JPH0423505B2 - - Google Patents

Info

Publication number
JPH0423505B2
JPH0423505B2 JP57136259A JP13625982A JPH0423505B2 JP H0423505 B2 JPH0423505 B2 JP H0423505B2 JP 57136259 A JP57136259 A JP 57136259A JP 13625982 A JP13625982 A JP 13625982A JP H0423505 B2 JPH0423505 B2 JP H0423505B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
magnetic pole
pole
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57136259A
Other languages
Japanese (ja)
Other versions
JPS5928868A (en
Inventor
Toshio Tomite
Keiichi Nakatsugawa
Shuichi Takamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13625982A priority Critical patent/JPS5928868A/en
Publication of JPS5928868A publication Critical patent/JPS5928868A/en
Publication of JPH0423505B2 publication Critical patent/JPH0423505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dc Machiner (AREA)

Description

【発明の詳細な説明】 本発明は永久磁石式直流機に係り、特に異方性
永久磁石を主極に用い、その主極に補助磁極を並
設して形成した界磁を有する永久磁石式直流機に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet type DC machine, and more particularly to a permanent magnet type DC machine having a field formed by using an anisotropic permanent magnet as a main pole and auxiliary magnetic poles arranged in parallel with the main pole. Regarding DC machines.

従来一般に知られているスタータ等の永久磁石
式直流機は、例えば特公昭48−35721号公報にあ
る如くアーマチユアの電機子反作用による増磁側
に補極を設けることが行われている。
Conventionally known permanent magnet type DC machines such as starters are provided with a commutating pole on the side of the armature that increases magnetization due to armature reaction, as disclosed in Japanese Patent Publication No. 48-35721, for example.

即ち、回転子中心から放射状に伸びる中心線と
平行に両端を切断した異方性永級磁石(主磁極)
と、この磁石と空隙をもつて隣接する補助磁極
(鉄心)とで構成したものが、あるいは主磁極と
補助磁極の対向面を全面にわたり密着して構成し
たものとがあるが、周知の通り異方性永久磁石は
半径方向に磁束が通るため回転方向に補助磁極を
密着して並設した場合は両者の間に漏洩磁路φP
が形成される。従つて後者の場合は有効磁束の減
少となつて回転トルクの減少となる。一方前者の
場合は漏洩磁束は減少するが両磁極間に全長にわ
たり空隙があるため第5図イ点線で示すようにア
ーマチヤ側からみた磁束分布波形において高負荷
時には、両者間に急峻な落ち込みが生じ、滑らか
な運転が望めず、出力低下と共に磁気音の発生、
振動が生じる。因みに上記出力低下は0.8kwスタ
ータで約5%の出力低下となる。
In other words, an anisotropic permanent magnet (main magnetic pole) with both ends cut parallel to the center line extending radially from the rotor center.
There is a structure in which this magnet and an auxiliary magnetic pole (iron core) are adjacent to each other with an air gap, or a structure in which the opposing surfaces of the main magnetic pole and auxiliary magnetic pole are in close contact with each other over the entire surface, but as is well known, there are different types. Since magnetic flux passes in the radial direction of a directional permanent magnet, if auxiliary magnetic poles are placed closely in parallel in the rotation direction, a leakage magnetic path φ P will occur between them.
is formed. Therefore, in the latter case, the effective magnetic flux decreases, resulting in a decrease in rotational torque. On the other hand, in the former case, the leakage magnetic flux decreases, but because there is a gap over the entire length between the two magnetic poles, a steep drop occurs between the two magnetic flux distribution waveforms seen from the armature side at high loads, as shown by the dotted line in Figure 5. , smooth operation cannot be expected, output decreases and magnetic noise occurs,
Vibration occurs. Incidentally, the above output reduction is approximately 5% output reduction with a 0.8kw starter.

本発明の目的は磁束分布波形が滑らかで、回転
トルクの向上せる永久磁石式直流機を提供するに
ある。
An object of the present invention is to provide a permanent magnet DC machine with a smooth magnetic flux distribution waveform and improved rotational torque.

本発明は、継鉄の内周面に配置された異方性永
久磁石からなる主磁極と、該主磁極と周方向で隣
接して並設される補助磁極とを備えた永久磁石直
流機において、前記隣り合う二つの磁極は該磁極
の半径方向内側で接し、半径方向外側で隔離され
て漏洩磁路遮断部を形成したもので、磁束分布が
滑らかとなつて磁気音、振動を低減させ、かつ漏
洩磁束を少なくして回転トルクを向上させること
ができる。
The present invention provides a permanent magnet DC machine comprising a main magnetic pole made of an anisotropic permanent magnet arranged on the inner circumferential surface of a yoke, and an auxiliary magnetic pole adjacent to and arranged in parallel with the main magnetic pole in the circumferential direction. , the two adjacent magnetic poles are in contact with each other on the inside in the radial direction of the magnetic poles and are separated on the outside in the radial direction to form a leakage magnetic path blocking part, so that the magnetic flux distribution is smooth and magnetic noise and vibration are reduced; Moreover, leakage magnetic flux can be reduced and rotational torque can be improved.

