JPH0423379A - Semiconductor laser and manufacture thereof - Google Patents
Semiconductor laser and manufacture thereofInfo
- Publication number
- JPH0423379A JPH0423379A JP12345590A JP12345590A JPH0423379A JP H0423379 A JPH0423379 A JP H0423379A JP 12345590 A JP12345590 A JP 12345590A JP 12345590 A JP12345590 A JP 12345590A JP H0423379 A JPH0423379 A JP H0423379A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor
- cladding layer
- conductivity type
- mesa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000005530 etching Methods 0.000 claims abstract description 5
- 238000005253 cladding Methods 0.000 claims description 51
- 239000000758 substrate Substances 0.000 claims description 13
- 230000015556 catabolic process Effects 0.000 abstract description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 101150110330 CRAT gene Proteins 0.000 description 1
- -1 alkyl metal compounds Chemical class 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- UXFDJNIGYGTLAX-UHFFFAOYSA-N diethylindium Chemical compound CC[In]CC UXFDJNIGYGTLAX-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光デイスクメモリなとに用いられる半導体レ
ーザ装置およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device used in optical disk memories, etc., and a method for manufacturing the same.
従来の技術
光デイスクメモリの端末機器光源として、半導体レーザ
装置が使用されており、種々のストライプ構造が提案さ
れている。第3図はその中の1つの例であるメサ型のク
ラッド層を有するものである(特開平1−232784
号公報、特開平1209779号公報参照)。2. Description of the Related Art Semiconductor laser devices are used as light sources for terminal devices of optical disk memories, and various striped structures have been proposed. Figure 3 shows one example of this, which has a mesa-shaped cladding layer (Japanese Patent Application Laid-Open No. 1-232784
(see Japanese Patent Application Laid-Open No. 1209779).
図において、21は半導体基板、22は第1クラッド層
、23は活性層、24はメサ状の第2のクラッド層、2
5はメサ上部に形成された半導体電極層、26は半導体
電流狭窄層、27は半導体キャップ層、28.29は電
極である。In the figure, 21 is a semiconductor substrate, 22 is a first cladding layer, 23 is an active layer, 24 is a mesa-shaped second cladding layer, 2
5 is a semiconductor electrode layer formed on the upper part of the mesa, 26 is a semiconductor current confinement layer, 27 is a semiconductor cap layer, and 28 and 29 are electrodes.
コンパクトディスク(CD)や光ティスフファイルなど
に実用的な光源として半導体レーザ装置に要求される性
能は、最大光出力1発振波長、非点隔差、単一モード性
、低動作電流、低動作電圧なとの電気−光特性以外に、
工業的な意味での信頼性が挙げられる。信頼性の1項目
として静電破壊耐圧かある。第4図に示すものは、電子
機械工業会(EIAJ)の規格(ETAJ−C法)で規
定される人体帯電モデルによる静電破壊耐圧測定試験の
一例である(EIAJ rc−121−1981E
S D)。The performances required of a semiconductor laser device as a practical light source for compact discs (CDs), optical files, etc. are maximum optical output at one oscillation wavelength, astigmatism, single mode, low operating current, and low operating voltage. In addition to the electro-optical properties of
One example is reliability in an industrial sense. One item of reliability is electrostatic breakdown voltage. What is shown in Fig. 4 is an example of an electrostatic breakdown voltage measurement test using a human body charging model specified by the Electronic Machinery Industries Association (EIAJ) standard (ETAJ-C method) (EIAJ rc-121-1981E
S D).
半導体レーザ装置の発振しきい値電流が変化する点をサ
ージ耐圧と規定する。第3図の従来例の半導体レーザ装
置に放電容量(Cp)200pF放電抵抗(Rri)
0Ω、印加電圧(〜′)をパラメタとして破壊試験を行
なうと、半導体レーザ装置の順方向にサージ電流か流れ
るようにした時のサージ耐圧は120■、半導体レーザ
装置の逆方向にサージ電流か流れるようにした時のサー
ジ耐圧は800Vであった。EIAJでは、人体の帯電
量はこのモデルでは150Vと考えられ、サージ耐圧の
優れた半導体レーザ装置が望まれていた。なお、第4図
において、30は半導体レーザ装置を挿入接続する測定
台である。The point at which the oscillation threshold current of a semiconductor laser device changes is defined as the surge withstand voltage. The conventional semiconductor laser device shown in Fig. 3 has a discharge capacity (Cp) of 200 pF and a discharge resistance (Rri).
