JPH0423574B2 - - Google Patents

Info

Publication number
JPH0423574B2
JPH0423574B2 JP9407385A JP9407385A JPH0423574B2 JP H0423574 B2 JPH0423574 B2 JP H0423574B2 JP 9407385 A JP9407385 A JP 9407385A JP 9407385 A JP9407385 A JP 9407385A JP H0423574 B2 JPH0423574 B2 JP H0423574B2
Authority
JP
Japan
Prior art keywords
polymer
oxygen
cellulose
group
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9407385A
Other languages
Japanese (ja)
Other versions
JPS61249523A (en
Inventor
Minoru Takamizawa
Tooru Chiba
Kazumasa Maruyama
Hiroyasu Kokubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9407385A priority Critical patent/JPS61249523A/en
Publication of JPS61249523A publication Critical patent/JPS61249523A/en
Publication of JPH0423574B2 publication Critical patent/JPH0423574B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気体および液体の混合物の分離に有
用な流体分離用成形体に関し、特に空気のような
気体混合物から酸素の濃縮、分離に有用である流
体分離用成形体に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a fluid separation molded body useful for separating a mixture of gas and liquid, and particularly useful for concentrating and separating oxygen from a gas mixture such as air. The present invention relates to a molded body for fluid separation.

[従来の技術] 従来、空気から酸素を分離したり空気中の酸素
を濃縮するには、一般に、空気をいつたん液化し
た後に蒸発させ、各成分の沸点差を利用する深冷
分離法が用いられている。しかし、この方法は、
大規模な装置を要し、かつエネルギー消費が大き
く、経済的にも不利であるという欠点を有する。
これに対し、簡便な装置を用い、しかもエネルギ
ー消費の少ない方法として、気体分離膜を用いる
方法が知られている。
[Prior Art] Conventionally, in order to separate oxygen from air or to concentrate oxygen in the air, a cryogenic separation method is generally used, in which the air is liquefied and then evaporated to take advantage of the difference in boiling point of each component. It is being However, this method
This method has disadvantages in that it requires large-scale equipment, consumes a large amount of energy, and is economically disadvantageous.
On the other hand, a method using a gas separation membrane is known as a method that uses a simple device and consumes less energy.

[発明が解決しようとする問題点] しかし、従来、気体分離膜を用いる方法による
酸素の分離あるいは濃縮はほとんど利用されてい
ない。というのは、気体分離膜には、酸素の透過
係数が大きいこと、酸素と窒素の透過係数比が大
きいこと、材料の製膜性が良く得られる膜の機械
的強度が十分に大きいこと等が求められるが、こ
れらの要求を同時に満足するような気体分離膜が
知られていないためである。例えば、従来の代表
的な気体分離膜としてシリコーンゴムからなるも
のが知られているが、これは酸素の透過係数が3
〜5×10-8cm3(STP)・cm/cm2・sec・cmHgと大
きいものの、酸素と窒素の透過係数比は2程度と
小さく、機械的強度も弱いという欠点がある。ま
た、セルロース誘導体の膜としてはエチルセルロ
ース膜が製膜性、機械的強度にすぐれているもの
として知られている反面、透過係数が1.5×10-9
cm3(STP)・cm/cm2・sec・cmHgと小さいという
欠点がある。
[Problems to be Solved by the Invention] However, in the past, oxygen separation or concentration using a method using a gas separation membrane has hardly been used. This is because gas separation membranes must have a large oxygen permeability coefficient, a large oxygen-to-nitrogen permeability coefficient ratio, and a sufficiently high mechanical strength that allows for good film-forming properties. However, there is no known gas separation membrane that satisfies these requirements at the same time. For example, a typical conventional gas separation membrane made of silicone rubber is known, but this membrane has an oxygen permeability coefficient of 3.
Although it has a large value of ~5×10 -8 cm 3 (STP) cm/cm 2 • sec cmHg, it has the drawbacks of a low oxygen to nitrogen permeability coefficient ratio of about 2 and a weak mechanical strength. In addition, while ethylcellulose membranes are known to have excellent film formability and mechanical strength among cellulose derivative membranes, their permeability coefficient is 1.5×10 -9
It has the disadvantage of being small at cm 3 (STP) cm/cm 2 sec cmHg.

[問題点を解決するための手段] 本発明は、上記の従来技術の問題点を解決する
ものとして、 一般式() [式中、R1、R2およびR3は、同一でも異なつて
もよく、炭素原子数1〜6の炭化水素基である] で示されるトリオルガノシリル基を側鎖に置換基
として有する。多糖類、多糖類誘導体、ポリビニ
ルアルコールおよびポリビニルアルコール誘導体
から選ばれる少なくとも1種のポリマーからなる
分離層を有する流体分離用成形体を提供するもの
である。
[Means for Solving the Problems] The present invention solves the problems of the above-mentioned prior art by solving the general formula () [In the formula, R 1 , R 2 and R 3 may be the same or different and are a hydrocarbon group having 1 to 6 carbon atoms.] A triorganosilyl group represented by the following formula is present as a substituent in the side chain. The present invention provides a molded article for fluid separation having a separation layer made of at least one polymer selected from polysaccharides, polysaccharide derivatives, polyvinyl alcohol, and polyvinyl alcohol derivatives.

