縮機の吐出ガスは高圧の液冷媒や中間
圧の二相冷媒と直接あるいは間接的に熱交換して冷却さ
れた後、高段側圧縮機に吸引され、そこで高圧まで圧縮
、吐出されサイクル内を循環する。こうすることによっ
て高段側圧縮機の吸入ガス温度を低下させてその吐出温
度上昇を防止するものである。また、低段側、高段側圧
縮機での圧縮比を適当に設定することによって各段の圧
縮機効率の良い条件で運転することができ、総合的にみ
て冷凍サイクル効率が向上するものである。
Conventionally, when the ratio of evaporation pressure to condensation pressure (compression ratio) in the refrigeration cycle is large, such as in low-temperature refrigeration equipment or high-temperature heat pumps, further steps have been taken to prevent discharge temperature rise and improve compressor efficiency. A two-stage compression refrigeration cycle system in which two compressors are connected in series is widely used. In this case, the gas discharged from the low-stage compressor is cooled by direct or indirect heat exchange with high-pressure liquid refrigerant or intermediate-pressure two-phase refrigerant, and then sucked into the high-stage compressor, where it is heated to a high pressure. It is compressed, discharged and circulated within the cycle. By doing so, the temperature of the intake gas of the high-stage compressor is lowered and the discharge temperature thereof is prevented from rising. In addition, by appropriately setting the compression ratios of the low-stage and high-stage compressors, each stage of compressor can be operated under conditions with good efficiency, which improves overall refrigeration cycle efficiency. be.

【0004】また、この種の二段圧縮冷凍サイクル装置
は、低温冷凍装置や高温ヒートポンプのような単機能の
用途にのみ専ら用いられており、冷暖房装置のように多
用途に用いられたり、動作条件の大きく変動する用途に
用いられた例は殆どなく、そのための具体的な構成や運
転方法について提案されたものはなかったが、発明者ら
は特願平1−130810号において四方弁をもった二
段圧縮冷凍サイクル装置の構成とその運転方法を開示し
ている。
[0004] Furthermore, this type of two-stage compression refrigeration cycle device is used exclusively for single-function applications such as low-temperature refrigeration equipment and high-temperature heat pumps, and is used for multiple purposes such as air-conditioning equipment, There are almost no examples of it being used in applications where conditions vary widely, and no specific configuration or operating method has been proposed for that purpose, but the inventors proposed a four-way valve in Japanese Patent Application No. 1-130810. The structure of a two-stage compression refrigeration cycle device and its operating method are disclosed.

【0005】ここで、特願平1−130810号の発明
の構成を図2を参照しながら説明すると、低段側圧縮機
構21と高段側圧縮機構22を直列に接続し、四方弁2
3、負荷側熱交換器24、主絞り装置25、熱源側熱交
換器26を連結することにより主冷凍サイクルを構成し
ている。27は逆止弁群であり、低段用冷媒と高段用冷
媒の冷媒対冷媒熱交換器28の低段用冷媒入口28cと
副絞り装置29を介した高段用冷媒入口28aは、四方
弁23の切り替えにより凝縮器となる負荷側熱交換器2
4または熱源側熱交換器26の出口と接続している。ま
た、低段用冷媒出口28dは主絞り装置25と接続し、
高段用冷媒出口28bは低段側圧縮機構21と高段側圧
縮機構22の中間合流点に接続している。
Here, the structure of the invention of Japanese Patent Application No. 1-130810 will be explained with reference to FIG. 2. The low stage compression mechanism 21 and the high stage compression mechanism 22 are connected in series, and the four-way valve 2
3. A main refrigeration cycle is constructed by connecting the load side heat exchanger 24, the main expansion device 25, and the heat source side heat exchanger 26. Reference numeral 27 denotes a check valve group, and the refrigerant inlet 28c for the low stage and the refrigerant inlet 28a for the high stage via the sub-throttle device 29 of the refrigerant-to-refrigerant heat exchanger 28 for the low stage refrigerant and the high stage refrigerant are arranged in four directions. The load side heat exchanger 2 becomes a condenser by switching the valve 23
4 or the outlet of the heat source side heat exchanger 26. Further, the low stage refrigerant outlet 28d is connected to the main throttle device 25,
The high-stage refrigerant outlet 28b is connected to an intermediate confluence point between the low-stage compression mechanism 21 and the high-stage compression mechanism 22.