以下本発明の実施例を図面に基づき説明する。
第1図は永久磁石式直流機をスタータに用いた場
合で、電動機部を主体に説明する。図において継
鉄1の内周面1aにはフエライト系で円弧状の異
方性永久磁石2が等間隔で4個配置され、接着剤
により固定されている。この永久磁石は第2図に
示す通り軸心0から扇状に広がつた放射線上で端
面が切断され、磁気反作用による増磁界発生側に
は鉄心からなる補助磁極3が配置され、前記永久
磁石2の側面に一部を密着して固定されている。
4は漏洩磁路遮断部を形成する空隙部で、異方性
磁石特有の磁石の半径方向中心を境にして補助磁
極に漏洩する磁束を阻止するために形成されたも
のである。この空隙部は両端面を放射線上で切断
した永久磁石2に、回転軸の中心0と永久磁石の
回転方向中心を結んだ中心線と平行に引かれ、磁
石の1/2H幅の地点を通る線分の外側をカツトし
て形成したものである。すなわち永久磁石2の
N,S極の中性点は1/2Hの地点にあるため、最
少限中性点までとれば磁束の漏洩は阻止され回転
トルクも3〜5%アツプすることができる。
Embodiments of the present invention will be described below based on the drawings.
FIG. 1 shows a case where a permanent magnet type DC machine is used as a starter, and the explanation will mainly be given to the electric motor section. In the figure, four arc-shaped anisotropic permanent magnets 2 made of ferrite are arranged at equal intervals on the inner circumferential surface 1a of a yoke 1, and are fixed with an adhesive. As shown in FIG. 2, the end face of this permanent magnet is cut on a radial line that spreads out in a fan shape from the axis 0, and an auxiliary magnetic pole 3 made of an iron core is arranged on the side where an increased magnetic field is generated due to magnetic reaction. A part is fixed tightly to the side of the
Reference numeral 4 denotes a gap portion forming a leakage magnetic path blocking portion, which is formed to block magnetic flux leaking to the auxiliary magnetic pole with the radial center of the magnet as a boundary, which is unique to anisotropic magnets. This gap is drawn in the permanent magnet 2 whose both end faces are cut on a radial line, parallel to the center line connecting the center 0 of the rotation axis and the center in the rotation direction of the permanent magnet, and passes through a point 1/2H width of the magnet. It is formed by cutting the outside of a line segment. That is, since the neutral point of the N and S poles of the permanent magnet 2 is at the 1/2H point, if the neutral point is set to the minimum neutral point, leakage of magnetic flux can be prevented and the rotational torque can be increased by 3 to 5%.

一方ポールエンクロージヤの関係を第3図を参
照して説明する。上記実施例は所謂4ポール方式
であるため、永久磁石2と補助極3を結合した角
度をθとすれば θ/90゜=0.7〜0.8 θ幅はおよそ70゜付近で一般の回転機と同様であ
る。
On the other hand, the relationship between the pole enclosures will be explained with reference to FIG. Since the above embodiment is a so-called 4-pole system, if the angle at which the permanent magnet 2 and the auxiliary pole 3 are combined is θ, then θ/90° = 0.7 to 0.8 The θ width is approximately 70°, which is similar to a general rotating machine. It is.

上記ポールエンクロージヤは大きくなると着磁
後の無負荷磁束量は増すが、性能において電機子
反作用の減磁界の影響を受けやすく減磁率が高く
なり、性能の向上を図ることができない。このた
め異方性フエライト磁石でもポールエンクロージ
ヤを大きくとることは効果がなく、磁石の使用量
を減少させ経済的に有利な方向とし、0.7〜0.8程
度である。従つてこの範囲内で有効磁束を増やす
には上記したように漏洩磁路を遮断することが一
番効果的である。
As the pole enclosure becomes larger, the amount of no-load magnetic flux after magnetization increases, but the performance is susceptible to the demagnetizing field of armature reaction, resulting in a high demagnetization rate, making it impossible to improve performance. For this reason, even with anisotropic ferrite magnets, increasing the pole enclosure is ineffective, and it is economically advantageous to reduce the amount of magnets used, which is about 0.7 to 0.8. Therefore, in order to increase the effective magnetic flux within this range, it is most effective to block the leakage magnetic path as described above.