本発明に用いられるトリオルガノシリル基を有
するポリマーの原料として用いられる多糖類、多
糖類誘導体、ポリビニルアルコールおよびポリビ
ニルアルコール誘導体は、いずれもトリオルガノ
シリル基が導入されてシリルエーテル結合を形成
することができる水酸基を含むポリマーである。
The polysaccharides, polysaccharide derivatives, polyvinyl alcohol, and polyvinyl alcohol derivatives used as raw materials for the triorganosilyl group-containing polymer used in the present invention can all be introduced with triorganosilyl groups to form silyl ether bonds. It is a polymer containing hydroxyl groups.

ここで多糖類としては、例えば、セルロース、
でんぷん、プルラン、キトサン等を挙げることが
でき、多糖類誘導体としては例えば前記多糖類の
部分エーテル化物および部分エステル化物を挙げ
ることができる。特に、セルロース誘導体として
は、例えば、メチルセルロース、エチルセルロー
ス、プルピルセルロース等のアルキルセルロー
ス;ヒドロキシエチルセルロース、ヒドロキシプ
ロピルセルロース等のヒドロキシアルキルセルロ
ース;酢酸セルロース、硝酸セルロース等のセル
ロースのエステル系誘導体;ならびにこれらの2
種以上の混合物を挙げることができる。
Examples of polysaccharides include cellulose,
Examples of the polysaccharide derivatives include starch, pullulan, chitosan, etc., and examples of polysaccharide derivatives include partially etherified and partially esterified polysaccharides. In particular, cellulose derivatives include, for example, alkylcelluloses such as methylcellulose, ethylcellulose, and propylcellulose; hydroxyalkylcelluloses such as hydroxyethylcellulose and hydroxypropylcellulose; ester derivatives of cellulose such as cellulose acetate and cellulose nitrate; and these two.
Mention may be made of mixtures of more than one species.

また、ポリビニルアルコール誘導体としては、
例えば、エチレン−ビニルアルコール共重合体、
ポリ酢酸ビニル部分ケン化物等を挙げることがで
きる。
In addition, as polyvinyl alcohol derivatives,
For example, ethylene-vinyl alcohol copolymer,
Examples include partially saponified polyvinyl acetate.

以上に例示の原料ポリマーの中でも特に好まし
いものとしては、セルロースおよびセルロース誘
導体を挙げることができる。
Among the raw material polymers exemplified above, particularly preferred are cellulose and cellulose derivatives.

本発明に用いられるポリマーが側鎖に有する一
般式()のトリオルガノシリル基が有する炭素原
子数1〜6の炭化水素基としては、例えば、直鎖
もしくは分岐鎖のアルキル基、例えばメチル、エ
チル、プロピル、イソプロピル、ブチル、tert−
ブチル、ペンチル、ヘキシル等;シクロアルキル
基、例えばシクロペンチル、シクロヘキシル等;
直鎖もしくは分岐鎖のアルケニル基、例えばビニ
ル、アリル、イソプロペニル、1−ブテニル、1
−ペンテニル、1−ヘキセニル等;及びアリール
基、例えばフエニル等を挙げることができ、中で
も好ましい炭化水素基としては、酸素透過係数が
大きい点で上記例示のアルキル基、特にメチル、
エチル、プロピルを挙げることができる。なお、
フエニル等には成形体の耐熱性が向上する利点が
ある。これら炭化水素基の炭素原子数が7以上の
ものは、炭化水素基が直鎖の場合にはポリマーの
可塑性が高くなりすぎ得られる成形体の機械的強
度が低下し、また、炭化水素基が分岐鎖または環
状である場合には炭化水素基が余りにカサ高いも
のとなつてポリマー中に有効量導入することが困
難になる。
Examples of the hydrocarbon group having 1 to 6 carbon atoms in the triorganosilyl group of general formula () in the side chain of the polymer used in the present invention include linear or branched alkyl groups, such as methyl and ethyl. , propyl, isopropyl, butyl, tert-
Butyl, pentyl, hexyl, etc.; cycloalkyl groups, such as cyclopentyl, cyclohexyl, etc.;
Straight-chain or branched alkenyl groups, such as vinyl, allyl, isopropenyl, 1-butenyl, 1
-pentenyl, 1-hexenyl, etc.; and aryl groups, such as phenyl, among others, preferable hydrocarbon groups include the above-exemplified alkyl groups, especially methyl,
Examples include ethyl and propyl. In addition,
Phenyl and the like have the advantage of improving the heat resistance of the molded product. When these hydrocarbon groups have 7 or more carbon atoms, if the hydrocarbon groups are linear, the plasticity of the polymer becomes too high and the mechanical strength of the obtained molded product decreases. If it is branched or cyclic, the hydrocarbon group becomes too bulky and it becomes difficult to introduce an effective amount into the polymer.