【0006】このような構成において、その運転方法に
ついて説明すると、まず、加熱機能のときには四方弁2
3の吐出側の開路を負荷側熱交換器24の入口側にとる
と、高段側圧縮機構22から高圧まで昇圧して吐出され
た冷媒は、四方弁23、凝縮器となる負荷側熱交換器2
4、逆止弁群27を経由して、低段用冷媒と高段用冷媒
に分岐される。ここで高段用冷媒は副絞り装置29によ
り中間圧力まで減圧されて寒冷を発生し、冷媒対冷媒熱
交換器28で熱交換される低段用冷媒は冷却されて潜熱
が増大し、同じく熱交換される高段用冷媒は加熱されて
部分的に気化する。低段用冷媒は、主絞り装置25によ
り低圧まで減圧されて、逆止弁群27、蒸発器となる熱
源側熱交換器26、四方弁23を経由して低段側圧縮機
構21で吸入圧縮され、高段側圧縮機構22では部分的
に気化された高段用冷媒を合流して吸入圧縮する。この
ため、中間圧力において低段側圧縮機構21の吐出冷媒
が部分的に気化された高段用冷媒により冷却されて高段
側圧縮機構22の吐出温度の上昇が防止され、低段側圧
縮機構21と高段側圧縮機構22の全体の圧縮機効率が
向上する。また、低段用冷媒は冷媒対冷媒熱交換器28
でさらに過冷却されるため蒸発器となる熱源側熱交換器
26での蒸発潜熱は増大し、凝縮器となる負荷側熱交換
器24では合流された低段用冷媒と高段用冷媒が循環す
るため冷媒循環量が増大し、高能力、高効率が実現され
る。
[0006] In such a configuration, the operating method will be explained. First, when the heating function is activated, the four-way valve 2
If the open circuit on the discharge side of No. 3 is placed on the inlet side of the load-side heat exchanger 24, the refrigerant pressurized to high pressure and discharged from the high-stage compression mechanism 22 passes through the four-way valve 23 and the load-side heat exchanger that becomes the condenser. Vessel 2
4. Via the check valve group 27, the refrigerant is branched into low stage refrigerant and high stage refrigerant. Here, the high-stage refrigerant is depressurized to an intermediate pressure by the sub-throttle device 29 to generate cold, and the low-stage refrigerant, which is heat-exchanged in the refrigerant-to-refrigerant heat exchanger 28, is cooled and its latent heat increases. The high stage refrigerant being replaced is heated and partially vaporized. The low stage refrigerant is reduced in pressure to a low pressure by the main expansion device 25, passes through the check valve group 27, the heat source side heat exchanger 26 serving as an evaporator, and the four-way valve 23, and is suctioned and compressed by the low stage side compression mechanism 21. The partially vaporized high-stage refrigerant is combined and sucked and compressed in the high-stage compression mechanism 22. Therefore, at intermediate pressure, the refrigerant discharged from the low-stage compression mechanism 21 is cooled by the partially vaporized high-stage refrigerant, preventing the discharge temperature of the high-stage compression mechanism 22 from increasing, and the low-stage compression mechanism The overall compressor efficiency of the compressor 21 and the high-stage compression mechanism 22 is improved. In addition, the refrigerant for the lower stage is used in the refrigerant-to-refrigerant heat exchanger 28.
The latent heat of evaporation increases in the heat source side heat exchanger 26, which serves as an evaporator, and the combined low-stage refrigerant and high-stage refrigerant circulate in the load-side heat exchanger 24, which serves as a condenser. This increases the amount of refrigerant circulation, achieving high capacity and efficiency.

