JPH04232452A - Measuring apparatus of two components - Google Patents

Measuring apparatus of two components

Info

Publication number
JPH04232452A
JPH04232452A JP2409327A JP40932790A JPH04232452A JP H04232452 A JPH04232452 A JP H04232452A JP 2409327 A JP2409327 A JP 2409327A JP 40932790 A JP40932790 A JP 40932790A JP H04232452 A JPH04232452 A JP H04232452A
Authority
JP
Japan
Prior art keywords
enzyme electrode
concentration
substance
enzyme
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2409327A
Other languages
Japanese (ja)
Inventor
Yukie Inoue
井上 幸枝
Ryuzo Hayashi
隆造 林
Yoshio Hashizume
義雄 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Paper Manufacturing Co Ltd
Original Assignee
Kanzaki Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Paper Manufacturing Co Ltd filed Critical Kanzaki Paper Manufacturing Co Ltd
Priority to JP2409327A priority Critical patent/JPH04232452A/en
Publication of JPH04232452A publication Critical patent/JPH04232452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To make measurement of two components correct by calculating the contribution of a first measuring substance to a second enzyme electrode in the concentration of the first measuring substance obtained from a calibration curve, obtaining the concentration of a second measuring substance, and correcting the concentration of the second measuring substance by means of a function obtained by a standard solution. CONSTITUTION:When glucose as a first measuring substance is fed, hydrogen peroxide is generated by a first enzyme electrode 4, which is detected by a detector 7. When maltose as a second measuring substance passes through an immobilized enzyme coloumn 5, it is converted to glucose and hydrogen peroxide is generated by a second enzyme electrode 6 and detected. A first and a second calibration curves of the concentration of glucose are formed from the detecting values of the first and second enzyme electrodes 4, 6 with use of a glucose standard solution. The concentration of the first measuring substance is measured by the detecting value of the electrode 4 with using the calibration curves. The contribution of the first measuring substance to the electrode 6 is calculated. Then, the concentration of the second measuring substance is obtained from the value obtained by subtracting the contribution from the detecting value of the electrode 6. Moreover, a function of the concentration of the second measuring substance is obtained by using a standard solution of the second measuring substance, so that the concentration of the second measuring substance is corrected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液中の2成分を同時に
測定する酵素電極を用いた測定装置に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device using an enzyme electrode for simultaneously measuring two components in a liquid.

【0002】0002

【従来の技術】近年、固定化酵素は、臨床検査、発酵生
産、分析化学等の分野に広く応用されている。特に固定
化酵素電極は、酵素反応が有する高い選択性、測定の迅
速性、簡便性等から広く利用されている。特に近年では
酵素電極を用い2種類の物質を同時に測定する測定装置
の開発が行われており、例えばグルコースと尿酸(特開
昭62−24142号)、乳酸とピルビン酸(特開昭6
2−5172号)、等の同時測定装置が紹介されている
。また、電極活性物質を生成あるいは消費する酵素反応
が共通する場合の2成分の測定方法が示されている(特
開昭64−69944号)。
BACKGROUND OF THE INVENTION In recent years, immobilized enzymes have been widely applied in fields such as clinical testing, fermentation production, and analytical chemistry. In particular, immobilized enzyme electrodes are widely used because of the high selectivity of enzyme reactions, rapid measurement, and simplicity. Particularly in recent years, measurement devices that use enzyme electrodes to simultaneously measure two types of substances have been developed.
2-5172), etc., have been introduced. Furthermore, a method for measuring two components in the case where an enzyme reaction that produces or consumes an electrode active substance is common is disclosed (Japanese Patent Laid-Open No. 64-69944).

【0003】この方法によると例えば、ショ糖を測定す
る場合には、ショ糖をインベルターゼにより果糖とα−
D −グルコースに加水分解した後、ムタロターゼでα
−D −グルコースをβ−D −グルコースに変換し、
さらにグルコースオキシダーゼでβ−D −グルコース
を酸化して生成する電極活性物質である過酸化水素を電
気化学的に検出する。グルコース(第1測定物質)とシ
ョ糖(第2測定物質)の2物質を酵素電極を用いたフロ
ー型測定装置で2成分同時測定する場合には、グルコー
スオキシダーゼを固定化したグルコース測定用の酵素電
極を第1電極にグルコースオキシダーゼ、ムタロターゼ
、インベルターゼを固定化したショ糖とグルコースの両
者を検出する酵素電極を第2電極として設置する。する
と第1測定物質の濃度は第1電極でそのまま測定され、
第2測定物質の濃度は第1酵素電極で検出した第1測定
物質の濃度を用い、第2電極に関して予め校正した値よ
り第1測定物質の寄与分を計算し、この値を検出値より
差し引くことにより求めることができる。
According to this method, for example, when measuring sucrose, sucrose is converted into fructose and α-
After hydrolysis to D-glucose, α
- converting D-glucose to β-D-glucose;
Further, hydrogen peroxide, which is an electrode active substance produced by oxidizing β-D-glucose with glucose oxidase, is electrochemically detected. When simultaneously measuring two substances, glucose (first measurement substance) and sucrose (second measurement substance), with a flow-type measuring device using an enzyme electrode, an enzyme for glucose measurement with immobilized glucose oxidase is used. An enzyme electrode for detecting both sucrose and glucose on which glucose oxidase, mutarotase, and invertase are immobilized is installed as a second electrode. Then, the concentration of the first measurement substance is directly measured by the first electrode,
For the concentration of the second analyte, use the concentration of the first analyte detected by the first enzyme electrode, calculate the contribution of the first analyte from the value calibrated in advance for the second electrode, and subtract this value from the detected value. It can be found by