以上述べたように異方性永久磁石は内径側がS
極であれば外径側がN極となり、永久磁石の厚さ
の中心部が極性の生じない中性点となつている。
従つて第1図および第2図に示す如く主磁束が通
る磁気回路は永久磁石2→空〓部g1→電機子A
→空〓部g1→補助磁極3→継鉄1→永久磁石2
と形成され、永久磁石2と補助磁極3が接する側
面はできる限り永久磁石2の中性点以下の部分と
し、その先端は電機子との空隙g1より大きな空間
が生じるように永久磁石の外周角部に磁束の中心
を通る放射線と平行に切断される平行面もしくは
それ以上に大きな空間が生じるような面を設けて
永久磁石の側面部からの漏洩磁束を減少させてい
る。
As mentioned above, the anisotropic permanent magnet has an S
If it is a pole, the outer diameter side becomes the north pole, and the center of the thickness of the permanent magnet becomes a neutral point where no polarity occurs.
Therefore, as shown in FIGS. 1 and 2, the magnetic circuit through which the main magnetic flux passes is permanent magnet 2 → air space g1 → armature A.
→ Empty part g1 → Auxiliary magnetic pole 3 → Yoke 1 → Permanent magnet 2
The side surface where the permanent magnet 2 and the auxiliary magnetic pole 3 are in contact should be as far as possible below the neutral point of the permanent magnet 2, and the tip should be placed around the outer periphery of the permanent magnet so that there is a space larger than the air gap g 1 with the armature. A parallel surface cut parallel to the radiation passing through the center of the magnetic flux or a surface that creates a larger space is provided at the corner to reduce leakage magnetic flux from the side surface of the permanent magnet.

上記空間の切断面が磁束の中心を通る放射線と
平行であることはフエライト粉末を型により成形
する際抜き方向が一定となり生産性に大きく貢献
する。
The fact that the cut plane of the space is parallel to the radiation passing through the center of the magnetic flux allows the punching direction to be constant when ferrite powder is molded using a mold, which greatly contributes to productivity.

次に本発明品と従来品を第4図、第5図にて比
較して説明する。
Next, the product of the present invention and the conventional product will be compared and explained with reference to FIGS. 4 and 5.

第4図ロは永久磁石2と補助磁極3の内周対向
面を密着させて外径部に漏洩磁路空隙部4を形成
したもので高負荷時の電機子側からみた磁束分布
は補助磁極3側から主磁極2にかけて緩く滑らか
に傾斜し限られた磁極幅内で有効磁束を増やし、
磁気音の発生、振動にも効果的となつている。
Figure 4 (b) shows a permanent magnet 2 and an auxiliary magnetic pole 3 whose inner periphery opposing surfaces are brought into close contact to form a leakage magnetic path gap 4 on the outer diameter.The magnetic flux distribution seen from the armature side under high load is It slopes gently and smoothly from the 3rd side to the main magnetic pole 2, increasing the effective magnetic flux within the limited magnetic pole width,
It is also effective against magnetic sound generation and vibration.

一方、第5図ロに示す如く、上記実施例とは逆
テーパにして、外周部で突合せることも考えられ
るがこの場合は第5図イの磁束分布波形(実線)
が示している如く磁束が0に近くなる部分が生じ
回転トルク、磁気音、振動は改善されない。これ
は空隙41によつて磁極が電機子導体部分に対向
しない部分が生じるためである。この磁束の落ち
込みは点線で示してあるように磁極間に完全に空
間を形成したものよりは小さいが好ましいもので
はない。
On the other hand, as shown in Figure 5B, it is also possible to taper inversely to the above embodiment and abut at the outer periphery, but in this case, the magnetic flux distribution waveform (solid line) shown in Figure 5A
As shown in the figure, there are parts where the magnetic flux is close to 0, and rotational torque, magnetic noise, and vibration are not improved. This is because the gap 41 creates a portion where the magnetic pole does not face the armature conductor portion. Although this drop in magnetic flux is smaller than when a space is completely formed between the magnetic poles as shown by the dotted line, it is not preferable.