このような炭化水素基を有する一般式()のト
リオルガノシリル基の具体例としては、トリメチ
ルシリル基、トリエチルシリル基、トリプロピル
シリル基、ジメチルプロピルシリル基、ブチルジ
メチルシリル基、ジメチルペンチルシリル基、シ
クロヘキシルジメチルシリル基、ジメチルフエニ
ルシリル基、メチルジフエニルシリル基等を挙げ
ることができる。
Specific examples of the triorganosilyl group of general formula () having such a hydrocarbon group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, dimethylpropylsilyl group, butyldimethylsilyl group, dimethylpentylsilyl group, Examples include a cyclohexyldimethylsilyl group, a dimethylphenylsilyl group, and a methyldiphenylsilyl group.

一般式()のトリオルガノシリル基は、用いら
れるポリマー中に平均30重量%以上、特に50重量
%以上含有されることが好ましい。トリオルガノ
シリル基の含有量が平均30重量%未満であると、
得られる成形体の透過係数が十分に増大しない。
The triorganosilyl group of general formula () is preferably contained in the polymer used in an average amount of 30% by weight or more, particularly 50% by weight or more. When the content of triorganosilyl groups is less than 30% by weight on average,
The permeability coefficient of the obtained molded body does not increase sufficiently.

一般式()のトリオルガノシリル基を原料ポリ
マーである多糖類等に導入して本発明に用いるポ
リマーを製造する方法としては、所要のトリオル
ガノシリル基に対応するシリル化剤を利用するこ
とができる。例えば、ポリマーのシリル化法とし
て公知であるトリオルガノクロロシラン−ピリジ
ン系を用いる方法、トリオルガノシリルアセトア
ミド−N−メチルピロリドン系を用いる方法を利
用することができる。また、アルコールのシリル
化法として公知であるトリオルガノハロゲノシラ
ン−イミダゾール触媒系を用いる方法、トリオル
ガノシリル過塩素酸エステルを用いる方法なども
利用することができる。例えば、トリオルガノク
ロロシランを用い、触媒として2当量のイミダゾ
ールを用いる場合にはポリマーのDMF溶液中に
トリオルガノクロロシラン、イミダゾールを加
え、室温下数時間の撹拌により、トリオルガノシ
リル基をポリマー中に導入することができる。
As a method for producing the polymer used in the present invention by introducing the triorganosilyl group of the general formula () into a raw material polymer such as a polysaccharide, it is possible to use a silylating agent that corresponds to the required triorganosilyl group. can. For example, a method using a triorganochlorosilane-pyridine system and a method using a triorganosilylacetamide-N-methylpyrrolidone system, which are known as polymer silylation methods, can be used. In addition, a method using a triorganohalogenosilane-imidazole catalyst system, a method using a triorganosilyl perchlorate, and the like, which are known as alcohol silylation methods, can also be used. For example, when using triorganochlorosilane and 2 equivalents of imidazole as a catalyst, add the triorganochlorosilane and imidazole to a DMF solution of the polymer and stir for several hours at room temperature to introduce the triorganosilyl group into the polymer. can do.

また、シリル化剤としてトリオルガノシランを
用いる場合には、トリフエニルメチル過塩素酸エ
ステルにより、トリオルガノシリル過塩素酸エス
テルに変換し、これをピリジンにより活性化し、
さらにアセトニトリルに溶解しポリマーのジメチ
ルホルムアミド溶液中に滴下することにより、室
温下数分から1時間程度の撹拌により、トリオル
ガノシリル基をポリマー中に導入することができ
る。
In addition, when triorganosilane is used as a silylating agent, it is converted to triorganosilyl perchlorate with triphenylmethyl perchlorate, and this is activated with pyridine.
Further, a triorganosilyl group can be introduced into the polymer by dissolving it in acetonitrile and dropping it dropwise into a dimethylformamide solution of the polymer, and stirring at room temperature for several minutes to about an hour.

また、トリアルキルシリルセルロース誘導体の
製造法としては、米国特許第2532622号、3418312
号、3418313号、4390692号に開示の方法を利用す
ることもできる。
In addition, as a method for producing trialkylsilyl cellulose derivatives, US Patent No. 2532622, 3418312
It is also possible to use the methods disclosed in Nos., No. 3418313, and No. 4390692.

生成したポリマーは、クロロホルム、THF、
ベンゼン、トルエン、キシレン、四塩化炭素等の
良溶媒に溶解させておいて、貧溶媒であるアルコ
ール類に注いで析出させることにより精製でき
る。
The produced polymer contains chloroform, THF,
It can be purified by dissolving it in a good solvent such as benzene, toluene, xylene, or carbon tetrachloride, and then pouring it into an alcohol, which is a poor solvent, to precipitate it.