When performing a destructive test with 0Ω and applied voltage (~') as parameters, the surge withstand voltage is 120■ when a surge current flows in the forward direction of the semiconductor laser device, and the surge current flows in the reverse direction of the semiconductor laser device. When this was done, the surge withstand voltage was 800V. At EIAJ, the amount of charge on the human body was considered to be 150V in this model, and a semiconductor laser device with excellent surge resistance was desired. In FIG. 4, reference numeral 30 denotes a measurement stand into which a semiconductor laser device is inserted and connected.
発明か解決しようとする課題
このような従来の半導体レーザ装置では、メサ部上部と
同じ高さの半導体電流狭窄層を有する構成であるから、
サージ耐圧を上げるのに限界かあった。Problems to be Solved by the Invention Since such a conventional semiconductor laser device has a structure in which the semiconductor current confinement layer has the same height as the upper part of the mesa part,
There was a limit to increasing the surge pressure.
本発明は上記課題を解決するもので、高いサノ耐圧を有
する半導体レーザ装置およびその製造方法を提供するこ
とを目的としている。The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor laser device having a high breakdown voltage and a method for manufacturing the same.
課題を解決するための手段
本発明は上記目的を達成するために、〜導電型の半導体
基板上に形成されたその半導体基板と同じ導電型の第1
のクラッド層と、その第1のクラッド層上に形成された
活性層と、その活性層上に形成された中央部かストライ
プ状メサ型をした第1のクラッド層とは逆の導電型の第
2のクラッド層と、その第2のクラッド層のメサ部上部
に形成された第2のクラッド層と同じ導電型の半導体電
極層と、中央部のストライプ状メサ部を除いた第2のク
ラッド層上に形成されたその第2のクランド層と逆の導
電型でその第2のクラッド層のメサ部の高さを超えない
半導体電流狭窄層と、その半導体電流狭窄層上にメサ部
上部と同一平面になるように形成された第2のクラッド
層と同じ導電型の半導体電極層とを有する構成よりなる
。Means for Solving the Problems In order to achieve the above-mentioned objects, the present invention provides a first semiconductor substrate of the same conductivity type as the semiconductor substrate formed on a semiconductor substrate of ~ conductivity type.
a cladding layer, an active layer formed on the first cladding layer, and a second cladding layer of a conductivity type opposite to that of the first cladding layer formed on the active layer and having a striped mesa shape. a second cladding layer, a semiconductor electrode layer of the same conductivity type as the second cladding layer formed above the mesa portion of the second cladding layer, and a second cladding layer excluding the striped mesa portion in the center. A semiconductor current confinement layer having a conductivity type opposite to that of the second cladding layer formed above and not exceeding the height of the mesa portion of the second cladding layer; It has a configuration including a second cladding layer formed to be flat and a semiconductor electrode layer of the same conductivity type.
作用
本発明は上記した構成により、半導体電流狭窄層の膜厚
の設定はサージ電流の流入に対しバイパスを形成すると
考えられ、サージ耐圧が向上するものと推定される。は
っきりしたメカニズムは明らかでないが、この値は通常
の半導体レーザ装置の動作に支障のない範囲で種々の実
験により見出されたものである。Effect of the present invention With the above-described configuration, it is thought that the thickness of the semiconductor current confinement layer is set to form a bypass against the inflow of surge current, and it is presumed that the surge withstand voltage is improved. Although the exact mechanism is not clear, this value was found through various experiments within a range that does not interfere with the operation of normal semiconductor laser devices.