【0004】これらの方法は、第1測定物質は第1電極
、第2電極の両方に応答し、第2測定物質そのものは直
接的には両電極に応答を示さず、第1測定物質に変換さ
れた後はじめて第2電極でのみ応答するという前提のも
とに2成分の測定を行うものであった。
[0004] In these methods, the first measuring substance responds to both the first electrode and the second electrode, and the second measuring substance itself does not directly respond to both electrodes, but is converted into the first measuring substance. The two-component measurement was based on the premise that only the second electrode responds after the signal is applied.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、第2測
定物質そのものがごくわずかに第1酵素電極及び第2酵
素電極に応答する場合、この検量線作成方法では純粋な
第2測定物質を測定した場合でも第1酵素電極でわずか
に応答するため実際は含まれていない第1測定物質がわ
ずかに検出され、それに寄与する検出値が差し引かれる
ため第2測定物質が低めに測定され、正確な測定値が得
られなかった。また、この第2測定物質そのものの検出
値は第1測定物質の検出値に比べてわずかであり第2測
定物質の検出値から検量線を作成するのは困難である。 更に、第2測定物質標準液に第1測定物質が混入してい
る場合にも正確な測定値が得られない。本発明はこのよ
うな2成分の測定をより正確に行うことを目的とする。
[Problem to be Solved by the Invention] However, when the second analyte itself responds very slightly to the first enzyme electrode and the second enzyme electrode, this method for creating a calibration curve cannot be used when measuring a pure second analyte. However, since the first enzyme electrode responds slightly, a small amount of the first analyte that is not actually present is detected, and the detection value that contributes to this is subtracted, resulting in the second analyte being measured at a lower value, resulting in an inaccurate measurement value. I couldn't get it. Further, the detected value of the second measuring substance itself is small compared to the detected value of the first measuring substance, and it is difficult to create a calibration curve from the detected values of the second measuring substance. Furthermore, accurate measurement values cannot be obtained if the first measurement substance is mixed in the second measurement substance standard solution. The present invention aims to more accurately measure these two components.

【0006】[0006]

【課題を解決するための手段】本発明は、上流側より、
両電極とも第1測定物質より電気化学的に検出可能な物
質を生成する酵素を有する第1酵素電極と第2酵素電極
を配置し、更に第1酵素電極と第2酵素電極間に若しく
は第2酵素電極に第2測定物質から第1測定物質を生成
する固定化酵素を有するフロータイプ測定装置であって
、且つ (ア)第1測定物質の標準液、第2測定物質の標準液に
関する第1酵素電極、第2酵素電極の検出値からそれぞ
れ検量線を作成し、 (イ)検量線を用いて、試料の第1酵素電極での検出値
によって第1測定物質の濃度を算出し、この第1測定物
質濃度における第2酵素電極に対する寄与分を算出して
、得られた寄与分を試料の第2酵素電極の検出値から差
し引いた値より第2測定物質の濃度を求め、(ウ)更に
第2測定物質の標準液の設定濃度と、この標準液を用い
(イ)の測定を行って得た第2測定物質濃度の関数を求
め、 (エ)(イ)を行って得た測定試料中の第2測定物質濃
度を前記関数で補正して正確な値を求める手段を備えた
2成分測定装置である。
[Means for Solving the Problems] The present invention provides, from the upstream side,
A first enzyme electrode and a second enzyme electrode, both of which have an enzyme that produces a substance electrochemically detectable from the first measurement substance, are disposed, and further between the first enzyme electrode and the second enzyme electrode, or between the second enzyme electrode and the second enzyme electrode. A flow type measuring device having an enzyme electrode immobilized on an enzyme electrode to generate a first measuring substance from a second measuring substance, and (a) a standard solution of the first measuring substance and a first standard solution of the second measuring substance. A calibration curve is created from the detection values of the enzyme electrode and the second enzyme electrode, respectively. (a) Using the calibration curve, calculate the concentration of the first measuring substance based on the detection value of the sample at the first enzyme electrode. Calculate the contribution to the second enzyme electrode in the concentration of the first measuring substance, and calculate the concentration of the second measuring substance from the value obtained by subtracting the obtained contribution from the detected value of the second enzyme electrode of the sample, and (c) further The function of the set concentration of the standard solution of the second measuring substance and the concentration of the second measuring substance obtained by performing the measurement in (a) using this standard solution is determined, and the measurement sample obtained by performing (d) and (b) This is a two-component measuring device equipped with means for correcting the concentration of the second measuring substance in the sample using the function to obtain an accurate value.

【0007】また本発明は、(ア)〜(イ)が、(ア)
第1測定物質の標準液に関する第1酵素電極の検出値か
ら第1検量線を作成し、第1測定物質の標準液に関する
第2酵素電極の検出値から第2検量線を作成し、また第
2測定物質の標準液に関する第2酵素電極の検出値から
第3検量線を作成し、 (イ)試料の第1酵素電極での検出値と第1検量線によ
って第1測定物質の濃度を算出し、この第1測定物質濃
度における第2酵素電極に対する寄与分を第2検量線か
ら算出して、得られた寄与分を試料の第2酵素電極の検
出値から差し引いた値と第3検量線によって第2測定物
質の濃度を求め、である上記の2成分測定装置を開示す
る。
[0007] Furthermore, the present invention provides that (a) to (b) are
A first calibration curve is created from the detection value of the first enzyme electrode regarding the standard solution of the first measurement substance, a second calibration curve is created from the detection value of the second enzyme electrode regarding the standard solution of the first measurement substance, and a second calibration curve is created from the detection value of the second enzyme electrode regarding the standard solution of the first measurement substance. A third calibration curve is created from the detection value of the second enzyme electrode regarding the standard solution of the two measurement substances, and (a) the concentration of the first measurement substance is calculated from the detection value of the sample at the first enzyme electrode and the first calibration curve. Then, the contribution to the second enzyme electrode at this first measurement substance concentration is calculated from the second calibration curve, and the obtained contribution is subtracted from the detection value of the second enzyme electrode of the sample and the third calibration curve. The above-mentioned two-component measuring device is disclosed, in which the concentration of the second measurement substance is determined by .