本発明の実施例によれば効果的に漏洩磁路を遮
断できるための規定されたポールエンクロージヤ
の範囲内で永久磁石、補助磁極を最少形状にして
有効的に配置でき、回転トルクも現状の構造体格
を維持して5%程度向上させることができる。又
磁束分布が滑らかとなるため磁気音、信号が抑え
られ騒音の少ない電磁機が得られる。
According to the embodiments of the present invention, the permanent magnets and auxiliary magnetic poles can be effectively arranged in the minimum shape within the defined range of the pole enclosure in order to effectively block the leakage magnetic path, and the rotational torque can be reduced to the current level. It is possible to maintain the structural physique and improve it by about 5%. Furthermore, since the magnetic flux distribution becomes smooth, magnetic sound and signals are suppressed, and an electromagnetic machine with less noise can be obtained.

第6図は本発明の他の実施例を示すもので、永
久磁石21の接合面側は補助磁極31と磁石の先
端部21aで接合し、その接合点から磁石側上方
に向けてテーパを除去することによつて漏洩磁路
遮断空隙41を形成しており、この場合も漏洩磁
束を有効に遮断できる。
FIG. 6 shows another embodiment of the present invention, in which the joining surface side of the permanent magnet 21 is joined to the auxiliary magnetic pole 31 at the tip 21a of the magnet, and the taper is removed from the joining point upward on the magnet side. By doing so, a leakage magnetic path blocking air gap 41 is formed, and in this case as well, leakage magnetic flux can be effectively blocked.

第7図は更に他の実施例で、空隙部42を補助
磁極32側に設けたもので、この場合磁石22の
側端面は放射線上にそつて切断形成されて、それ
と対向する補助磁極側は円状に除去されるが、軟
鉄等の鉄製であるため極めて容易に成形すること
が出来、接合面の幅を自由にコントロールできる
利点がある。
FIG. 7 shows yet another embodiment in which a gap 42 is provided on the side of the auxiliary magnetic pole 32. In this case, the side end surface of the magnet 22 is cut along the radial line, and the side end face of the auxiliary magnetic pole opposite thereto is formed by cutting along the radial line. Although it is removed in a circular shape, since it is made of iron such as soft iron, it can be shaped extremely easily, and has the advantage that the width of the joint surface can be freely controlled.

このように漏洩磁路遮断空隙は主磁極、補助磁
極のいずれか一方を切除することによつて形成さ
れるがいずれの場合でも同等の効果が期待でき
る。
In this way, the leakage magnetic path blocking gap is formed by cutting out either the main magnetic pole or the auxiliary magnetic pole, but the same effect can be expected in either case.

第4番目の実施例は永久磁石23、補助磁極3
3のいずれにも切欠けを設けて内径側で突合せる
ことによつて空隙43を形成したもので、この場
合も永久磁石側のテーパに合せて補助磁極を自由
に成形できる利点がある。
The fourth embodiment has a permanent magnet 23 and an auxiliary magnetic pole 3.
A gap 43 is formed by providing a notch in each of the magnets 3 and abutting them on the inner diameter side, and this case also has the advantage that the auxiliary magnetic pole can be freely formed to match the taper on the permanent magnet side.

以上本発明によれば高負荷時における磁束分布
波形が滑らかで、回転トルクの大きい永久磁石式
直流機が提供できる。
As described above, according to the present invention, it is possible to provide a permanent magnet type DC machine with a smooth magnetic flux distribution waveform and a large rotational torque under high loads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の永久磁石式直流機を採用した
スタータの要部縦断面図、第2図は第1図におけ
る一部側面図、第3図は磁石式直流機のエンクロ
ージヤ寸法図、第4図イ,ロは本発明における高
負荷時の電機子側からみた磁束分布図および磁極
の構造図、第5図イ,ロは従来における高負荷時
の電機子側からみた磁束分布図および磁極の構造
図、第6図〜第8図は他の実施例における永久磁
石と補助磁極の関係を示す部分図である。 1……継鉄、2……永久磁石(主磁極)、3…
…補助磁極、4……漏洩磁路空隙部。
Fig. 1 is a vertical cross-sectional view of the main parts of a starter that employs the permanent magnet type DC machine of the present invention, Fig. 2 is a partial side view of Fig. 1, and Fig. 3 is a dimensional drawing of the enclosure of the magnet type DC machine. Figures 4A and 4B are magnetic flux distribution diagrams and magnetic pole structure diagrams as seen from the armature side during high loads in the present invention, and Figures 5A and 5B are magnetic flux distribution diagrams and magnetic pole structure diagrams as seen from the armature side during high loads in the conventional method. The structural diagrams of the magnetic poles, FIGS. 6 to 8 are partial views showing the relationship between the permanent magnet and the auxiliary magnetic pole in other embodiments. 1... Yoke, 2... Permanent magnet (main magnetic pole), 3...
...Auxiliary magnetic pole, 4...Leakage magnetic path gap.