実施例
以下、本発明の一実施例について第1図および第2図を
参照しながら説明する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2.
まず第1図(alに示すように、n型GaAsからなる
半導体基板1 (100μm)上にn型G a o、
sAl。sAsからなる第1のクラッド層2を1.0μ
m成長する。First, as shown in FIG. 1 (al), on a semiconductor substrate 1 (100 μm) made of n-type GaAs,
sAl. The first cladding layer 2 made of sAs has a thickness of 1.0μ.
m grow.
さらにアンドープG a o、 ssA I 0. +
2A Sからなる活性層3を0.09μm、p型Gao
、sAj!o5Asからなる第2のクラッド層4を1.
0μm1さらにp型GaAs層からなる半導体電極層5
を0.2μm成長する。この時結晶成長は■族元素およ
びp型ドーパントのZnをアルキル金属化合物(トリメ
チルアルミニウム、トリメチルガリウム、ジエチルイン
ジウム)、V族元素およびn型ドーパントを水素化物(
アル/ン、ンンラン)を用い、通常の有機金属気相成長
法(M OV P E )で行なった。圧力は大気圧と
し、成長温度は760°Cとした。この後、第1図(b
lに示すように半導体電極層5上部にプラズマC〜rD
による絶縁膜6(SiN)を1000人形成する。さら
に第1図(C)で示すホトレジストパターン7を通常の
ホトリソグラフィ技術によりストライプ状に加工する。Furthermore, undoped G ao, ssA I 0. +
The active layer 3 made of 2A S is 0.09 μm thick and has a p-type GaO layer.
,sAj! The second cladding layer 4 made of o5As is 1.
0 μm1 and a semiconductor electrode layer 5 made of a p-type GaAs layer.
is grown to a thickness of 0.2 μm. At this time, crystal growth is carried out by using group I elements and p-type dopant Zn with alkyl metal compounds (trimethylaluminum, trimethylgallium, diethylindium), group V elements and n-type dopant with hydride (
The process was carried out using a conventional metal organic vapor phase epitaxy method (MOV PE). The pressure was atmospheric pressure, and the growth temperature was 760°C. After this, Figure 1 (b
As shown in FIG.
An insulating film 6 (SiN) was formed by 1000 people. Furthermore, the photoresist pattern 7 shown in FIG. 1(C) is processed into a stripe shape using a normal photolithography technique.
つぎに第1図id)に示すようにこのホトレジストパタ
ーン7をマスクとして絶縁膜6をバッファ弗酸溶液でエ
ツチングし、メサエッチングマスクとした後、ホトレジ
ストパターン7は除去する。つぎにこの絶縁膜6からな
るメサエッチングマスクを使い、硫酸と過酸化水素水の
混合溶液で第2のクラッド層4を、中央部かストライプ
状のメサ型となるようにエツチングを行なう。この時第
2のクラット層4の一部は残しておき、活性層3か大気
中に露出しないようにする。この後第1図te+で示す
ように、絶縁膜マスクを残したまま、n−GaAsから
なる半導体電流狭窄層8をMOVPE法により選択的に
結晶成長する。この半導体電流狭窄層8の膜厚はメサ部
の高さを超えないようにする。続いてp−GaAsから
なる半導体電極層9を半導体電流狭窄層8上にMOVP
E法により選択的に結晶成長する。半導体電極層9と半
導体電流狭窄層8の膜厚の総和がちょうどメサ部上部と
同一平面になる膜厚まで成長し、絶縁膜6を100℃に
加熱した燐酸により除去し、半導体レーザ装置を完成す
る。ここで半導体電極層9と半導体電流狭窄層8の膜厚
の総和がちょうとメサ部上部と同一になる膜厚以上まで
成長しなければ、絶縁膜6除去工程の加熱した燐酸によ
りメサ形状の第2のクラッド層4の上端にエツチングが
回り込み、第2のクラッド層4がエツチングされてしま
う可能性があるため本発明による構造を作成することが
できない。また続いて第1図tf+に示すように、半導
体重F層5および9の上にp−GaAsからなる半導体
キャップ層10を2μm成長させ、さらに第1図fg+
に示すように半導体キャップ層10上にp側電極11を
、半導体基板1の裏面にn型電極12を蒸着、アロイし
、へき開、スクライブにより半導体レーザ装置としても
よい。Next, as shown in FIG. 1 (id), using this photoresist pattern 7 as a mask, the insulating film 6 is etched with a buffered hydrofluoric acid solution to form a mesa etching mask, and then the photoresist pattern 7 is removed. Next, using the mesa etching mask made of the insulating film 6, the second cladding layer 4 is etched with a mixed solution of sulfuric acid and hydrogen peroxide so that the central part becomes a striped mesa shape. At this time, a part of the second crat layer 4 is left to prevent the active layer 3 from being exposed to the atmosphere. Thereafter, as shown at te+ in FIG. 1, a semiconductor current confinement layer 8 made of n-GaAs is selectively crystal-grown using the MOVPE method while leaving the insulating film mask. The thickness of this semiconductor current confinement layer 8 should not exceed the height of the mesa portion. Subsequently, a semiconductor electrode layer 9 made of p-GaAs is placed on the semiconductor current confinement layer 8 by MOVP.