【0008】本発明は、第1測定物質を主な基質とする
酵素を固定した第1酵素電極と第2酵素電極及び、第2
酵素電極の上流側または第2酵素電極上に第2測定物質
から第1測定物質を生成させる酵素を固定化してなり、
計算記憶手段を有する2成分測定装置であって、前記計
算記憶手段が、下記の測定を行うフロータイプ2成分測
定装置を開示する。 〔検量線と補正式の算出〕(a)第1測定物質標準液を
用いて第1酵素電極と第2酵素電極の検出値を求め、そ
れぞれ第1酵素電極における第1測定物質に対する第1
検量線と、第2酵素電極における第1測定物質に対する
第2検量線を算出し、 (b)第2測定物質標準液を用いて第1酵素電極と第2
酵素電極の検出値を求め、第2酵素電極における第2測
定物質に対する第3検量線を算出し、 (c)第2測定物質標準液の第1酵素電極での検出値及
び第1検量線より、第2測定物質標準液から検出される
第1測定物質濃度を算出し、 この第1測定物質濃度より第2酵素電極への寄与分を第
2検量線を用いて算出し、第2測定物質標準液の第2酵
素電極の検出値より前記寄与分を差し引き、この差し引
き値と第3検量線より第2測定物質濃度X´を算出し、
更に第2測定物質の標準液の設定濃度Xと、X´の関係
式であるX´の補正式を算出する。 〔試料の測定〕(d)試料を測定したときの第1酵素電
極、第2酵素電極の検出値を求め、第1酵素電極の検出
値と第1検量線より第1測定物質濃度を算出し、この値
と第2検量線から第1測定物質の第2酵素電極における
寄与分を算出し、第2酵素電極の検出値より前記寄与分
を差し引いた値と、第3検量線から第2測定物質濃度を
算出し、更に前記補正式により第2測定物質濃度を補正
して正確な第2測定物質濃度を算出する。
[0008] The present invention provides a first enzyme electrode and a second enzyme electrode on which an enzyme whose main substrate is a first measurement substance is immobilized;
An enzyme that generates the first measurement substance from the second measurement substance is immobilized on the upstream side of the enzyme electrode or on the second enzyme electrode,
A flow type two-component measuring device is disclosed that has a calculation storage means, and the calculation storage means performs the following measurements. [Calculation of calibration curve and correction formula] (a) Obtain the detection values of the first enzyme electrode and the second enzyme electrode using the first analyte standard solution,
Calculate a calibration curve and a second calibration curve for the first analyte at the second enzyme electrode; (b) Calculate the second calibration curve for the first analyte using the second analyte standard solution;
Calculate the detected value of the enzyme electrode, calculate a third calibration curve for the second measuring substance at the second enzyme electrode, and (c) calculate the detected value of the second measuring substance standard solution at the first enzyme electrode and the first calibration curve. , calculate the concentration of the first analyte detected from the second analyte standard solution, calculate the contribution to the second enzyme electrode from the first analyte concentration using the second calibration curve, Subtracting the contribution from the detection value of the second enzyme electrode of the standard solution, calculating the second measurement substance concentration X' from this subtraction value and a third calibration curve,
Furthermore, a correction formula for X' that is a relational formula between the set concentration X of the standard solution of the second measurement substance and X' is calculated. [Sample measurement] (d) Obtain the detection values of the first enzyme electrode and the second enzyme electrode when measuring the sample, and calculate the first measurement substance concentration from the detection value of the first enzyme electrode and the first calibration curve. , calculate the contribution of the first measuring substance at the second enzyme electrode from this value and the second calibration curve, and calculate the second measurement from the value obtained by subtracting the contribution from the detection value of the second enzyme electrode and the third calibration curve. The substance concentration is calculated, and the second measurement substance concentration is further corrected using the correction formula to calculate an accurate second measurement substance concentration.

【0009】[0009]

【作用】本発明では第1測定物質がグルコースで、第2
測定物質がマルトースである2成分についてグルコース
オキシダーゼを電極表面に固定化した白金電極と、マル
トースホスホリラーゼをケイ酸担体に固定化したカラム
を用いた2成分測定装置について主に述べるが、この他
カラムを用いずに第2測定物質から第1測定物質を生成
させる手段として多層状に酵素を固定化した電極を第2
電極とし、または2種類以上の酵素を同時に固定化した
第2電極を用いる等の方法もある。即ち、上記の例でカ
ラムに固定する酵素を直接第2酵素電極の酵素と多層状
若しくは混合して固定することもできる。
[Operation] In the present invention, the first substance to be measured is glucose, and the second substance to be measured is glucose.
Regarding the two components in which the measuring substance is maltose, we will mainly discuss a two-component measuring device using a platinum electrode with glucose oxidase immobilized on the electrode surface and a column with maltose phosphorylase immobilized on a silicic acid carrier. As a means of generating the first analyte from the second analyte without using the second analyte, the second analyte is
There are also methods such as using a second electrode as an electrode, or a second electrode on which two or more types of enzymes are immobilized at the same time. That is, the enzyme to be immobilized on the column in the above example can also be immobilized directly with the enzyme of the second enzyme electrode in a multilayered form or in a mixed manner.

【0010】更に第2酵素電極の前の流路に酵素溶液を
注入する等の方法も考えられるがもちろんこの方法は高
価な酵素を使い捨てにするため望ましい方法ではない。 そしてグルコースとマルトース以外では、グルコースオ
キシダーゼ、ムタロターゼおよびインベルターゼを用い
たグルコースとショ糖の2成分測定、グルコースオキシ
ダーゼとグルコアミラーゼを用いたグルコースとマルト
オリゴ糖の2成分測定、グルコースオキシダーゼとβ−
グルコシダーゼを用いたグルコースとセロビオースおよ
びセロオリゴ糖の2成分測定等の糖質測定、またアンモ
ニア電極やアミノ酸オキシダーゼを用いた尿素とアミノ
酸の2成分測定、アミノ酸オキシダーゼとペプチダーゼ
を用いたアミノ酸とペプチドの2成分測定等、第1測定
物質を検出する電極に固定化する酵素が第2測定物質に
対しても応答を示す場合についても同様に応用すること
ができる。
[0010] Furthermore, a method such as injecting an enzyme solution into the channel in front of the second enzyme electrode may be considered, but of course this method is not a desirable method because it makes the expensive enzyme disposable. In addition to glucose and maltose, two-component measurements of glucose and sucrose using glucose oxidase, mutarotase, and invertase, two-component measurements of glucose and malto-oligosaccharides using glucose oxidase and glucoamylase, glucose oxidase and β-
Carbohydrate measurements such as glucose, cellobiose, and cellooligosaccharide two-component measurements using glucosidase, two-component measurements of urea and amino acids using an ammonia electrode and amino acid oxidase, and two-component measurements of amino acids and peptides using amino acid oxidase and peptidase. The present invention can be similarly applied to cases where an enzyme immobilized on an electrode for detecting a first substance to be measured also responds to a second substance to be measured.

【0011】図1は本発明の2成分測定装置の一例を示
すシステム図である。図1は、フロー型を採用したもの
であり、緩衝液槽(1)より緩衝液が送液ポンプ(2)
を介して流されており、サンプラ(3)より測定物質が
注入され第1酵素電極(4)から固定化酵素カラム(5
)を経て第2酵素電極(6)を通って、排液槽(13)
に送られる。
FIG. 1 is a system diagram showing an example of the two-component measuring device of the present invention. Figure 1 shows a flow type system in which the buffer is pumped from the buffer tank (1) to the liquid pump (2).
The substance to be measured is injected from the sampler (3) and transferred from the first enzyme electrode (4) to the immobilized enzyme column (5).
), the second enzyme electrode (6), and the drainage tank (13).
sent to.

【0012】各電極は、37℃の恒温槽(14)中に配
置され、シングルボードコンピュータ(8)の指令に基
づき検出器(7)で電圧が印加されまた各測定物質に基
づく電流出力値を得て、電流増幅、A/D変換等一般に
微小電流をデジタル変換される手段をもって、その情報
がシングルボードコンピュータ(8)に送られる。シン
グルボードコンピュータ(8)は又送液ポンプ(2)や
サンプラ(3)とも接続されており、ここで記憶、判断
、設定並びに検量や濃度の定量等の演算が実行され、パ
ーソナルコンピュータ(10)に結果等を出力する。
[0012] Each electrode is placed in a constant temperature bath (14) at 37°C, and a voltage is applied by a detector (7) based on instructions from a single board computer (8), and a current output value based on each measured substance is determined. The information is then sent to the single board computer (8) using a means for digitally converting minute currents, such as current amplification and A/D conversion. The single board computer (8) is also connected to the liquid pump (2) and sampler (3), where storage, judgment, settings, and calculations such as calibration and concentration determination are performed. Output the results etc.

【0013】以下の説明は、第1酵素電極及び第2酵素
電極が、それぞれグルコースオキシダーゼを白金基体に
固定したグルコース検出電極であり、固定化酵素カラム
(5)は、マルトースホスホリラーゼをケイ酸担体に固
定化したカラムについて行う。第1測定物質であるグル
コースを注入すると、グルコース検知用のグルコースオ
キシダーゼを固定化した第1酵素電極(4)により過酸
化水素が生成され、過酸化水素が電解される際に生じる
電流により検出器(7)で検知される。第2測定物質で
あるマルトースはマルトースホスホリラーゼを固定化し
たカラム(5)を通過する際にグルコースに変換され、
第1酵素電極と同じ酵素を固定化した第2酵素電極(6
)により過酸化水素を生成し、検知される。そのためこ
の固定化酵素カラムを通過する前後のグルコース濃度を
求めれば、試料中のマルトース濃度とグルコース濃度を
測定することができる。つまりグルコース標準液による
第1酵素電極、第2酵素電極の検出値(YG1、YG2
)よりグルコース濃度(XG )について、第1検量線
と第2検量線を作成する。
In the following explanation, the first enzyme electrode and the second enzyme electrode are glucose detection electrodes in which glucose oxidase is immobilized on a platinum substrate, and the immobilized enzyme column (5) is an electrode in which maltose phosphorylase is immobilized on a silicic acid carrier. Perform this on an immobilized column. When glucose, which is the first substance to be measured, is injected, hydrogen peroxide is produced by the first enzyme electrode (4) on which glucose oxidase for glucose detection is immobilized, and the detector is detected by the current generated when hydrogen peroxide is electrolyzed. (7) is detected. Maltose, which is the second substance to be measured, is converted to glucose when passing through the column (5) on which maltose phosphorylase is immobilized.
A second enzyme electrode (6) immobilized with the same enzyme as the first enzyme electrode
) produces hydrogen peroxide, which is detected. Therefore, by determining the glucose concentration before and after passing through this immobilized enzyme column, it is possible to measure the maltose concentration and glucose concentration in the sample. In other words, the detection values of the first enzyme electrode and the second enzyme electrode using the glucose standard solution (YG1, YG2
), a first calibration curve and a second calibration curve are created for the glucose concentration (XG).

【0014】YG1=AG1  ×  XG +BG1
  …(1)YG2=AG2  ×  XG +BG2
  …(2)次に、マルトース標準液による第2酵素電
極の検出値(YM2)よりマルトース濃度(XM )に
ついて第3検量線を作成する。 YM2=AM2  ×  XM +BM2  …(3)
これら3本の検量線とグルコースによる第1酵素電極の
検出値(Y1 )とグルコースとマルトースを含む試料
の第2酵素電極での検出値(Y2 )よりグルコース及
びマルトース濃度を測定することができる。
[0014]YG1=AG1×XG+BG1
...(1) YG2=AG2 × XG +BG2
(2) Next, a third calibration curve is created for the maltose concentration (XM) from the detection value (YM2) of the second enzyme electrode using the maltose standard solution. YM2=AM2×XM+BM2…(3)
The glucose and maltose concentrations can be measured from these three calibration curves, the detection value (Y1) of the first enzyme electrode using glucose, and the detection value (Y2) of the sample containing glucose and maltose at the second enzyme electrode.

【0015】Y1 =YG1  …(4)Y2 =YG
2+YM2  …(5) 未知試料の測定においてはまず第1酵素電極の検出値よ
りグルコース濃度(XG )を求める。(4)、(1)
より Y1 =YG1 =AG1  ×  XG +BG1となる。
[0015]Y1=YG1...(4)Y2=YG
2+YM2...(5) In the measurement of an unknown sample, the glucose concentration (XG) is first determined from the detection value of the first enzyme electrode. (4), (1)
Therefore, Y1 = YG1 = AG1 × XG + BG1.

【0016】第1検量線と第2検量線から第2酵素電極
でのグルコース寄与分(YG2)を差し引く。(5)、
(2)より YM2=Y2 −YG2 =Y2 −(AG2  ×  XG +BG2)となる
[0016] The glucose contribution (YG2) at the second enzyme electrode is subtracted from the first calibration curve and the second calibration curve. (5),
From (2), YM2=Y2-YG2=Y2-(AG2×XG+BG2).

【0017】そして残りの検出値(YM2)からマルト
ース濃度(XM )を求める。(3)よりYM2=AM
2  ×  XM +BM2となる。 しかし、このグルコース検知用酵素電極はグルコースだ
けでなくマルトースに対しても、わずかに応答し検出値
を示す。
Then, the maltose concentration (XM) is determined from the remaining detected value (YM2). From (3), YM2=AM
2 × XM + BM2. However, this enzyme electrode for glucose detection slightly responds to not only glucose but also maltose and shows a detected value.

【0018】YM1=AM1  ×  XM +BM1
  …(6)そのため第1酵素電極の検出値はグルコー
スの検出値とマルトースによる検出値の和になっている
。 Y´1 =YG1+YM1  …(7)しかし(1)よ
り Y´1 =AG1  ×  X´G +BG1  …(
8)となり、マルトースが含まれている試料では、第1
酵素電極での検出値はわずかに高くなる。(5)、(2
)よりYM2=Y2 −YG2 Y´M2  =Y2 −(AG2  ×  X´G +
BG2)  …(9)となり、第2酵素電極の検出値よ
り差し引かれる値も高くなる。(3)より Y´M2=AM2  ×  X´M +BM2  …(
10)となり、マルトース濃度が実際よりも低い値で測
定される。
[0018]YM1=AM1×XM+BM1
(6) Therefore, the detected value of the first enzyme electrode is the sum of the detected value of glucose and the detected value of maltose. Y'1 = YG1 + YM1 ... (7) However, from (1), Y'1 = AG1 × X'G + BG1 ... (
8), and in samples containing maltose, the first
The detection value with the enzyme electrode will be slightly higher. (5), (2
), YM2=Y2 −YG2 Y′M2 =Y2 −(AG2 × X′G +
BG2)...(9), and the value subtracted from the detection value of the second enzyme electrode also becomes higher. From (3), Y'M2=AM2 × X'M +BM2...(
10), and the maltose concentration is measured at a lower value than the actual value.

【0019】そこで、第1検量線、第2検量線及び第3
検量線を作成後、マルトース標準液を測定または、第3
検量線作成時の検出値より測定濃度を求める。マルトー
スの測定濃度と標準液濃度より補正式を求める。 XM =A  ×  X´M +B  …(11)この
補正式を用いてマルトース濃度を補正すれば正確なマル
トース濃度を求めることができる。
[0019] Therefore, the first calibration curve, the second calibration curve, and the third calibration curve are
After creating the calibration curve, measure the maltose standard solution or
Determine the measured concentration from the detected values when creating the calibration curve. Determine the correction formula from the measured concentration of maltose and the concentration of the standard solution. XM = A × X'M + B (11) If the maltose concentration is corrected using this correction formula, an accurate maltose concentration can be determined.

【0020】以下にフローチャートに基づいて具体的に
検量線の作成及び、実際の測定につき説明する。 〔検量線と補正式を求めるステップ〕図3は、第1測定
物質標準液を用いて第1酵素電極と第2酵素電極の検出
値を求め、それぞれ第1酵素電極における第1測定物質
に対する第1検量線と、第2酵素電極における第1測定
物質に対する第2検量線を算出するステップを示す。
The creation of a calibration curve and actual measurement will be explained in detail below based on a flowchart. [Step of determining a calibration curve and correction formula] Figure 3 shows the steps of determining the detection values of the first enzyme electrode and the second enzyme electrode using the first measurement substance standard solution, and calculating the detection values of the first measurement substance at the first enzyme electrode. 3 shows steps for calculating a first calibration curve and a second calibration curve for the first measurement substance in the second enzyme electrode.

【0021】図4は、第2測定物質標準液を用いて第1
酵素電極と第2酵素電極の検出値を求め、第2酵素電極
における第2測定物質に対する第3検量線を算出するス
テップを示し、図5は、必須のステップではないが、再
度第2測定物質標準液を用いて第1酵素電極と第2酵素
電極の検出値を求めるステップを示す。図5のステップ
を行う場合と行わない場合を比較すると、行った場合は
、第2測定物質標準液の検出値を2回取得することによ
り精度が向上する利点がある。
FIG. 4 shows the first measurement using the second measurement substance standard solution.
FIG. 5 shows a step of determining the detected values of the enzyme electrode and the second enzyme electrode and calculating a third calibration curve for the second measuring substance at the second enzyme electrode. Although it is not an essential step, FIG. The step of determining detection values of the first enzyme electrode and the second enzyme electrode using a standard solution is shown. Comparing the case where the step of FIG. 5 is performed and the case where it is not performed, there is an advantage that when the step shown in FIG. 5 is performed, the accuracy is improved by acquiring the detected value of the second measurement substance standard solution twice.

【0022】図6は、図4若しくは図5で測定した第2
測定物質標準液の第1酵素電極での検出値と、第1検量
線より、第2測定物質標準液の第1測定物質濃度を算出
し、第1測定物質濃度より第2酵素電極への寄与分を第
2検量線を用いて算出し、第2測定物質標準液の第2酵
素電極の検出値より前記寄与分を差し引き、差し引き値
と第3検量線より第2測定物質濃度X´M を算出し、
更に第2測定物質の標準液の設定濃度XM から補正式
(11)を算出するステップを示している。
FIG. 6 shows the second
The first analyte concentration of the second analyte standard solution is calculated from the detection value of the analyte standard solution at the first enzyme electrode and the first calibration curve, and the contribution from the first analyte concentration to the second enzyme electrode is calculated. The contribution is subtracted from the detection value of the second enzyme electrode of the second analyte standard solution, and the second analyte concentration X'M is calculated from the subtracted value and the third calibration curve. Calculate,
Furthermore, it shows a step of calculating the correction formula (11) from the set concentration XM of the standard solution of the second measuring substance.

【0023】尚、第2測定物質標準液が第1酵素電極で
検出されるのは、第2測定物質標準液中に不純物として
第1測定物質が含まれるため、或いは第2測定物質自体
がわずかに第1酵素電極の酵素の基質となるためと考え
られる。 〔実際の試料の測定〕第7図は、試料を測定したときの
第1酵素電極、第2酵素電極の検出値を求め、第1酵素
電極の検出値と第1検量線より第1測定物質濃度を求め
、この値と第2検量線から第1測定物質の第2酵素電極
における寄与分を算出し、第2酵素電極の検出値より前
記寄与分を差し引いた値と、第3検量線から第2測定物
質濃度を求めるステップ。更に補正式(11)により正
確な第2測定物質濃度を計算するステップを示している
The second analyte standard solution is detected by the first enzyme electrode because the first analyte is contained as an impurity in the second analyte standard solution, or because the second analyte itself is present in a small amount. It is thought that this is because it becomes a substrate for the enzyme of the first enzyme electrode. [Actual sample measurement] Figure 7 shows the detection values of the first enzyme electrode and the second enzyme electrode when measuring the sample, and the detection values of the first enzyme electrode and the first calibration curve are used to calculate the first measurement substance. Determine the concentration, calculate the contribution of the first measuring substance at the second enzyme electrode from this value and the second calibration curve, and calculate the contribution from the detection value of the second enzyme electrode by subtracting the contribution from the third calibration curve. Step of determining the second measurement substance concentration. Furthermore, a step of calculating an accurate second measurement substance concentration using correction formula (11) is shown.

【0024】[0024]

【実施例】以下に実施例を示し本発明をより詳細に説明
するが、もちろんこれに限定するものではない。
[Examples] The present invention will be explained in more detail with reference to Examples below, but of course the present invention is not limited thereto.

【0025】実施例1 図1の測定装置を用いてブランク試料として蒸留水を用
いて10、20、30mMのグルコース標準液と10、
20、30、40mMのマルトース標準液を用いて検量
線を作成後、再度マルトース標準液を測定し補正式を求
めた。結果を以下に示し、検量線を図2に示す。
Example 1 Using the measuring device shown in FIG. 1, using distilled water as a blank sample, 10, 20, and 30 mM glucose standard solutions and 10,
After creating a calibration curve using 20, 30, and 40 mM maltose standard solutions, the maltose standard solutions were measured again and a correction formula was determined. The results are shown below, and the calibration curve is shown in FIG.

【0026】表1の測定値より、第1,2,3検量線及
び第1酵素電極のマルトース検量線を求めた。 (1)より第1検量線 YG1=8.83XG +0.66…(a)相関係数 
 r=1.000 (2)より第2検量線 YG2=12.58XG −1.73…(b)r=1.
000 (3)より第3検量線 YM2=3.49XM +0.15…(c)r=1.0
00 (6)より第1酵素電極マルトース検量線YM1=0.
17XM −0.49…(d)r=0.992
From the measured values in Table 1, the first, second and third calibration curves and the maltose calibration curve of the first enzyme electrode were determined. From (1), the first calibration curve YG1 = 8.83XG +0.66...(a) Correlation coefficient
r=1.000 From (2), the second calibration curve YG2=12.58XG -1.73...(b) r=1.
000 From (3), the third calibration curve YM2 = 3.49XM +0.15...(c) r = 1.0
00 From (6), the first enzyme electrode maltose calibration curve YM1=0.
17XM -0.49...(d) r=0.992

【0027】[0027]

【表1】[Table 1]

【0028】次に、図5において第2測定物質標準液を
再測定する場合について説明する。マルトース標準液を
再測定し、表2の結果を得た。マルトース測定値X′M
 と標準液濃度XM より、補正式(11)を求めた。 補正式 XM =1.064  ×  X´M −0.52r=
1.000
Next, the case of re-measuring the second measurement substance standard solution in FIG. 5 will be explained. The maltose standard solution was measured again and the results shown in Table 2 were obtained. Maltose measurement value X'M
and the standard solution concentration XM, the correction formula (11) was determined. Correction formula XM =1.064 × X'M -0.52r=
1.000

【0029】[0029]

【表2】[Table 2]

【0030】この補正式により、実際の試料のマルトー
ス濃度を正確に求めることができる。
[0030] Using this correction formula, it is possible to accurately determine the maltose concentration of an actual sample.

【0031】実施例2 図5において第2測定物質標準液を再測定せず、先に得
たマルトース標準液の検出値を用いて補正式を求める方
法について説明する。実施例1の表1の測定値を用いて
検量線を作成後、マルトース標準液の検出値を用いて測
定値を算出し、補正式を求めた。結果を以下に示す。表
3は、表1の測定値より計算したものである。
Example 2 In FIG. 5, a method of determining a correction formula using the detected value of the previously obtained maltose standard solution without re-measuring the second test substance standard solution will be described. After creating a calibration curve using the measured values in Table 1 of Example 1, the measured values were calculated using the detected values of the maltose standard solution, and a correction formula was determined. The results are shown below. Table 3 is calculated from the measured values in Table 1.

【0032】[0032]

【表3】[Table 3]

【0033】補正式 XM =1.077  ×  X´M −0.90r=
0.999 以上の実施例1,実施例2の結果を用いて実際の試料の
測定を行った結果を表4に示す。
Correction formula XM = 1.077 × X'M -0.90r=
0.999 Table 4 shows the results of measurements of actual samples using the results of Examples 1 and 2 above.

【0034】実施例1の第1〜3検量線により試料を測
定した値(補正前)と、実施例1の方法で得た補正式に
より補正した値(実施例1)と実施例2の方法で得た補
正式により補正した値(実施例2)を示す。またHPL
Cによる測定値を示す。
Values measured on samples using the first to third calibration curves of Example 1 (before correction), values corrected using the correction formula obtained by the method of Example 1 (Example 1), and the method of Example 2 The values corrected using the correction formula obtained in (Example 2) are shown below. Also HPL
Measured values by C are shown.

【0035】[0035]

【表4】[Table 4]

【0036】実施例1,実施例2では、HPLC測定値
と同じ結果が得られた。これに対し補正式を使用しない
補正前では、マルトースの値が小さな値となった。
In Examples 1 and 2, the same results as the HPLC measurement values were obtained. On the other hand, before correction without using a correction formula, the maltose value was a small value.

【0037】[0037]

【発明の効果】本発明の2成分測定装置を用いることに
より、第2測定物質がごくわずかに第1酵素電極及び第
2酵素電極に応答する場合、従来の方法では低めに測定
されていた第2測定物質のより正確な測定値が得ること
が可能になった。
[Effects of the Invention] By using the two-component measuring device of the present invention, when the second substance to be measured responds very slightly to the first enzyme electrode and the second enzyme electrode, the second substance to be measured responds to the first enzyme electrode and the second enzyme electrode very slightly. It became possible to obtain more accurate measurement values for the two measured substances.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の一例であるグルコース・マルト
ース2成分測定装置の系統図である。
FIG. 1 is a system diagram of a glucose/maltose two-component measuring device which is an example of the present invention.

【図2】図2は、実施例1のグルコース・マルトースそ
れぞれの標準液の第1酵素電極・第2酵素電極での検出
値であり、(a)は第1検量線、(b)は第2検量線、
(c)は第3検量線、(d)はマルトース第1電極検量
線である。
[Fig. 2] Fig. 2 shows the detection values of the standard solutions of glucose and maltose in Example 1 at the first enzyme electrode and the second enzyme electrode, (a) is the first calibration curve, and (b) is the 2 calibration curve,
(c) is the third calibration curve, and (d) is the maltose first electrode calibration curve.

【図3】図3は、第1検量線と、第2検量線を算出する
ステップを示す。
FIG. 3 shows steps for calculating a first calibration curve and a second calibration curve.

【図4】図4は、第3検量線を算出するステップを示す
FIG. 4 shows the step of calculating a third calibration curve.

【図5】図5は、再度第2測定物質標準液を用いて第1
酵素電極と第2酵素電極の検出値を求めるステップを示
す。
[Fig. 5] Fig. 5 shows that the first
The steps of obtaining detection values of the enzyme electrode and the second enzyme electrode are shown.

【図6】図6は、補正式を算出するステップを示してい
る。
FIG. 6 shows steps for calculating a correction formula.

【図7】図7は、第2測定物質濃度を求めるステップ、
及び補正式により正確な第2測定物質濃度を計算するス
テップを示している。
FIG. 7 shows the step of determining the second measurement substance concentration;
and a step of calculating an accurate second measurement substance concentration using a correction formula.

【符号の説明】[Explanation of symbols]

1      緩衝液槽 2      送液ポンプ 3      サンプラ 4      第1酵素電極 5      固定化酵素カラム 6      第2酵素電極 7      検出器 8      シングルボードコンピュータ9    
  RS232Cコード 10    パーソナルコンピュータ 11    サンプラ制御信号 12    送液ポンプ制御信号 13    排液槽 14    恒温槽
1 Buffer tank 2 Liquid pump 3 Sampler 4 First enzyme electrode 5 Immobilized enzyme column 6 Second enzyme electrode 7 Detector 8 Single board computer 9
RS232C code 10 Personal computer 11 Sampler control signal 12 Liquid pump control signal 13 Drainage tank 14 Constant temperature tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】上流側より、両電極とも第1測定物質より
電気化学的に検出可能な物質を生成する酵素を有する第
1酵素電極と第2酵素電極を配置し、更に第1酵素電極
と第2酵素電極間に若しくは第2酵素電極に第2測定物
質から第1測定物質を生成する固定化酵素を有するフロ
ータイプ測定装置であって、且つ (ア)第1測定物質の標準液、第2測定物質の標準液に
関する第1酵素電極、第2酵素電極の検出値からそれぞ
れ検量線を作成し、 (イ)検量線を用いて、試料の第1酵素電極での検出値
によって第1測定物質の濃度を算出し、この第1測定物
質濃度における第2酵素電極に対する寄与分を算出して
、得られた寄与分を試料の第2酵素電極の検出値から差
し引いた値より第2測定物質の濃度を求め、(ウ)更に
第2測定物質の標準液の設定濃度と、この標準液を用い
(イ)の測定を行って得た第2測定物質濃度の関数を求
め、 (エ)(イ)を行って得た測定試料中の第2測定物質濃
度を前記関数で補正して正確な値を求める手段を備えた
2成分測定装置。
Claim 1: From the upstream side, a first enzyme electrode and a second enzyme electrode are disposed, both electrodes having an enzyme that generates an electrochemically detectable substance from a first measuring substance, and further comprising a first enzyme electrode and a second enzyme electrode. A flow type measuring device having an immobilized enzyme that generates a first analyte from a second analyte between a second enzyme electrode or on the second enzyme electrode, and (a) a standard solution of the first analyte, a first analyte, 2. Create a calibration curve from the detection values of the first enzyme electrode and the second enzyme electrode regarding the standard solution of the two measuring substances, and (a) use the calibration curve to perform the first measurement based on the detection value of the sample at the first enzyme electrode. Calculate the concentration of the substance, calculate the contribution to the second enzyme electrode in this first measurement substance concentration, and subtract the obtained contribution from the detection value of the second enzyme electrode of the sample. (c) Furthermore, find the function of the set concentration of the standard solution of the second analyte and the concentration of the second analyte obtained by performing the measurement in (b) using this standard solution, and (d) ( A two-component measuring device comprising means for correcting the concentration of the second substance to be measured in the measurement sample obtained by performing (b) using the function to obtain an accurate value.
【請求項2】(ア)〜(イ)が、 (ア)第1測定物質の標準液に関する第1酵素電極の検
出値から第1検量線を作成し、第1測定物質の標準液に
関する第2酵素電極の検出値から第2検量線を作成し、
また第2測定物質の標準液に関する第2酵素電極の検出
値から第3検量線を作成し、 (イ)試料の第1酵素電極での検出値と第1検量線によ
って第1測定物質の濃度を算出し、この第1測定物質濃
度における第2酵素電極に対する寄与分を第2検量線か
ら算出して、得られた寄与分を試料の第2酵素電極の検
出値から差し引いた値と第3検量線によって第2測定物
質の濃度を求め、である請求項1記載の2成分測定装置
[Claim 2] (A) to (B) include: (a) creating a first calibration curve from the detection values of the first enzyme electrode regarding the standard solution of the first measurement substance; Create a second calibration curve from the detected values of the two enzyme electrodes,
In addition, a third calibration curve is created from the detection value of the second enzyme electrode regarding the standard solution of the second measurement substance, and (a) the concentration of the first measurement substance is calculated from the detection value of the sample at the first enzyme electrode and the first calibration curve. Calculate the contribution to the second enzyme electrode at this first measurement substance concentration from the second calibration curve, and subtract the obtained contribution from the detection value of the second enzyme electrode of the sample and the third 2. The two-component measuring device according to claim 1, wherein the concentration of the second measuring substance is determined by a calibration curve.
JP2409327A 1990-12-28 1990-12-28 Measuring apparatus of two components Pending JPH04232452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2409327A JPH04232452A (en) 1990-12-28 1990-12-28 Measuring apparatus of two components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2409327A JPH04232452A (en) 1990-12-28 1990-12-28 Measuring apparatus of two components

Publications (1)

Publication Number Publication Date
JPH04232452A true JPH04232452A (en) 1992-08-20

Family

ID=18518670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2409327A Pending JPH04232452A (en) 1990-12-28 1990-12-28 Measuring apparatus of two components

Country Status (1)

Country Link
JP (1) JPH04232452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069325A1 (en) * 2002-02-15 2003-08-21 Airservices Australia Determination of solution concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069325A1 (en) * 2002-02-15 2003-08-21 Airservices Australia Determination of solution concentration

Similar Documents

Publication Publication Date Title
WO2005012873A3 (en) Electrode systems for electrochemical sensors
US8840776B2 (en) Method and sensor strip for analysis of a sample
CN111398386A (en) Immobilized enzyme electrode, immobilized enzyme sensor and enzyme membrane anti-interference detection method thereof
CN105784814A (en) Sensor based on concentration cell principle
Baum Determination of acetylcholinesterase by an organic substrate selective electrode
EP2151682B1 (en) Substrate concentration measurement method and substrate concentration measurement apparatus
Tatsuma et al. Model analysis of enzyme monolayer-and bilayer-modified electrodes: the transient response
CN104535631A (en) Electrochemical measurement method
Durliat et al. Bienzyme amperometric lactate-specific electrode
JPH04232452A (en) Measuring apparatus of two components
CN211955306U (en) Immobilized enzyme electrode and immobilized enzyme sensor
Abdullin et al. Determination of uric acid by voltammetry and coulometric titration
JPS6328264B2 (en)
JPH07103939A (en) Measuring method for biosensor
Chou et al. Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes
US5320939A (en) Measuring apparatus of two components using enzyme electrodes and the measuring method thereof
Okawa et al. Direct and simultaneous determination of uric acid and glucose in serum with electrochemical filter/biosensor flow-injection analysis system
JPH0555816B2 (en)
KR102016393B1 (en) Method and apparatus of measuring concentration of sample
JPS629312B2 (en)
JPH10262645A (en) Enzymatic sensor for measuring activity of alpha-amylase enzyme and measurement of activity of alpha-amylase enzyme
JPS5461984A (en) Electrochemical measuring method of alcohol concentrations and electrode used for the same
JP2606356Y2 (en) Umami intensity measuring device
JPS5972056A (en) Quantitative determination of alpha-amylase
JPS6315151A (en) Method for measuring uric acid and hypoxanthine