上述のようにして得られるトリオルガノシリル
基を有するポリマーは、通常、適当な溶媒を用い
てポリマー溶液として本発明の流体分離用成形体
の製造に用いられる。適当な溶媒としては、例え
ば、ベンゼン、トルエン、キシレン、四塩化炭
素、クロロホルム、テトラヒドロフラン等を挙げ
ることができ、必要に応じて酸化防止済、可塑剤
等の各種添加物を加えることができる。ポリマー
溶液のポリマー濃度は、通常0.1〜20重量%程度
が適当であるが、特に限定されず、所要の膜厚や
製膜方法に応じて適宜選択される。
The triorganosilyl group-containing polymer obtained as described above is usually used in the production of the molded article for fluid separation of the present invention as a polymer solution using an appropriate solvent. Examples of suitable solvents include benzene, toluene, xylene, carbon tetrachloride, chloroform, and tetrahydrofuran, and various additives such as antioxidants and plasticizers may be added as necessary. The polymer concentration of the polymer solution is usually approximately 0.1 to 20% by weight, but is not particularly limited and is appropriately selected depending on the required film thickness and film forming method.

本発明の成形体の形態としては、通常の平膜の
ほか中空系等を挙げることができ、実質的に該ポ
リマーのみからなる均質成形体として、また基材
との複合体である不均質成形体として製造するこ
とができる。すなわち、前記ポリマー溶液を平滑
なプレート上にキヤステイング後溶媒を除去する
ことにより平膜状に成形でき、また二重ノズルか
ら吐出して乾式または湿式紡糸することにより中
空糸状に成形でき、このいずれの場合も均質成形
体が得られる。また、多孔性平膜基材または多孔
質中空糸基材、多孔質中空管基材に前記ポリマー
溶液を塗布し溶媒を除去することにより不均質成
形体を製造することができる。このようにして得
られる本発明の流体分離用成形体は、実質的に細
孔を有せず、流体透過性、分離性に優れる緻密な
分離層を有する。
Examples of the form of the molded product of the present invention include a normal flat membrane, a hollow type, etc., a homogeneous molded product consisting essentially only of the polymer, and a heterogeneous molded product that is a composite with a base material. It can be manufactured as a body. That is, the polymer solution can be formed into a flat film by casting it on a smooth plate and removing the solvent, or it can be formed into a hollow fiber by discharging it from a double nozzle and performing dry or wet spinning. A homogeneous molded body can also be obtained in the case of . Further, a heterogeneous molded body can be produced by applying the polymer solution to a porous flat membrane substrate, porous hollow fiber substrate, or porous hollow tube substrate and removing the solvent. The molded article for fluid separation of the present invention thus obtained has substantially no pores and has a dense separation layer with excellent fluid permeability and separation properties.

本発明の成形体を不均質成形体として製造する
場合に用いられる多孔性基材の材料としては、例
えばポリスルホン類、アクリロニトリル−スチレ
ン共重合体などのスチレン含有共重合体、ポリカ
ーボネート、セルロース誘導体、ポリアミド類、
ポリイミド類、ポリエーテル類、ポリエステル
類、ビニル重合体類、アセチレン重合体類など、
さらにはこれらのコポリマーおよび混合ポリマー
が挙げられる。これらのポリマーを材料として中
空糸基材を製造するには、公知の方法を利用する
ことができる。例えば、ポリマーを適当な溶媒に
溶解し、ろ過、脱泡により均一なドープ液を調整
する工程、環状二重ノズルよりドープ液を押し出
す工程、吐出されたドープの溶媒を一部蒸発させ
る工程、ドープを貧溶媒または非溶媒中に導入し
て凝固させる工程、および得られた湿潤中空糸を
乾燥、熱処理する工程により製造することができ
る。また無機物質を混合することにより多孔性を
持たせることもできる。
Materials for the porous base material used when producing the molded product of the present invention as a heterogeneous molded product include, for example, polysulfones, styrene-containing copolymers such as acrylonitrile-styrene copolymers, polycarbonates, cellulose derivatives, polyamides, etc. kind,
Polyimides, polyethers, polyesters, vinyl polymers, acetylene polymers, etc.
Further examples include copolymers and mixed polymers thereof. A known method can be used to produce a hollow fiber base material using these polymers. For example, the process of dissolving the polymer in a suitable solvent and preparing a uniform dope solution by filtration and defoaming, the process of extruding the dope solution through an annular double nozzle, the process of partially evaporating the solvent of the discharged dope, It can be produced by a step of introducing into a poor solvent or non-solvent and coagulating it, and a step of drying and heat-treating the obtained wet hollow fiber. Further, porosity can be imparted by mixing an inorganic substance.

[実施例] 以下、本発明を実施例により具体的に説明す
る。
[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 1 セルロース10g(0.061モル)を乾燥N−メチ
ルピロリドン90gに分散し、さらにN,O−ビス
トリメチルシリルアセトアミド24.8g(0.122モ
ル)を加えて加熱し、150℃で5時間撹拌した。
冷却後、反応液をメタノール中に注ぎ、ポリマー
を析出させ、ろ取した。
Example 1 10 g (0.061 mol) of cellulose was dispersed in 90 g of dry N-methylpyrrolidone, and 24.8 g (0.122 mol) of N,O-bistrimethylsilylacetamide was added, heated, and stirred at 150° C. for 5 hours.
After cooling, the reaction solution was poured into methanol to precipitate a polymer, which was collected by filtration.