Crystals are selectively grown using the E method. The total thickness of the semiconductor electrode layer 9 and the semiconductor current confinement layer 8 is grown to a thickness that is exactly flush with the upper part of the mesa portion, and the insulating film 6 is removed with phosphoric acid heated to 100° C. to complete the semiconductor laser device. do. If the sum of the film thicknesses of the semiconductor electrode layer 9 and the semiconductor current confinement layer 8 does not grow to a thickness equal to or greater than that of the upper part of the mesa part, the heated phosphoric acid in the step of removing the insulating film 6 will cause the mesa-shaped The structure according to the present invention cannot be created because the etching may wrap around the upper end of the second cladding layer 4 and the second cladding layer 4 may be etched. Subsequently, as shown in FIG. 1 tf+, a semiconductor cap layer 10 made of p-GaAs is grown to a thickness of 2 μm on the semiconductor heavy F layers 5 and 9, and further, as shown in FIG. 1 fg+
As shown in FIG. 2, a p-side electrode 11 may be deposited on the semiconductor cap layer 10 and an n-type electrode 12 may be deposited on the back surface of the semiconductor substrate 1, and then cleaved and scribed to form a semiconductor laser device.
第2図に本発明による第1図の断面構造図を有する半導
体レーザ装置の半導体電流狭窄層8の膜厚と順方向サー
ジ耐圧の関係を示す。この時、第4図に示すEIAJ−
C法で規定される人体帯電モデルによる静電破壊耐圧測
定を放電容重200pF、放電抵抗0Ω、印加電圧をパ
ラメータとして破壊試験を行なった。図より明らかなよ
うに、順方向サージ耐圧は半導体電流狭窄層8の膜厚と
相関かあり、EIAJで人体の帯電量として考えられて
いる150■を超えるには0.6μm以下であれば良い
ことかわかる。しかし、実際の半導体レーザ装置におい
ては、半導体電流狭窄層8が薄(なりすぎると、動作時
の電流を狭窄することかできなくなる。その薄さの限界
は、各半導体レーザ装置の動作電流や光出力で規定され
るため、一意的に決めることはできない。FIG. 2 shows the relationship between the thickness of the semiconductor current confinement layer 8 and the forward surge breakdown voltage of a semiconductor laser device according to the present invention having the cross-sectional structure diagram of FIG. 1. At this time, EIAJ-
A breakdown test was conducted to measure electrostatic breakdown voltage using a human body charging model defined by method C, using a discharge capacity weight of 200 pF, a discharge resistance of 0 Ω, and an applied voltage as parameters. As is clear from the figure, the forward surge withstand voltage has a correlation with the film thickness of the semiconductor current confinement layer 8, and in order to exceed 150cm, which is considered as the amount of charge on the human body according to EIAJ, it is sufficient to have a thickness of 0.6 μm or less. I understand that. However, in actual semiconductor laser devices, the semiconductor current confinement layer 8 is thin (if it becomes too thin, it becomes impossible to constrict the current during operation. The limit of its thinness is determined by the operating current of each semiconductor laser device and Since it is specified by the output, it cannot be determined uniquely.