Claims (1)

【特許請求の範囲】 1 継鉄の内周面に配置された異方性永久磁石か
らなる主磁極と、該主磁極と周方向で隣接して並
設される補助磁極とを備えた永久磁石直流機にお
いて、前記隣り合う二つの磁極は該磁極の半径方
向内側で接し、半径方向外側で隔離されて漏洩磁
路遮断部を形成していることを特徴とする永久磁
石式直流機。 2 特許請求の範囲第1項の記載において、前記
二つの磁極は回転軸心からの放射線上で半径方向
内側で面接触し、半径方向外側で隔離されている
ことを特徴とする永久磁石式直流機。 3 特許請求の範囲第1項の記載において、前記
漏洩磁路遮断部は半径方向における両磁極の中心
位置より外側に形成したことを特徴とする永久磁
石式直流機。 4 特許請求の範囲第3項の記載において、前記
漏洩磁路遮断部は主磁路の外周角部に形成され、
その角部の切断面は前記主磁極の中心を通る放射
線と平行であることを特徴とする永久磁石式直流
機。
[Claims] 1. A permanent magnet comprising a main magnetic pole made of an anisotropic permanent magnet arranged on the inner circumferential surface of a yoke, and an auxiliary magnetic pole adjacent to and arranged in parallel with the main magnetic pole in the circumferential direction. A permanent magnet type DC machine, wherein the two adjacent magnetic poles are in contact with each other on the inside in the radial direction of the magnetic poles and are separated on the outside in the radial direction to form a leakage magnetic path blocking part. 2. The permanent magnet direct current according to claim 1, characterized in that the two magnetic poles are in surface contact on the radial inner side in the radial direction from the rotation axis, and are isolated on the radial outer side. Machine. 3. The permanent magnet DC machine as set forth in claim 1, wherein the leakage magnetic path blocking portion is formed outside the center position of both magnetic poles in the radial direction. 4. In the description of claim 3, the leakage magnetic path blocking portion is formed at an outer peripheral corner of the main magnetic path,
A permanent magnet type DC machine, wherein a cut surface of the corner portion is parallel to a radiation passing through the center of the main magnetic pole.
JP13625982A 1982-08-06 1982-08-06 Permanent magnet type dc electric machine Granted JPS5928868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13625982A JPS5928868A (en) 1982-08-06 1982-08-06 Permanent magnet type dc electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13625982A JPS5928868A (en) 1982-08-06 1982-08-06 Permanent magnet type dc electric machine

Publications (2)

Publication Number Publication Date
JPS5928868A JPS5928868A (en) 1984-02-15
JPH0423505B2 true JPH0423505B2 (en) 1992-04-22

Family

ID=15170997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13625982A Granted JPS5928868A (en) 1982-08-06 1982-08-06 Permanent magnet type dc electric machine

Country Status (1)

Country Link
JP (1) JPS5928868A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768655A (en) * 1980-10-13 1982-04-27 Hitachi Ltd Permanent magnet field system provided with auxiliary magnetic poles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768655A (en) * 1980-10-13 1982-04-27 Hitachi Ltd Permanent magnet field system provided with auxiliary magnetic poles

Also Published As

Publication number Publication date
JPS5928868A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
JP3355700B2 (en) Rotating electric machine stator
US5298827A (en) Permanent magnet type dynamoelectric machine rotor
JP2002262533A (en) Permanent magnet type rotating electric machine
JP2000041367A (en) Hybrid excitation type synchronous machine
JPH06245419A (en) Yoke for motor or generator
JPH0219695B2 (en)
JP2000188837A (en) Permanent magnet rotor and its manufacture
JP3268762B2 (en) Rotor of rotating electric machine and method of manufacturing the same
JPH07231589A (en) Rotor for permanent magnet electric rotating machine
JPH03243155A (en) Revolving armature
JPH0423505B2 (en)
JPS6233828B2 (en)
US20040012297A1 (en) Motor with core, core and method for manufacturing core and motor with core
JP2001178037A (en) Permanent-magnet dynamo-electric machine
JPH0564384A (en) Motor
JP2598770Y2 (en) Rotating electric machine
JP2001086710A (en) Method for manufacturing permanent-magnet motor and magnetizing device
JPH0556100B2 (en)
JPH0746657B2 (en) Magnetization method
JP2001069697A (en) Permanent magnet electric motor
JPH0638412A (en) Permanent magnetic type brushless rotating electric machine
JPS6268053A (en) Permanent-magnetic rotary electric machine
JPS6241583Y2 (en)
JPH034133Y2 (en)
JP2609286B2 (en) Permanent magnet rotating machine