【0007】さらに、冷却機能のときには四方弁23の
吐出側の開路を熱源側熱交換器26の入口側にとると、
逆止弁群27により低段用冷媒と高段用冷媒の入口側は
熱源側熱交換器26の出口側に接続されるため、高段側
圧縮機構22から吐出された冷媒は、四方弁23、凝縮
器となる熱源側熱交換器26、逆止弁群27を経由して
、低段用冷媒と高段用冷媒に分岐される。以下、加熱機
能のときと同様に、冷却機能のときにも吐出温度上昇の
防止や圧縮機効率の向上だけでなく、蒸発器となる負荷
側熱交換器24での潜熱と凝縮器となる熱源側熱交換器
26での冷媒循環量が増大し、高能力、高効率が実現さ
れる。
Furthermore, when the cooling function is used, if the discharge side of the four-way valve 23 is opened on the inlet side of the heat source side heat exchanger 26,
Since the inlet sides of the low stage refrigerant and the high stage refrigerant are connected to the outlet side of the heat source side heat exchanger 26 by the check valve group 27, the refrigerant discharged from the high stage side compression mechanism 22 is connected to the four-way valve 23. The refrigerant is branched into a low stage refrigerant and a high stage refrigerant via a heat source side heat exchanger 26 serving as a condenser and a check valve group 27. Hereinafter, as in the case of the heating function, when the cooling function is used, not only does it prevent the discharge temperature from rising and improve compressor efficiency, but also the latent heat in the load-side heat exchanger 24, which becomes the evaporator, and the heat source, which becomes the condenser. The amount of refrigerant circulated in the side heat exchanger 26 increases, achieving high capacity and high efficiency.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の二段圧縮冷凍サイクル装置では、主絞り装置
25を一つとして加熱と冷却の両機能を果たしているた
め、マルチ式の負荷側熱交換器24をもつ場合には、中
間圧力における冷媒対冷媒熱交換器28における接続配
管に工夫を要するものである。
[Problems to be Solved by the Invention] However, in such a conventional two-stage compression refrigeration cycle device, the main throttling device 25 is used as a single unit to perform both heating and cooling functions, so a multi-type load-side heat exchange is required. In the case where the refrigerant 24 is provided, the connection piping in the refrigerant-to-refrigerant heat exchanger 28 at intermediate pressure must be devised.

【0009】本発明は上記課題を解決するもので、マル
チ式の冷暖房装置や冷暖房給湯装置のように加熱と冷却
の両機能をもち、複数の負荷側熱交換器をもつ装置にも
適用でき、動作条件の大きく変動する場合にも対応でき
る二段圧縮冷凍サイクル装置を提供することを目的とし
ている。
The present invention solves the above-mentioned problems, and can be applied to devices that have both heating and cooling functions, such as multi-type air-conditioning equipment or air-conditioning/heating water heaters, and have a plurality of load-side heat exchangers. It is an object of the present invention to provide a two-stage compression refrigeration cycle device that can cope with large fluctuations in operating conditions.

【0010】0010

【課題を解決するための手段】本発明は上記目的を達成
するために、低段側圧縮機構と高段側圧縮機構を直列に
接続し、四方弁、負荷側熱交換器、第1絞り装置、第2
絞り装置、熱源側熱交換器などを接続して主冷凍サイク
ルを構成し、冷媒対冷媒熱交換器の低段用冷媒入口と副
絞り装置を介した高段用冷媒入口は第1逆止弁と第2逆
止弁を介してそれぞれ第1絞り装置と第2絞り装置に接
続し、低段用冷媒出口は分岐して第3逆止弁と第4逆止
弁を介してそれぞれ第1逆止弁と第1絞り装置の間およ
び第2逆止弁と第2絞り装置の間に接続し、高段用冷媒
出口は低段側圧縮機構と高段側圧縮機構の中間に接続し
たことを課題解決手段としている。
[Means for Solving the Problems] In order to achieve the above object, the present invention connects a low-stage compression mechanism and a high-stage compression mechanism in series, and includes a four-way valve, a load-side heat exchanger, and a first throttle device. , second
A main refrigeration cycle is constructed by connecting a throttling device, a heat source side heat exchanger, etc., and the refrigerant inlet for the low stage of the refrigerant-to-refrigerant heat exchanger and the refrigerant inlet for the high stage via the sub-throttle device are connected to the first check valve. The refrigerant outlet for the low stage is connected to the first throttle device and the second throttle device through the third check valve and the fourth check valve, respectively. It is connected between the stop valve and the first throttle device and between the second check valve and the second throttle device, and the high stage refrigerant outlet is connected between the low stage compression mechanism and the high stage compression mechanism. It is used as a means of solving problems.

【0011】[0011]

【作用】本発明は上記した課題解決手段により、加熱機
能のときは凝縮器となる負荷側熱交換器を出た冷媒は、
第1絞り装置と第1逆止弁を経由して分岐され、低段用
冷媒は冷媒対冷媒熱交換器から第4逆止弁と第2絞り装
置を経由して蒸発器となる熱源側熱交換器に流出し、高
段用冷媒は副絞り装置および冷媒対冷媒熱交換器を経由
して低段側圧縮機構と高段側圧縮機構の中間に流出する
。このとき、第2逆止弁と第3逆止弁は、低段用冷媒が
冷媒対冷媒熱交換器を経由することなく熱源側熱交換器
に流出することを防止する。また、冷却機能のときは凝
縮器となる熱源側熱交換器を出た冷媒は、第2絞り装置
と第2逆止弁を経由して分岐され、低段用冷媒は冷媒対
冷媒熱交換器から第3逆止弁と第1絞り装置を経由して
蒸発器となる負荷側熱交換器に流出し、高段用冷媒は副
絞り装置および冷媒対冷媒熱交換器を経由して低段側圧
縮機構と高段側圧縮機構の中間に流出する。このとき、
第1逆止弁と第4逆止弁は、低段用冷媒が冷媒対冷媒熱
交換器を経由することなく負荷側熱交換器に流出するこ
とを防止する。
[Operation] According to the present invention, the refrigerant leaving the load-side heat exchanger, which functions as a condenser when in the heating function, is
The low-stage refrigerant is branched via the first throttle device and the first check valve, and the heat source side heat from the refrigerant-to-refrigerant heat exchanger passes through the fourth check valve and the second throttle device to the evaporator. The high-stage refrigerant flows out into the exchanger, and flows out into the middle of the low-stage compression mechanism and the high-stage compression mechanism via the sub-throttle device and the refrigerant-to-refrigerant heat exchanger. At this time, the second check valve and the third check valve prevent the low stage refrigerant from flowing out to the heat source side heat exchanger without passing through the refrigerant-to-refrigerant heat exchanger. In addition, in the case of the cooling function, the refrigerant that exits the heat source side heat exchanger, which serves as a condenser, is branched off via the second throttle device and the second check valve, and the refrigerant for the lower stage is transferred to the refrigerant-to-refrigerant heat exchanger. The high stage refrigerant flows through the third check valve and the first throttling device to the load side heat exchanger which becomes the evaporator, and the high stage refrigerant flows through the sub throttling device and the refrigerant-to-refrigerant heat exchanger to the low stage side. It flows out between the compression mechanism and the high-stage compression mechanism. At this time,
The first check valve and the fourth check valve prevent the low-stage refrigerant from flowing out to the load-side heat exchanger without passing through the refrigerant-to-refrigerant heat exchanger.

【0012】したがって、第1絞り装置と第1逆止弁の
間で分岐すれば、複数の負荷側熱交換器とそれに対応す
る複数の第1絞り装置を接続することが可能となり、マ
ルチ式の冷暖房装置や冷暖房給湯装置のように任意の負
荷側熱交換器を機能させるときにも、常に二段圧縮冷凍
サイクルを構成することが可能となる。
Therefore, by branching between the first throttle device and the first check valve, it becomes possible to connect a plurality of load-side heat exchangers and a plurality of corresponding first throttle devices, and a multi-type Even when an arbitrary load-side heat exchanger functions like an air-conditioning device or an air-conditioning/heating water supply device, it is possible to always configure a two-stage compression refrigeration cycle.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1に基づいて説
明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIG.

【0014】図に示すように、低段側圧縮機構1は高段
側圧縮機構2を直列に接続し、四方弁3、複数の負荷側
熱交換器4、複数の第1絞り装置5、第2絞り装置6、
熱源側熱交換器7を連結することにより主冷凍サイクル
を構成している。8は中間熱交換器ユニットであり、冷
媒対冷媒熱交換器9の低段用冷媒入口9cと副絞り装置
10を介した高段用冷媒入口9aは第1逆止弁11と第
2逆止弁12を介してそれぞれ第1絞り装置5と第2絞
り装置6に接続し、低段用冷媒出口9dは分岐して第3
逆止弁13と第4逆止弁14を介してそれぞれ第1逆止
弁11と第1絞り装置5の間および第2逆止弁12と第
2絞り装置6の間に接続し、高段用冷媒出口9bは低段
側圧縮機構1と高段側圧縮機構2の中間に接続している
As shown in the figure, the low-stage compression mechanism 1 connects the high-stage compression mechanism 2 in series, and includes a four-way valve 3, a plurality of load-side heat exchangers 4, a plurality of first expansion devices 5, and a first expansion device 5. 2 diaphragm device 6,
A main refrigeration cycle is configured by connecting the heat source side heat exchanger 7. Reference numeral 8 denotes an intermediate heat exchanger unit, in which the low stage refrigerant inlet 9c of the refrigerant-to-refrigerant heat exchanger 9 and the high stage refrigerant inlet 9a via the sub-throttle device 10 are connected to a first check valve 11 and a second check valve. They are connected to the first throttle device 5 and the second throttle device 6 through valves 12, respectively, and the low stage refrigerant outlet 9d is branched to the third throttle device.
The high-stage The refrigerant outlet 9b is connected to the middle of the low-stage compression mechanism 1 and the high-stage compression mechanism 2.

【0015】上記構成においてその運転方法について説
明すると、まず、加熱機能のときは、四方弁3の吐出側
の開路を負荷側熱交換器4の入口側にとると、高段側圧
縮機構2から吐出された冷媒は、四方弁3、凝縮器とな
る複数の負荷側熱交換器4、複数の第1絞り装置5を流
出し、第1逆止弁11を経由して、低段用冷媒と高段用
冷媒に分岐される。ここで高段用冷媒は副絞り装置10
により減圧されて寒冷を発生し、冷媒対冷媒熱交換器9
で熱交換される低段用冷媒は冷却されて潜熱が増大し、
同じく熱交換される高段用冷媒は加熱されて部分的に気
化して低段側圧縮機構1と高段圧縮機構2の中間に流出
する。低段用冷媒は、冷媒対冷媒熱交換器9、第4逆止
弁14から、第2絞り装置6、蒸発器となる熱源側熱交
換器7、四方弁3を経由して低段側圧縮機構1で吸入圧
縮され、高段側圧縮機構2では部分的に気化された高段
用冷媒を合流して吸入圧縮する。このため、低段側圧縮
機構1の吐出冷媒が部分的に気化された高段用冷媒によ
り冷却されて高段側圧縮機構2の吐出温度の上昇が防止
され、低段側圧縮機構1と高段側圧縮機構2の全体の圧
縮機効率が向上する。また、低段用冷媒は冷媒対冷媒熱
交換器9でさらに過冷却されるため、蒸発器となる熱源
側熱交換器7での蒸発潜熱は増大し、凝縮器となる複数
の負荷側熱交換器4では合流された低段用冷媒と高段用
冷媒が循環するため冷媒循環量が増大し、高能力、高効
率が実現できる。なお、このとき第2逆止弁12と第3
逆止弁13は、低段用冷媒が冷媒対冷媒熱交換器9を経
由することなく熱源側熱交換器7に流出することを防止
するものであり、複数の内任意の負荷側熱交換器4のみ
が機能されるときにも、常に二段圧縮冷凍サイクルを構
成することが可能となる。
To explain the operating method in the above configuration, first, when the heating function is used, if the open circuit on the discharge side of the four-way valve 3 is placed on the inlet side of the load side heat exchanger 4, the flow from the high stage side compression mechanism 2 will be explained. The discharged refrigerant flows out of the four-way valve 3, the plurality of load-side heat exchangers 4 serving as condensers, and the plurality of first throttling devices 5, and passes through the first check valve 11 to become a low-stage refrigerant. Branched into high stage refrigerant. Here, the high-stage refrigerant is supplied to the sub-throttle device 10.
The pressure is reduced by the refrigerant to refrigerant heat exchanger 9 to generate cold.
The low stage refrigerant that undergoes heat exchange is cooled and its latent heat increases,
The high-stage refrigerant that is also heat-exchanged is heated, partially vaporizes, and flows out into the middle of the low-stage compression mechanism 1 and the high-stage compression mechanism 2. The refrigerant for the low stage is compressed on the low stage side via the refrigerant-to-refrigerant heat exchanger 9, the fourth check valve 14, the second expansion device 6, the heat source side heat exchanger 7 which serves as an evaporator, and the four-way valve 3. The refrigerant is suctioned and compressed in the mechanism 1, and the partially vaporized high-stage refrigerant is combined and suctioned and compressed in the high-stage compression mechanism 2. Therefore, the refrigerant discharged from the low-stage compression mechanism 1 is cooled by the partially vaporized high-stage refrigerant, and an increase in the discharge temperature of the high-stage compression mechanism 2 is prevented. The overall compressor efficiency of the stage-side compression mechanism 2 is improved. In addition, since the low-stage refrigerant is further subcooled in the refrigerant-to-refrigerant heat exchanger 9, the latent heat of evaporation in the heat source side heat exchanger 7, which serves as an evaporator, increases, and the heat exchanger on the load side, which serves as a condenser, increases. In the vessel 4, the combined low-stage refrigerant and high-stage refrigerant circulate, so the amount of refrigerant circulation increases, and high capacity and efficiency can be achieved. In addition, at this time, the second check valve 12 and the third
The check valve 13 prevents the low-stage refrigerant from flowing out to the heat source side heat exchanger 7 without passing through the refrigerant-to-refrigerant heat exchanger 9, and is configured to prevent the low-stage refrigerant from flowing out to the heat source side heat exchanger 7 without passing through the refrigerant-to-refrigerant heat exchanger 9. Even when only 4 is functioning, it is always possible to configure a two-stage compression refrigeration cycle.

【0016】つぎに、冷却機能のときは、四方弁3の吐
出側の開路を熱源側熱交換器7の入口側にとると、高段
側圧縮機構2から吐出された冷媒は、四方弁3、凝縮器
となる熱源側熱交換器7、第2絞り装置6を流出し、第
2逆止弁12を経由して、低段用冷媒と高段用冷媒に分
岐される。ここで高段用冷媒は副絞り装置10により減
圧されて寒冷を発生し、冷媒対冷媒熱交換器9で熱交換
される低段用冷媒は冷却されて潜熱が増大し、同じく熱
交換される高段用冷媒は加熱されて部分的に気化して低
段側圧縮機構1と高段側圧縮機構2の中間に流出する。 低段用冷媒は、冷媒対冷媒熱交換器9、第3逆止弁13
から複数の第1絞り装置5、蒸発器となる複数の負荷側
熱交換器4、四方弁3を経由して低段側圧縮機構1で吸
入圧縮され、高段側圧縮機構2では部分的に気化された
高段用冷媒を合流して吸入圧縮する。このため、加熱機
能のときと同様に、冷却機能のときにも吐出温度上昇の
防止や圧縮機効率の向上だけでなく、蒸発器となる複数
の負荷側熱交換器4での潜熱と凝縮器となる熱源側熱交
換器7での冷媒循環量が増大し、高能力・高効率が実現
される。したがって、冷却機能のときには、第1逆止弁
11と第4逆止弁14が低段用冷媒が冷媒対冷媒熱交換
器9を経由することなく負荷側熱交換器4に流出するこ
とを防止するものであり、複数の内任意の負荷側熱交換
器4のみが機能されるときにも、常に二段圧縮冷凍サイ
クルを構成することが可能となる。
Next, in the case of the cooling function, if the open circuit on the discharge side of the four-way valve 3 is placed on the inlet side of the heat source-side heat exchanger 7, the refrigerant discharged from the high-stage compression mechanism 2 will flow through the four-way valve 3. The refrigerant flows out of the heat source side heat exchanger 7 serving as a condenser, the second expansion device 6, and is branched into a low-stage refrigerant and a high-stage refrigerant via the second check valve 12. Here, the high-stage refrigerant is depressurized by the sub-throttle device 10 to generate cold, and the low-stage refrigerant, which is heat-exchanged in the refrigerant-to-refrigerant heat exchanger 9, is cooled and its latent heat increases, and is also heat-exchanged. The high-stage refrigerant is heated, partially vaporizes, and flows out between the low-stage compression mechanism 1 and the high-stage compression mechanism 2. The low-stage refrigerant is supplied to the refrigerant-to-refrigerant heat exchanger 9 and the third check valve 13.
is suctioned and compressed by the low-stage compression mechanism 1 via a plurality of first expansion devices 5, a plurality of load-side heat exchangers 4 serving as evaporators, and a four-way valve 3, and is partially sucked and compressed by the high-stage compression mechanism 2. The vaporized high-stage refrigerant is combined and sucked and compressed. For this reason, in the case of the cooling function, as in the case of the heating function, in addition to preventing a rise in discharge temperature and improving compressor efficiency, it is possible to reduce the amount of latent heat in the multiple load-side heat exchangers 4, which serve as evaporators, and the condenser. The amount of refrigerant circulated in the heat source side heat exchanger 7 increases, and high capacity and high efficiency are realized. Therefore, during the cooling function, the first check valve 11 and the fourth check valve 14 prevent the low-stage refrigerant from flowing out to the load-side heat exchanger 4 without passing through the refrigerant-to-refrigerant heat exchanger 9. This makes it possible to always configure a two-stage compression refrigeration cycle even when only an arbitrary load-side heat exchanger 4 among a plurality of load-side heat exchangers 4 functions.

【0017】なお、第1絞り装置5と第2絞り装置6は
、全開、全閉可能な電子式膨張弁により構成してもよい
し、キャピラリーチューブと逆止弁の組(図示せず)に
変更するなどの改造は本発明に含まれるものである。 また冷媒対冷媒熱交換器9、副絞り装置10、第1〜第
4逆止弁11、12、13、14は、一つのセットとし
て中間熱交換器ユニット8にまとめることが可能であり
、二段圧縮冷凍サイクル装置の種々の応用に適用するこ
とができる。
The first throttle device 5 and the second throttle device 6 may be configured with electronic expansion valves that can be fully opened and fully closed, or may be configured with a combination of a capillary tube and a check valve (not shown). Modifications such as changes are included in the present invention. Furthermore, the refrigerant-to-refrigerant heat exchanger 9, the sub-throttle device 10, and the first to fourth check valves 11, 12, 13, and 14 can be combined into the intermediate heat exchanger unit 8 as one set, and two It can be applied to various applications of staged compression refrigeration cycle equipment.

【0018】[0018]

【発明の効果】以上の実施例から明らかなように本発明
によれば、低段側圧縮機構と高段側圧縮機構を直列に接
続し、四方弁、負荷側熱交換器、第1絞り装置、第2絞
り装置、熱源側熱交換器などを接続して主冷凍サイクル
を構成し、冷媒対冷媒熱交換器の低段用冷媒入口と副絞
り装置を介した高段用冷媒入口は第1逆止弁と第2逆止
弁を介してそれぞれ第1絞り装置と第2絞り装置に接続
し、低段用冷媒出口は分岐して第3逆止弁と第4逆止弁
を介してそれぞれ第1逆止弁と第1絞り装置の間および
第2逆止弁と第2絞り装置の間に接続し、高段用冷媒出
口は低段側圧縮機構と高段側圧縮機構の中間に接続し、
前記負荷側熱交換器と第1絞り装置を、複数の負荷側熱
交換器とそれに対応する複数の第1絞り装置で構成した
から、任意の負荷側熱交換器において加熱、冷却のいず
れの機能をさせる場合にも、吐出温度上昇の防止や圧縮
機効率の向上だけでなく、蒸発器での潜熱と凝縮器での
冷媒循環量を増大し、高能力、高効率が実現できる。
As is clear from the above embodiments, according to the present invention, the low-stage compression mechanism and the high-stage compression mechanism are connected in series, and the four-way valve, the load-side heat exchanger, and the first throttle device are connected in series. , a second throttling device, a heat source side heat exchanger, etc. are connected to form a main refrigeration cycle, and the refrigerant inlet for the low stage of the refrigerant-to-refrigerant heat exchanger and the refrigerant inlet for the high stage via the sub-throttle device are connected to the first refrigeration cycle. It is connected to the first throttle device and the second throttle device through the check valve and the second check valve, respectively, and the low stage refrigerant outlet is branched and connected through the third check valve and the fourth check valve, respectively. Connected between the first check valve and the first throttle device and between the second check valve and the second throttle device, and the high stage refrigerant outlet is connected between the low stage compression mechanism and the high stage compression mechanism. death,
Since the load-side heat exchanger and the first throttle device are configured with a plurality of load-side heat exchangers and a plurality of corresponding first throttle devices, any load-side heat exchanger can perform either heating or cooling functions. In this case, high capacity and high efficiency can be achieved by not only preventing discharge temperature rise and improving compressor efficiency, but also increasing the latent heat in the evaporator and the amount of refrigerant circulating in the condenser.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の二段圧縮冷凍サイクル装置
の構成図
FIG. 1 is a configuration diagram of a two-stage compression refrigeration cycle device according to an embodiment of the present invention.

【図2】従来の二段圧縮冷凍サイクル装置の構成図[Figure 2] Configuration diagram of a conventional two-stage compression refrigeration cycle device

【符号の説明】[Explanation of symbols]

1  低段側圧縮機構 2  高段側圧縮機構 3  四方弁 4  負荷側熱交換器 5  第1絞り装置 6  第2絞り装置 7  熱源側熱交換器 9  冷媒対冷媒熱交換器 10  副絞り装置 11  第1逆止弁 12  第2逆止弁 13  第3逆止弁 14  第4逆止弁 1 Low stage side compression mechanism 2 High stage side compression mechanism 3 Four-way valve 4 Load side heat exchanger 5 First squeezing device 6 Second diaphragm device 7 Heat source side heat exchanger 9 Refrigerant-to-refrigerant heat exchanger 10 Sub-diaphragm device 11 First check valve 12 Second check valve 13 Third check valve 14 Fourth check valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  低段側圧縮機構と高段側圧縮機構を直
列に接続し、四方弁、負荷側熱交換器、第1絞り装置、
第2絞り装置、熱源側熱交換器などを接続して主冷凍サ
イクルを構成し、冷媒対冷媒熱交換器の低段用冷媒入口
と副絞り装置を介した高段用冷媒入口は第1逆止弁と第
2逆止弁を介してそれぞれ第1絞り装置と第2絞り装置
に接続し、低段用冷媒出口は分岐して第3逆止弁と第4
逆止弁を介してそれぞれ第1逆止弁と第1絞り装置の間
および第2逆止弁と第2絞り装置の間に接続し、高段用
冷媒出口は低段側圧縮機構と高段側圧縮機構の中間に接
続してなる二段圧縮冷凍サイクル装置。
Claim 1: A low-stage compression mechanism and a high-stage compression mechanism are connected in series, and include a four-way valve, a load-side heat exchanger, a first throttle device,
The second throttling device, the heat source side heat exchanger, etc. are connected to form the main refrigeration cycle, and the refrigerant inlet for the low stage of the refrigerant-to-refrigerant heat exchanger and the refrigerant inlet for the high stage via the sub-throttle device are connected to the first reverse. It is connected to the first throttle device and the second throttle device through the stop valve and the second check valve, respectively, and the low stage refrigerant outlet is branched to the third check valve and the fourth check valve.
The first check valve and the first throttle device are connected through the check valves, and the second check valve and the second throttle device are connected through the check valves, and the high stage refrigerant outlet is connected to the low stage compression mechanism and the high stage refrigerant outlet. A two-stage compression refrigeration cycle device connected to the middle of the side compression mechanism.
【請求項2】  負荷側熱交換器と第1絞り装置を、複
数の負荷側熱交換器とそれに対応する複数の第1絞り装
置で構成してなる請求項1記載の二段圧縮冷凍サイクル
装置。
2. The two-stage compression refrigeration cycle device according to claim 1, wherein the load-side heat exchanger and the first expansion device are constituted by a plurality of load-side heat exchangers and a plurality of corresponding first expansion devices. .
JP3005041A 1991-01-21 1991-01-21 Two-stage compression refrigerating cycle device Pending JPH04236067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005041A JPH04236067A (en) 1991-01-21 1991-01-21 Two-stage compression refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005041A JPH04236067A (en) 1991-01-21 1991-01-21 Two-stage compression refrigerating cycle device

Publications (1)

Publication Number Publication Date
JPH04236067A true JPH04236067A (en) 1992-08-25

Family

ID=11600354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005041A Pending JPH04236067A (en) 1991-01-21 1991-01-21 Two-stage compression refrigerating cycle device

Country Status (1)

Country Link
JP (1) JPH04236067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092369A (en) * 2013-02-12 2013-05-16 Daikin Industries Ltd Heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092369A (en) * 2013-02-12 2013-05-16 Daikin Industries Ltd Heat pump

Similar Documents

Publication Publication Date Title
US11519640B2 (en) Air conditioner
JP2001056159A (en) Air conditioner
CN109386985B (en) Two-pipe jet enthalpy-increasing outdoor unit and multi-split system
KR20120077106A (en) A load active heat pump combined two parallel single stage compressor
US11578898B2 (en) Air conditioning apparatus
JP2001056156A (en) Air conditioning apparatus
US11300329B2 (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
JP2000346474A (en) Refrigerator
JPWO2019171600A1 (en) Refrigeration cycle equipment
US11359842B2 (en) Air conditioning apparatus
JPH10176869A (en) Refrigeration cycle device
JPH02309157A (en) Two-stage compression refrigeration cycle device and operation thereof
JPH04236067A (en) Two-stage compression refrigerating cycle device
JP2808899B2 (en) Two-stage compression refrigeration cycle device
KR20040094338A (en) A refrigerator
JP2615496B2 (en) Two-stage compression refrigeration cycle
US11397015B2 (en) Air conditioning apparatus
US20220214056A1 (en) Air conditioner
JPH04257660A (en) Two stage compression refrigerating cycle device
JPH04324067A (en) Air conditioner
KR100510851B1 (en) Condenser Structure Of Outdoor Unit For Air Conditioner
JP3268967B2 (en) Air conditioner
KR100510850B1 (en) Pipe Laying Structure Of Outdoor Unit At Multi-Air Conditioner
KR100510849B1 (en) Condensation Structure of Refrigeration System
JPH04292749A (en) Two-stage compression refrigeration cycle device