なお本実施例では、結晶材料をGaAj!As系2した
が他の材料のInGaAsP系、InGaAsP系など
にも適用できる。In this example, the crystal material is GaAj! Although As-based 2 is used, it can also be applied to other materials such as InGaAsP-based and InGaAsP-based.
発明の効果
以上の実施例から明らかなように本発明によりば、一導
電型の半導体基板上に形成されたその斗導体基板と同じ
導電型の第1のクラッド層と、その第1のクラッド層上
に形成された活性層と、その活性層上に形成された中央
部がストライプ状メサ型をした第1のクラッド層とは逆
の導電型の第2のクラッド層と、その第2のクラッド層
のメサ部上部に形成された第2のクラッド層と同じ導電
型の半導体電極層と、中央部のストライプ状メサ部を除
いた第2のクラッド層上に形成されたその第2のクラッ
ド層と逆の導電型でその第2のクラッド層のメサ部の高
さを超えない半導体電流狭窄層と、その半導体電流狭窄
層上にメサ部上部と同一平面になるように形成された第
2のクラッド層と同じ導電型の半導体電極層とを有する
構成になるので、サージ耐圧の大きい半導体レーザ装置
を提供できる。Effects of the Invention As is clear from the above embodiments, according to the present invention, a first cladding layer formed on a semiconductor substrate of one conductivity type and having the same conductivity type as that of the conductor substrate; an active layer formed on the active layer; a second cladding layer formed on the active layer and having a conductivity type opposite to that of the first cladding layer having a striped mesa shape in the center; A semiconductor electrode layer of the same conductivity type as the second cladding layer formed above the mesa portion of the layer, and the second cladding layer formed on the second cladding layer excluding the striped mesa portion at the center. a semiconductor current confinement layer having a conductivity type opposite to that of the second cladding layer and not exceeding the height of the mesa portion of the second cladding layer; Since the structure includes a semiconductor electrode layer of the same conductivity type as the cladding layer, a semiconductor laser device with high surge withstand voltage can be provided.
第1図(al〜(glは本発明の一実施例の半導体レザ
装置の工程断面図、第2図は第1図の本発明の実施例に
おける半導体電流狭窄層の膜厚と順方向サージ耐圧の関
係を示す図、第3図は従来の半導体レーザ装置の断面図
、第4図は人体帯電モデルによる静電破壊耐圧測定法を
示す回路図である。
1・・・・・・半導体基板、2・・・・・・第1のクラ
ッド層、3・・・・・・活性層、4・・・両筒2のクラ
ッド層、5.・・・・・半導体電極層、8・・・・・・
半導体電流狭窄層、9・・・・・・半導体電極層。
代理人の氏名 弁理士 粟野重孝 はか18第
図
&aAs@ニaS窄層繰厚(、am)
第
図FIG. 1 (al to (gl) is a process cross-sectional view of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2 is a film thickness and forward surge breakdown voltage of a semiconductor current confinement layer in an embodiment of the present invention shown in FIG. 3 is a cross-sectional view of a conventional semiconductor laser device, and FIG. 4 is a circuit diagram showing a method for measuring electrostatic breakdown voltage using a human body charging model. 1... Semiconductor substrate, 2... First cladding layer, 3... Active layer, 4... Cladding layer of both cylinders 2, 5... Semiconductor electrode layer, 8...・・・
Semiconductor current confinement layer, 9... Semiconductor electrode layer. Name of agent Patent attorney Shigetaka Awano Figure 18
Claims (5)
基板と同じ導電型の第1のクラッド層と、その第1のク
ラッド層上に形成された活性層と、その活性層上に形成
された中央部がストライプ状メサ型をした前記第1のク
ラッド層とは逆の導電型の第2のクラッド層と、その第
2のクラッド層のメサ部上部に形成された前記第2のク
ラッド層と同じ導電型の半導体電極層と、前記中央部の
ストライプ状メサ部を除いた前記第2のクラッド層上に
形成されたその第2のクラッド層と逆の導電型でその第
2のクラッド層の前記メサ部の高さを超えない半導体電
流狭窄層と、その半導体電流狭窄層上に前記メサ部上部
と同一平面になるように形成された前記第2のクラッド
層と同じ導電型の半導体電極層とを有する半導体レーザ