得られたポリマーを200mlのトルエンに再溶解
し、孔径10μmのフイルターにより異物を除いた。
精製されたポリマー溶液をメタノールに注いで析
出させ、ろ取し、空気乾燥し、次いで60℃で真空
乾燥した。
The obtained polymer was redissolved in 200 ml of toluene, and foreign matter was removed using a filter with a pore size of 10 μm.
The purified polymer solution was poured into methanol to precipitate, filtered off, air dried, and then vacuum dried at 60°C.

得られたポリマーは、テフロン製るつぼにより
酸化処理を行ない、さらに灰分測定からトリメチ
ルシリル基の置換度を求めた。その置換度は、1
グルコースユニツト当り、2.8(ポリマー中に55重
量%)であつた。また、赤外吸収スペクトルによ
つてもトリメチルシリル基の吸収が認められた。
The resulting polymer was oxidized in a Teflon crucible, and the degree of substitution of trimethylsilyl groups was determined from ash content measurement. The degree of substitution is 1
It was 2.8 (55% by weight in the polymer) per glucose unit. Furthermore, absorption by trimethylsilyl groups was also observed in the infrared absorption spectrum.

また、このポリマーの3%トルエン溶液をガラ
ス平板上にブレードを用いてキヤテイングし、空
気乾燥後、80℃にて2時間さらに真空乾燥し、厚
さ35μmの膜を得た。
Further, a 3% toluene solution of this polymer was coated on a glass flat plate using a blade, air-dried, and further vacuum-dried at 80° C. for 2 hours to obtain a film with a thickness of 35 μm.

得られた膜の気体透過性および機械的強度を測
定した。なお、ガス透過係数の測定は、理化精機
工業(株)製ガス透過試験機K−315−N−02型を用
いて行なつた。また、引張強度の測定は島津製作
所(株)製オートグラフDSS−10TSを用いて行なつ
た。
The gas permeability and mechanical strength of the obtained membrane were measured. The gas permeability coefficient was measured using a gas permeation tester model K-315-N-02 manufactured by Rika Seiki Kogyo Co., Ltd. Further, the tensile strength was measured using Autograph DSS-10TS manufactured by Shimadzu Corporation.

酸素ガス透過係数は、1.08×10-8cm3(STP)・
cm/cm2・sec・cmHgであり、セルロースの51000
倍であつた。酸素と窒素の透過係数比は3であつ
た。また、機械的強度は引張強度が500Kg/cm3
伸び率15%とエチルセルロースとほぼ同等の強度
を示した。
The oxygen gas permeability coefficient is 1.08×10 -8 cm 3 (STP).
cm/ cm2・sec・cmHg, which is 51000 for cellulose
It was twice as hot. The permeability coefficient ratio between oxygen and nitrogen was 3. In addition, the mechanical strength is tensile strength of 500Kg/cm 3 ,
It showed an elongation rate of 15% and a strength almost equivalent to that of ethyl cellulose.

実施例 2 セルロース1.5g(0.009モル)を乾燥ピリジン
50g中に分散し、tert−ブチルジメチルクロロシ
ラン10g(0.066モル)を添加し、160℃で10時間
撹拌した。その後、溶液をメタノール中に注ぎポ
リマーを析出させた。
Example 2 1.5 g (0.009 mol) of cellulose was added to dry pyridine.
10 g (0.066 mol) of tert-butyldimethylchlorosilane was added thereto, and the mixture was stirred at 160° C. for 10 hours. Thereafter, the solution was poured into methanol to precipitate the polymer.

得られたポリマーは、tert−ブチルジメチルシ
リル基の置換度が1グルコースユニツト当り1.06
(ポリマー中43重量%)であつた。このポリマー
の3%トルエン溶液からキヤステイングし、よく
乾燥し、厚さ20μmの膜を得た。
The resulting polymer had a degree of substitution of tert-butyldimethylsilyl groups of 1.06 per glucose unit.
(43% by weight in the polymer). This polymer was casted from a 3% toluene solution and thoroughly dried to obtain a 20 μm thick film.

得られた膜の気体透過性および機械的強度を実
施例1と同様に測定した。
The gas permeability and mechanical strength of the obtained membrane were measured in the same manner as in Example 1.

酸素ガス透過係数は、5.34×10-9cm3(STP)・
cm/cm2・sec・cmHgであり、セルロースの25000
倍であつた。酸素と窒素の透過係数比は3.4であ
つた。また、引張強度が550Kg/cm3で、伸び率が
7%であつた。
The oxygen gas permeability coefficient is 5.34×10 -9 cm 3 (STP).
cm/ cm2・sec・cmHg, which is 25000 for cellulose
It was twice as hot. The permeability coefficient ratio between oxygen and nitrogen was 3.4. Further, the tensile strength was 550 Kg/cm 3 and the elongation rate was 7%.

実施例 3 エチルセルロース(48%のエトキシ化率)6g
を乾燥ジメチルホルムアミド40gに溶解し、イミ
ダゾール2.2g(0.003モル)を添加し、さらにト
リエチルブロモシラン3.2g(0.016モル)を、室
温で滴下しながら撹拌した。2時間撹拌を続けた
溶液をメタノール中に注ぎ、ポリマーを析出させ
た。
Example 3 6 g of ethyl cellulose (48% ethoxylation rate)
was dissolved in 40 g of dry dimethylformamide, 2.2 g (0.003 mol) of imidazole was added thereto, and 3.2 g (0.016 mol) of triethylbromosilane was added dropwise with stirring at room temperature. The solution, which had been stirred for 2 hours, was poured into methanol to precipitate the polymer.

得られたポリマーはトリエチルシリル基の置換
度が1グルコースユニツト当り0.33(ポリマー中
14重量%)であり、トルエン溶液よりキヤステイ
ングし、よく乾燥し、厚さ16μmの膜を得た。
The resulting polymer had a triethylsilyl group substitution degree of 0.33 per glucose unit (in the polymer).
14% by weight), and was casted from a toluene solution and thoroughly dried to obtain a film with a thickness of 16 μm.

得られた膜の気体透過性および機械的強度を実
施例1と同様にして測定した。
The gas permeability and mechanical strength of the obtained membrane were measured in the same manner as in Example 1.

酸素ガス透過係数は、2.62×10-9cm3(STP)・
cm/cm2・sec・cmHgであり、エチルセルロースの
2倍であつた。酸素と窒素の透過係数比は3.1で
あつた。また引張強度は570Kg/cm3で、伸び率は
20%であつた。
The oxygen gas permeability coefficient is 2.62×10 -9 cm 3 (STP).
cm/cm 2 ·sec·cmHg, which was twice that of ethyl cellulose. The permeability coefficient ratio of oxygen and nitrogen was 3.1. In addition, the tensile strength is 570Kg/ cm3 , and the elongation rate is
It was 20%.

実施例 4 ヒドロキシプロピルセルロース(71%のヒドロ
キシプロポキシ化率)2gを乾燥したジメチルホ
ルムアミド20gとトルエン20gから成る混合溶媒
に溶解して溶液を得、さらに別途、tert−ブチル
ジメチルシリルパークロレート35g、ピリジン
1.3gおよびアセトニトリル15gより調製した溶
液を、室温で前記ヒドロキシプロピルセルロース
溶液に滴下しながら撹拌した。1時間撹拌を続け
た溶液を水:メタノールの1:1の混合溶媒中に
注ぎ、ポリマーを析出させた。
Example 4 A solution was obtained by dissolving 2 g of hydroxypropyl cellulose (71% hydroxypropoxylation rate) in a mixed solvent consisting of 20 g of dry dimethylformamide and 20 g of toluene, and separately adding 35 g of tert-butyldimethylsilyl perchlorate and pyridine.
A solution prepared from 1.3 g and 15 g of acetonitrile was stirred while being added dropwise to the hydroxypropyl cellulose solution at room temperature. The solution that had been stirred for 1 hour was poured into a 1:1 mixed solvent of water and methanol to precipitate the polymer.

得られたポリマーは、tert−ブチルジメチルシ
リル基の置換度が1グルコースユニツト当り、
1.94(ポリマー中38重量%)であり、トルエン溶
液からキヤステイングし、よく乾燥し厚さ20μm
の膜を得た。
The obtained polymer had a degree of substitution of tert-butyldimethylsilyl group per glucose unit,
1.94 (38% by weight in the polymer), casted from toluene solution and dried well to a thickness of 20 μm.
A film was obtained.

得られた膜の気体透過性および機械的強度を実
施例1と同様にして測定した。
The gas permeability and mechanical strength of the obtained membrane were measured in the same manner as in Example 1.

酸素ガス透過係数は、1.32×10-9cm3(STP)・
cm/cm2・sec・cmHgであり、ヒドロキシプロピル
セルロースの80倍であつた。酸素と窒素の透過係
数比は3.6であつた。また引張強度が110Kg/cm3
伸び率が80%と柔軟な膜を得た。
The oxygen gas permeability coefficient is 1.32×10 -9 cm 3 (STP).
cm/cm 2 ·sec·cmHg, which was 80 times that of hydroxypropyl cellulose. The permeability coefficient ratio of oxygen and nitrogen was 3.6. Also, the tensile strength is 110Kg/cm 3 ,
A flexible membrane with an elongation rate of 80% was obtained.

実施例 5 プルラン10g(0.062モル)を乾燥したジメチ
ルホルムアミド100ml溶解し、さらにイミダゾー
ル30.3g(0.446モル)とジメチルプロピルクロ
ロシラン30.5g(0.223モル)を添加し、50℃で
24時間撹拌した。反応液をメタノール中に注ぎポ
リマーを析出させた。
Example 5 10 g (0.062 mol) of pullulan was dissolved in 100 ml of dry dimethylformamide, 30.3 g (0.446 mol) of imidazole and 30.5 g (0.223 mol) of dimethylpropylchlorosilane were added, and the mixture was heated at 50°C.
Stirred for 24 hours. The reaction solution was poured into methanol to precipitate a polymer.

得られたポリマーは、ジメチルプロピルシリル
基の置換度が1グルコースユニツト当り2.5(ポリ
マー中61重量%)であり、5%トルエン溶液より
キヤステイングし、厚さ30μmの膜を得た。
The obtained polymer had a degree of substitution of dimethylpropylsilyl groups of 2.5 per glucose unit (61% by weight in the polymer), and was casted from a 5% toluene solution to obtain a film with a thickness of 30 μm.

得られた膜の気体透過性を測定した。酸素ガス
透過率が、4.55×10-9cm3(STP)・cm/cm2・sec・
cmHgであり、プルランの25000倍であつた。酸素
と窒素の透過係数比は3.0であつた。
The gas permeability of the obtained membrane was measured. Oxygen gas permeability is 4.55×10 -9 cm 3 (STP)・cm/cm 2・sec・
cmHg, which was 25,000 times higher than pullulan. The permeability coefficient ratio of oxygen and nitrogen was 3.0.

実施例 6 ポリビニルアルコール5g(0.114モル)を乾
燥N−メチルピロリドン100gに分散し、さらに
N,O−ビストリメチルシリルアセトアミド23.2
g(0.114モル)を添加した。150℃、3時間撹拌
した溶液をメタノール中に投入し、ポリマーを析
出させた。
Example 6 5 g (0.114 mol) of polyvinyl alcohol is dispersed in 100 g of dry N-methylpyrrolidone, and further 23.2 g of N,O-bistrimethylsilylacetamide is dispersed in 100 g of dry N-methylpyrrolidone.
g (0.114 mol) was added. The solution stirred at 150°C for 3 hours was poured into methanol to precipitate the polymer.

得られたポリマーは、1ユニツト当りトリメチ
ルシリル基の置換度が0.86(ポリマー中58重量%)
であり、5%トルエン溶液をテフロン平板上にキ
ヤステイングし、厚さ90μmの膜を得た。
The resulting polymer had a trimethylsilyl group substitution degree of 0.86 per unit (58% by weight in the polymer).
A 5% toluene solution was casted on a Teflon plate to obtain a 90 μm thick film.

得られた膜の気体透過性を測定した。酸素ガス
透過率は、3.6×10-9cm3(STP)・cm/cm2・sec・
cmHgであり、ポリビニルアルコールの4000倍で
あつた。酸素と窒素の透過係数比は3.5であつた。
The gas permeability of the obtained membrane was measured. The oxygen gas permeability is 3.6×10 -9 cm 3 (STP)・cm/cm 2・sec・
cmHg, 4000 times higher than polyvinyl alcohol. The permeability coefficient ratio of oxygen and nitrogen was 3.5.

実施例 7 セルロース2.5g(0.016モル)を乾燥ピリジン
100g中に分散し、ジメチルフエニルクロロシラ
ン14.7g(0.086モル)を添加し、160℃で10時間
撹拌した。その後、反応溶液をメタノール中に注
いでポリマーを析出させた。
Example 7 2.5 g (0.016 mol) of cellulose was added to dry pyridine.
14.7 g (0.086 mol) of dimethylphenylchlorosilane was added thereto, and the mixture was stirred at 160° C. for 10 hours. Thereafter, the reaction solution was poured into methanol to precipitate the polymer.

得られたポリマーは、ジメチルフエニルシリル
基の置換度が1グルコースユニツト当り2.93(ポ
リマー中71重量%)であり、トルエン溶液よりキ
ヤステイングし、乾燥し、厚さ43μmの膜を得た。
The obtained polymer had a degree of substitution of dimethylphenylsilyl groups of 2.93 per glucose unit (71% by weight in the polymer), and was casted from a toluene solution and dried to obtain a film with a thickness of 43 μm.

得られた膜の気体透過性を測定したところ、酸
素ガス透過係数が、2.39×10-10cm3・(STP)・
cm/cm2・sec・cmHgであり、酸素と窒素の透過係
数比は4.0であつた。
When the gas permeability of the obtained membrane was measured, the oxygen gas permeability coefficient was 2.39×10 -10 cm 3 (STP)
cm/cm 2 ·sec·cmHg, and the ratio of oxygen to nitrogen permeability coefficients was 4.0.

[発明の効果] 本発明の流体分離用成形体は、多糖類、ポリビ
ニルアルコール等の非オルガノシリル化ポリマー
からなる気体分離膜に比し、気体透過係数が数十
ないし数万倍と大きく、気体透過性に優れ、例え
ば酸素と窒素の透過係数比が3以上と大きいた
め、混合気体の分離膜、とりわけ空気等の酸素分
離膜として有用である。また、本発明の流体分離
用成形体は、製膜性および機械的強度の点では、
上記の非オルガノシリル化ポリマーの膜と同等に
優れたものであり、したがつて薄膜化が容易でし
かも耐久性が高いという利点を有する。
[Effects of the Invention] The molded article for fluid separation of the present invention has a gas permeability coefficient tens to tens of thousands of times larger than that of gas separation membranes made of non-organosilylated polymers such as polysaccharides and polyvinyl alcohol. Since it has excellent permeability, for example, the permeability coefficient ratio between oxygen and nitrogen is as large as 3 or more, it is useful as a separation membrane for mixed gases, especially oxygen separation membranes for air and the like. In addition, the molded article for fluid separation of the present invention has the following properties in terms of film formability and mechanical strength:
It is as good as the non-organosilylated polymer film mentioned above, and therefore has the advantage of being easy to form into a thin film and having high durability.

さらに、本発明の流性分離用成形体は耐熱性が
良好であるため、高温にさらされる化学プラント
における水素ガス回収等にも有用である。
Furthermore, since the molded article for fluid separation of the present invention has good heat resistance, it is also useful for recovering hydrogen gas in chemical plants exposed to high temperatures.

このように、本発明の流体分離用成形体は、気
体分離膜に求められる諸性能に優れており、気体
混合物から特定成分の分離、濃縮に有用であるほ
か、液体混合物、例えば水とアルコールの分離な
どの利用にも期待される。
As described above, the fluid separation molded article of the present invention has excellent performance required for gas separation membranes, and is useful for separating and concentrating specific components from gas mixtures, as well as for liquid mixtures such as water and alcohol. It is also expected to be used for separation purposes.

Claims (1)

【特許請求の範囲】 1 一般式: [式中、R1、R2およびR3は、同一でも異なつて
もよく、炭素原子数1〜6の炭化水素基である] で示されるトリオルガノシリル基を側鎖に置換基
として有する、多糖類、多糖類誘導体、ポリビニ
ルアルコールおよびポリビニルアルコール誘導体
から選ばれる少なくとも1種のポリマーからなる
分離層を有する流体分離用成形体。
[Claims] 1. General formula: [In the formula, R 1 , R 2 and R 3 may be the same or different and are hydrocarbon groups having 1 to 6 carbon atoms] Having a triorganosilyl group shown as a substituent in the side chain, A molded article for fluid separation having a separation layer made of at least one polymer selected from polysaccharides, polysaccharide derivatives, polyvinyl alcohol, and polyvinyl alcohol derivatives.
JP9407385A 1985-04-30 1985-04-30 Molded material for fluid separation Granted JPS61249523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9407385A JPS61249523A (en) 1985-04-30 1985-04-30 Molded material for fluid separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9407385A JPS61249523A (en) 1985-04-30 1985-04-30 Molded material for fluid separation

Publications (2)

Publication Number Publication Date
JPS61249523A JPS61249523A (en) 1986-11-06
JPH0423574B2 true JPH0423574B2 (en) 1992-04-22

Family

ID=14100323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9407385A Granted JPS61249523A (en) 1985-04-30 1985-04-30 Molded material for fluid separation

Country Status (1)

Country Link
JP (1) JPS61249523A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227022A (en) * 1985-07-29 1987-02-05 Teijin Ltd Stabilizing method for membrane
IT1245485B (en) * 1991-05-03 1994-09-20 Butterfly Srl PERMSELECTIVE MEMBRANES AND THEIR USE
US6372020B2 (en) * 1999-08-26 2002-04-16 Jae-Jin Hong Oxygen enriching membrane
JP4950136B2 (en) * 2008-06-18 2012-06-13 信越ポリマー株式会社 Low dielectric constant insulating film
US10851180B2 (en) 2015-10-06 2020-12-01 Kaneka Corporation Polymer material, film, circular polarizing plate, image display apparatus, and manufacturing method for film

Also Published As

Publication number Publication date
JPS61249523A (en) 1986-11-06

Similar Documents

Publication Publication Date Title
CA1234461A (en) Selectively permeable asymmetric membrane of polyetherimide
CA1206681A (en) Polymer and a membrane having an improved gas- permeability and selectivity
US4689267A (en) Composite hollow fiber
JP2509962B2 (en) Polyimide separation membrane
KR20210044160A (en) Pervaporation composite membranes using covalent triazine framework for alcohol recovery
JPH0423574B2 (en)
US6372020B2 (en) Oxygen enriching membrane
JPS6178402A (en) Separation of organic liquid mixture
JPH07114935B2 (en) Polyarylate separation membrane
EP0099432B1 (en) Permselective membrane
Morita et al. Synthesis, characterization, and gas permeation properties of the silyl derivatives of cellulose acetate
JPS60132605A (en) Preparation of asymmetric membrane
JPS646813B2 (en)
JPH066628B2 (en) Polydisubstituted acetylene / polyorganosiloxane graft copolymer
CN115770494A (en) Polyimide composite gas separation membrane and preparation method and application thereof
JPH0692483B2 (en) Polysulfone-based graft copolymer
JPS5892449A (en) Membrane for selective permeation of oxygen gas
JPH041654B2 (en)
JPS60225606A (en) Gas permselective membrane
JPS6118421A (en) Gas separating membrane
JPH0221291B2 (en)
JPS6230524A (en) Permselective membrane
EP0245516A1 (en) Polymer membrane for separating liquid mixture
JPS63264102A (en) Liquid mixture separation membrane and its use
JPS6391123A (en) Porous hollow yarn composite membrane and its production