装置。(1) A first cladding layer of the same conductivity type as the semiconductor substrate formed on a semiconductor substrate of one conductivity type, an active layer formed on the first cladding layer, and a first cladding layer formed on the active layer. a second cladding layer having a conductivity type opposite to that of the first cladding layer and having a striped mesa-shaped central portion; and the second cladding layer formed on the mesa portion of the second cladding layer. a semiconductor electrode layer having the same conductivity type as the semiconductor electrode layer, and a second cladding layer having a conductivity type opposite to that of the second cladding layer formed on the second cladding layer excluding the central striped mesa portion; a semiconductor current confinement layer that does not exceed the height of the mesa portion of the layer; and a semiconductor of the same conductivity type as the second cladding layer formed on the semiconductor current confinement layer so as to be flush with the upper part of the mesa portion. A semiconductor laser device having an electrode layer.
体電極層と半導体電流狭窄層上に形成された半導体電極
層の上に、第2のクラッド層と同じ導電型の半導体キャ
ップ層を有する請求項(1)記載の半導体レーザ装置。(2) A semiconductor cap layer of the same conductivity type as the second cladding layer is formed on the semiconductor electrode layer formed on the mesa portion of the second cladding layer and the semiconductor electrode layer formed on the semiconductor current confinement layer. The semiconductor laser device according to claim (1).
請求項(1)または(2)記載の半導体レーザ装置。(3) The semiconductor laser device according to claim 1 or 2, wherein the semiconductor current confinement layer has a thickness of 0.6 μm or less.
導電型の第1のクラッド層を形成する工程と、その第1
のクラッド層上に活性層を形成する工程と、その活性層
上に前記第1のクラッド層とは逆の導電型の第2のクラ
ッド層を形成する工程と、その第2のクラッド層上にそ
の第2のクラッド層と同じ導電型の半導体電極層を形成
する工程と、その半導体電極層上にストライプ状の絶縁
膜を形成する工程と、そのストライプ状の絶縁膜をマス
クとして前記半導体電極層と前記第2のクラッド層をエ
ッチングしてメサ型に加工する工程と、前記ストライプ
状メサ部を除いた前記第2のクラッド層上にその第2の
クラッド層とは逆の導電型でその第2のクラッド層の前
記メサ部の高さを越えない膜厚の半導体電流狭窄層を形
成する工程と、その半導体電流狭窄層上に前記メサ部上
部と同一平面になるように前記第2のクラッド層と同じ
導電型の半導体電極層を形成する工程と、前記ストライ
プ状の絶縁膜を除去する工程とを有する半導体レーザ装
置の製造方法。(4) forming a first cladding layer of the same conductivity type as the semiconductor substrate on a semiconductor substrate of one conductivity type;
forming an active layer on the cladding layer; forming a second cladding layer of a conductivity type opposite to that of the first cladding layer on the active layer; and forming an active layer on the second cladding layer. A step of forming a semiconductor electrode layer of the same conductivity type as the second cladding layer, a step of forming a striped insulating film on the semiconductor electrode layer, and a step of forming the semiconductor electrode layer using the striped insulating film as a mask. etching the second cladding layer to form a mesa shape; forming a semiconductor current confinement layer having a thickness not exceeding the height of the mesa portion of the second cladding layer; A method for manufacturing a semiconductor laser device, comprising the steps of forming a semiconductor electrode layer of the same conductivity type as the layer, and removing the striped insulating film.
2のクラッド層のメサ部上部に形成された半導体電極層
と半導体電流狭窄層上に形成された半導体電極層上に第
2のクラッド層と同じ導電型の半導体キャップ層を形成
する工程とを有する請求項(4)記載の半導体レーザ装
置の製造方法。(5) After the step of removing the striped insulating film, a second clad layer is formed on the semiconductor electrode layer formed on the mesa portion of the second clad layer and the semiconductor electrode layer formed on the semiconductor current confinement layer. 5. The method of manufacturing a semiconductor laser device according to claim 4, further comprising the step of forming a semiconductor cap layer of the same conductivity type as the semiconductor laser device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2123455A JP2685332B2 (en) | 1990-05-14 | 1990-05-14 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2123455A JP2685332B2 (en) | 1990-05-14 | 1990-05-14 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0423379A true JPH0423379A (en) | 1992-01-27 |
JP2685332B2 JP2685332B2 (en) | 1997-12-03 |
Family
ID=14861040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2123455A Expired - Fee Related JP2685332B2 (en) | 1990-05-14 | 1990-05-14 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2685332B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5495493A (en) * | 1993-01-20 | 1996-02-27 | Kabushiki Kaisha Toshiba | Semiconductor laser device |
JP2005129857A (en) * | 2003-10-27 | 2005-05-19 | Sony Corp | Semiconductor light emitting device and its manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6393180A (en) * | 1986-10-07 | 1988-04-23 | Sony Corp | Semiconductor laser |
JPH01232784A (en) * | 1988-03-14 | 1989-09-18 | Hitachi Ltd | Manufacture of light emitting element of semiconductor |
-
1990
- 1990-05-14 JP JP2123455A patent/JP2685332B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6393180A (en) * | 1986-10-07 | 1988-04-23 | Sony Corp | Semiconductor laser |
JPH01232784A (en) * | 1988-03-14 | 1989-09-18 | Hitachi Ltd | Manufacture of light emitting element of semiconductor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5495493A (en) * | 1993-01-20 | 1996-02-27 | Kabushiki Kaisha Toshiba | Semiconductor laser device |
JP2005129857A (en) * | 2003-10-27 | 2005-05-19 | Sony Corp | Semiconductor light emitting device and its manufacturing method |
JP4492093B2 (en) * | 2003-10-27 | 2010-06-30 | ソニー株式会社 | Semiconductor light emitting device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2685332B2 (en) | 1997-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3672062B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPS61284987A (en) | Semiconductor laser element | |
JPH0423379A (en) | Semiconductor laser and manufacture thereof | |
JPH0851250A (en) | Semiconductor laser | |
JPH04162689A (en) | Manufacture of semiconductor light emitting device | |
JPH0775265B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH0645687A (en) | Manufacture of optical semiconductor element | |
JP2917695B2 (en) | Method for manufacturing optical semiconductor device | |
JP2752180B2 (en) | Manufacturing method of semiconductor laser | |
JP2708949B2 (en) | Method of manufacturing semiconductor laser device | |
JPH02106085A (en) | Semiconductor laser element | |
JPH02244690A (en) | Semiconductor laser device | |
JP3033664B2 (en) | Method of manufacturing semiconductor laser device | |
JP3328933B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPS62179790A (en) | Semiconductor laser | |
JPH02114583A (en) | Manufacture of semiconductor laser | |
Katz et al. | Single‐growth embedded epitaxy AlGaAs injection lasers with extremely low threshold currents | |
JPH0462883A (en) | Visible radiation semiconductor laser | |
JPH03161988A (en) | Semiconductor laser device | |
JPS60124982A (en) | Bi-stable laser | |
JPS60224288A (en) | Manufacture of semiconductor light emitting device | |
JPH0740623B2 (en) | Semiconductor laser manufacturing method | |
JPH01166592A (en) | Semiconductor laser element | |
JPS61171185A (en) | Semiconductor laser device | |
JPH04206985A (en) | Manufacture of optical semiconductor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |