JPH04230004A - Manufacture of magnetic recording needle ferroalloy magnetic particle powder - Google Patents

Manufacture of magnetic recording needle ferroalloy magnetic particle powder

Info

Publication number
JPH04230004A
JPH04230004A JP2415967A JP41596790A JPH04230004A JP H04230004 A JPH04230004 A JP H04230004A JP 2415967 A JP2415967 A JP 2415967A JP 41596790 A JP41596790 A JP 41596790A JP H04230004 A JPH04230004 A JP H04230004A
Authority
JP
Japan
Prior art keywords
iron alloy
magnetic particles
particles
alloy magnetic
acicular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2415967A
Other languages
Japanese (ja)
Other versions
JP2904225B2 (en
Inventor
Hiroo Mishima
三島 啓男
Yasutaka Ota
泰孝 大田
Kenji Okinaka
健二 沖中
Hiroshi Kawasaki
浩史 川崎
Koji Mori
幸治 森
Kunio Ikemoto
池本 邦生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2415967A priority Critical patent/JP2904225B2/en
Publication of JPH04230004A publication Critical patent/JPH04230004A/en
Application granted granted Critical
Publication of JP2904225B2 publication Critical patent/JP2904225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide the step of industrially manufacturing the title magnetic recording needle ferroalloy magnetic particle powder in the long axial diameter of 0.05-0.2mum having high coersive force and large saturated magnetic susceptibility further in excellent S.F.D and lower decline ratio of coersive force. CONSTITUTION:An oxide film is formed on the surface of said ferroalloy magnetic particles by processing the needle ferroalloy magnetic particles in the long axial diameter of 0/05-0.2mum produced by thermal-reducing wet needle ferric oxide particles or needle hematite particles in the mixed gas atmosphere of an inert gas containing steam of 10-50g/cm<3> with oxygen containing gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高い保磁力とより大き
な飽和磁化とを有し、しかも、S.F.D.が優れてお
り、且つ、酸化被膜生成による保磁力の低下率が小さい
長軸径0.05μm以上0.2μm未満の磁気記録用針
状鉄合金磁性粒子粉末の製造法に関するものである。
[Industrial Application Field] The present invention has a high coercive force and a larger saturation magnetization, and has an S. F. D. The present invention relates to a method for producing acicular iron alloy magnetic particles for magnetic recording having an excellent long axis diameter of 0.05 μm or more and less than 0.2 μm, which has excellent properties and a low rate of decrease in coercive force due to the formation of an oxide film.

【0002】0002

【従来の技術】近年、ビデオ用、オーディオ用の磁気記
録再生用機器の長時間記録化、小型軽量化が激化してお
り、特に、昨今におけるVTR(ビデオ・テープ・レコ
ーダー)の普及は目覚ましく、長時間記録化並びに小型
軽量化を目指したVTRの開発が盛んに行われている。 一方においては、磁気記録媒体である磁気テープに対す
る高性能化、即ち、高記録密度及び出力特性の向上等の
要求が益々高まってきている。
[Background Art] In recent years, magnetic recording and reproducing equipment for video and audio has become increasingly long-lasting, compact and lightweight.In particular, the spread of VTRs (video tape recorders) has been remarkable. 2. Description of the Related Art VTRs are being actively developed with the aim of recording for long periods of time and being smaller and lighter. On the other hand, there is an increasing demand for higher performance of magnetic tape, which is a magnetic recording medium, that is, higher recording density and improved output characteristics.

【0003】磁気記録媒体のこれら諸特性は磁気記録媒
体に使用される磁性粒子粉末と密接な関係を有しており
、近年においては、従来の酸化鉄磁性粒子粉末に比較し
て高い保磁力と大きな飽和磁化を有する針状鉄合金磁性
粒子粉末が注目され、ディジタルオーディオテープ(D
AT)、8mmビデオテープ、Hi−8テープ並びにビ
デオフロッピー等の磁気記録媒体に使用され実用化され
ている。
These characteristics of magnetic recording media are closely related to the magnetic particles used in magnetic recording media, and in recent years, magnetic particles with higher coercivity and higher coercive force than conventional iron oxide magnetic particles have been developed. Acicular iron alloy magnetic particles with large saturation magnetization have attracted attention, and have been used in digital audio tapes (D
It has been put to practical use in magnetic recording media such as AT), 8mm video tape, Hi-8 tape, and video floppy.

【0004】しかしながら、これら針状鉄合金磁性粒子
粉末の特性改善の要求はとどまることがなく、磁気記録
媒体のノイズレベルの改良及び出力特性の向上の面から
、針状鉄合金磁性粒子粉末が微粒子であって、より大き
な飽和磁化を有し、しかも、S.F.D.が優れており
、且つ、酸化被膜生成による保磁力の低下率が小さいこ
とが要求される。
However, the demand for improving the characteristics of these acicular iron alloy magnetic particles continues, and from the standpoint of improving the noise level and output characteristics of magnetic recording media, acicular iron alloy magnetic particles are becoming fine particles. , has a larger saturation magnetization, and has a larger saturation magnetization. F. D. It is required that the rate of decrease in coercive force due to the formation of an oxide film is small.

【0005】磁気記録媒体のノイズレベルは、使用され
る針状鉄合金磁性粒子粉末の粒子サイズと密接な関係が
あり、粒子サイズが小さくなればなる程ノイズレベルは
低くなる傾向にあることが知られており、近時、殊に、
0.2μm未満の微細な針状鉄合金磁性粒子粉末が要求
されている。
It is known that the noise level of a magnetic recording medium is closely related to the particle size of the acicular iron alloy magnetic particles used, and that the smaller the particle size, the lower the noise level tends to be. Recently, especially,
Fine acicular iron alloy magnetic particle powder of less than 0.2 μm is required.

【0006】磁気記録媒体の出力特性の向上のためには
、前述の高い保磁力と大きな飽和磁化に加えて、更に、
S.F.D.(Switching  FieldDi
stribution)が優れていることが要求される
In order to improve the output characteristics of a magnetic recording medium, in addition to the above-mentioned high coercive force and large saturation magnetization,
S. F. D. (Switching Field Di
It is required that the distribution is excellent.

【0007】この事実は、特開昭63−26821号公
報の「第1図は、上記した磁気ディスクについて測定さ
れたS.F.D.と記録再生出力との関係を示す図であ
る。‥‥S.F.D.と記録再生出力の関係は、第1図
から明らかな様に直線になり、これにより、S.F.D
.の小さい強磁性粉末を使うことで、記録再生出力が上
がることがわかる。即ち、記録再生出力を高出力化する
ためには、S.F.D.は小さい方が望ましく、通常以
上の出力を得るには、0.6以下のS.F.D.が必要
である。」なる記載の通りである。
This fact is explained in Japanese Unexamined Patent Publication No. 63-26821: "Figure 1 is a diagram showing the relationship between the S.F.D. measured for the above-mentioned magnetic disk and the recording/reproducing output." The relationship between S.F.D. and recording/reproduction output is a straight line as is clear from Figure 1.
.. It can be seen that recording and reproducing output increases by using ferromagnetic powder with a small . That is, in order to increase the recording/reproducing output, S. F. D. It is preferable that the S.I. F. D. is necessary. ” as stated.

【0008】針状鉄合金磁性粒子粉末は、一般に、微粒
子化する程、殊に、0.2μm未満になると保磁力は向
上し、磁気記録媒体のノイズレベルは改良される傾向に
あるが、一方、粒子の表面活性が非常に大きくなるので
、水素ガス流下で加熱還元することにより得られた針状
鉄合金磁性粒子粉末を空気中に取り出すに際して、酸素
含有量を徐々に増加させた不活性ガスを流す等、周知の
方法により酸化被膜を生成した場合には、酸化被膜が粗
く、部分的に不必要な酸化被膜が生成して被膜が不均一
になる。その為、保磁力の分布が生じてS.F.D.の
劣化をきたし、酸化被膜生成による保磁力の低下率も大
きくなる。また、大きな飽和磁化を有する針状鉄合金磁
性粒子粉末を得ることが困難である。これらの現象は、
粒子サイズが微細化すればする程生じやすくなる傾向が
ある。
Generally speaking, as the acicular iron alloy magnetic particles become finer, especially less than 0.2 μm, the coercive force increases and the noise level of the magnetic recording medium tends to be improved. Since the surface activity of the particles becomes extremely large, when taking out the acicular iron alloy magnetic particles obtained by heating reduction under a hydrogen gas flow into the air, an inert gas with a gradually increased oxygen content is used. When an oxide film is produced by a well-known method such as by flowing oxide, the oxide film is rough and unnecessary oxide film is formed in some parts, making the film non-uniform. Therefore, a distribution of coercive force occurs and S. F. D. deterioration, and the rate of decrease in coercive force due to the formation of an oxide film also increases. Furthermore, it is difficult to obtain acicular iron alloy magnetic particles having large saturation magnetization. These phenomena are
There is a tendency that the finer the particle size, the more likely it is to occur.

【0009】例えば、針状鉄合金磁性粒子の粒子サイズ
と飽和磁化との関係についてみると0.1μm程度の微
粒子では飽和磁化120emu/g以上を得ることは困
難である。
For example, looking at the relationship between the particle size and saturation magnetization of acicular iron alloy magnetic particles, it is difficult to obtain a saturation magnetization of 120 emu/g or more with fine particles of about 0.1 μm.

【0010】加熱還元して得られた針状鉄合金磁性粒子
粉末を空気中に取り出す際の酸化被膜の生成については
、従来から、種々の方法が試みられており、例えば、水
蒸気を含む不活性ガスと酸素含有ガスとの混合ガスを用
いる方法として特開昭56−55503号公報、特開昭
56−69301号公報等が知られている。
Various methods have been tried in the past to form an oxide film when the acicular iron alloy magnetic particles obtained by thermal reduction are taken out into the air. As a method using a mixed gas of a gas and an oxygen-containing gas, JP-A-56-55503 and JP-A-56-69301 are known.

【0011】[0011]

【発明が解決しようとする課題】高い保磁力とより大き
な飽和磁化とを有し、しかも、S.F.D.が優れてお
り、且つ、酸化被膜生成による保磁力の低下率が小さい
針状鉄合金磁性粒子粉末は、現在、最も要求されている
ところであるが、前出公知方法による場合には、上記諸
特性を十分満足する針状鉄合金磁性粒子粉末は未だ得ら
れていない。
Problem to be Solved by the Invention: It has a high coercive force and a larger saturation magnetization, and moreover, an S. F. D. Acicular iron alloy magnetic particles with excellent properties and a low rate of decrease in coercive force due to oxide film formation are currently in high demand. Acicular iron alloy magnetic particles that fully satisfy these requirements have not yet been obtained.

【0012】これは、殊に、0.2μm未満の微細な針
状鉄合金磁性微粒子粉末を対象として前出公知方法によ
る酸化被膜を生成した場合には、該針状鉄合金磁性粒子
の表面活性が非常に大きく、その結果、緻密で均一な酸
化被膜が生成されない為である。
In particular, when an oxide film is formed by the above-mentioned known method on fine acicular iron alloy magnetic particles of less than 0.2 μm, the surface activity of the acicular iron alloy magnetic particles increases. is very large, and as a result, a dense and uniform oxide film cannot be formed.

【0013】そこで、本発明は、0.2μm未満の微細
な針状鉄合金磁性微粒子の表面に緻密で均一な酸化被膜
を生成することを技術的課題とする。
Therefore, the technical object of the present invention is to form a dense and uniform oxide film on the surface of fine acicular iron alloy magnetic fine particles of less than 0.2 μm.

【0014】[0014]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。
[Means for Solving the Problems] The above technical problems can be achieved by the present invention as follows.

【0015】即ち、本発明は、針状含水酸化第二鉄粒子
又は針状ヘマタイト粒子を加熱還元して得られた長軸径
0.05μm以上0.2μm未満の針状鉄合金磁性粒子
を10〜50g/m3 の水蒸気を含む不活性ガスと酸
素含有ガスとの混合ガス中において、50℃未満の温度
で処理することにより、または、必要により、10〜5
0g/m3 の水蒸気を含む不活性ガスと酸素含有ガス
との混合ガス中において、50℃未満の温度で処理し、
次いで、10〜50g/m3 の水蒸気を含む不活性ガ
ス中において、150℃以下の温度で処理することによ
り、または、必要により、水蒸気を含む不活性ガスと酸
素含有ガスとの混合ガス中における前記処理並びに水蒸
気を含む不活性ガス中における前記処理を、更に、繰り
返して行うことにより前記針状鉄合金磁性粒子の粒子表
面に酸化被膜を生成させることからなる磁気記録用針状
鉄合金磁性粒子粉末の製造法である。
That is, the present invention provides acicular iron alloy magnetic particles having a major axis diameter of 0.05 μm or more and less than 0.2 μm obtained by thermally reducing acicular hydrated ferric oxide particles or acicular hematite particles. By processing at a temperature below 50°C in a mixed gas of an inert gas and an oxygen-containing gas containing ~50 g/m3 of water vapor, or if necessary,
Treated at a temperature below 50°C in a mixed gas of an inert gas and an oxygen-containing gas containing 0 g/m3 of water vapor,
Then, the above treatment is carried out in an inert gas containing 10 to 50 g/m3 of water vapor at a temperature of 150°C or lower, or, if necessary, in a mixed gas of an inert gas containing water vapor and an oxygen-containing gas. Acicular iron alloy magnetic particle powder for magnetic recording, which comprises forming an oxide film on the particle surface of the acicular iron alloy magnetic particles by further repeating the treatment and the treatment in an inert gas containing water vapor. This is the manufacturing method.

【0016】次に、本発明実施にあたっての諸条件につ
いて述べる。
Next, various conditions for implementing the present invention will be described.

【0017】本発明における長軸径0.05μm以上0
.2μm未満の針状鉄合金磁性粒子は、常法により、針
状含水酸化第二鉄粒子粉末、該針状含水酸化第二鉄粒子
粉末を250℃以上300℃未満で加熱脱水して得られ
た針状ヘマタイト粒子粉末及び前記針状含水酸化第二鉄
粒子粉末を非還元性雰囲気下300〜850℃の温度範
囲で加熱処理して得られた高密度化された針状ヘマタイ
ト粒子を出発原料として用い、該出発原料を水素ガス流
下350〜450℃の温度範囲で加熱還元することによ
り得られる。ここで針状とは、軸比(長軸径/短軸径)
が4以上の粒子をいい、針状はもちろん、紡錘状、米粒
状、短冊状等の形状の粒子をも含む。また、出発原料は
、針状鉄合金磁性粒子粉末の諸特性を向上させる為に通
常使用されるAl、Ni、Co、B、Zn、P、Si等
のFe以外の異種元素を粒子内部に含有させるか又は粒
子表面に被覆しておいてもよい。
[0017] In the present invention, the major axis diameter is 0.05 μm or more.
.. Acicular iron alloy magnetic particles of less than 2 μm are obtained by heating and dehydrating the acicular hydrated ferric oxide particles and the acicular hydrated ferric oxide particles at a temperature of 250° C. or higher and lower than 300° C. using a conventional method. Highly densified acicular hematite particles obtained by heat-treating acicular hematite particles and the acicular hydrated ferric oxide particles in a non-reducing atmosphere at a temperature range of 300 to 850°C are used as starting materials. The starting material is heated and reduced in a temperature range of 350 to 450° C. under a flow of hydrogen gas. Here, needle-like means axial ratio (long axis diameter/short axis diameter)
is 4 or more, and includes not only needle-shaped particles but also spindle-shaped, rice grain-shaped, and strip-shaped particles. In addition, the starting material contains different elements other than Fe, such as Al, Ni, Co, B, Zn, P, and Si, which are usually used to improve the properties of acicular iron alloy magnetic particles. The particles may be coated or coated on the surface of the particles.

【0018】本発明における酸化被膜の生成は、針状鉄
合金磁性粒子を10〜50g/m3 の水蒸気を含む不
活性ガスと酸素含有ガスとの混合ガス中において50℃
未満の温度で処理することにより行う。混合ガス中に含
まれる水蒸気が10g/m3 未満の場合には、酸化処
理の制御が不十分な為、緻密で均一な酸化被膜の生成が
困難であり、本発明の目的とする針状鉄合金磁性粒子粉
末が得られない。50g/m3 を越える場合にも本発
明の目的とする針状鉄合金磁性粒子粉末が得られるが、
必要以上に添加する意味がない。
The formation of the oxide film in the present invention involves heating the acicular iron alloy magnetic particles at 50°C in a mixed gas of an inert gas containing 10 to 50 g/m3 of water vapor and an oxygen-containing gas.
This is done by processing at temperatures below. If the water vapor contained in the mixed gas is less than 10 g/m3, the control of the oxidation treatment is insufficient, making it difficult to form a dense and uniform oxide film, which makes it difficult to form a dense and uniform oxide film. Magnetic particle powder cannot be obtained. Even if it exceeds 50 g/m3, the acicular iron alloy magnetic particle powder which is the object of the present invention can be obtained.
There is no point in adding more than necessary.

【0019】混合ガス中の酸素量は、酸化被膜生成時に
急激な酸化が生起しない程度であればよく、好ましくは
、0.02〜0.1体積%程度の含有量から開始して、
順次段階的に空気量を増加させ、最終段階で大気組成ま
で増加させることができる。
The amount of oxygen in the mixed gas may be such that rapid oxidation does not occur during the formation of the oxide film, and preferably the content starts from about 0.02 to 0.1% by volume.
The amount of air can be increased step by step until the atmospheric composition is reached in the final stage.

【0020】不活性ガスとしては、窒素ガス、アルゴン
ガス等が使用できる。
[0020] As the inert gas, nitrogen gas, argon gas, etc. can be used.

【0021】温度が50℃以上である場合には、酸化処
理の制御が不十分な為、緻密で均一な酸化被膜の生成が
困難であり、本発明の目的とする針状鉄合金磁性粒子粉
末が得られない。
[0021] If the temperature is 50°C or higher, the oxidation treatment is insufficiently controlled, making it difficult to form a dense and uniform oxide film. is not obtained.

【0022】本発明における酸化被膜の生成は、必要に
より、更に、10〜50g/m3 の水蒸気を含む不活
性ガス中において、150℃以下の温度で処理すること
ができ、このことによって、より緻密で均一な被膜を生
成させることが出来る。150℃以上の場合には、得ら
れる針状鉄合金磁性粒子粉末の保磁力の低下率が大きく
なる。保磁力の低下率を考慮すれば0〜100℃が好ま
しく、更に、好ましくは0〜50℃である。
[0022] The formation of the oxide film in the present invention can be further carried out at a temperature of 150°C or lower in an inert gas containing 10 to 50 g/m3 of water vapor, if necessary. can produce a uniform film. When the temperature is 150° C. or higher, the rate of decrease in coercive force of the obtained acicular iron alloy magnetic particles increases. Considering the rate of decrease in coercive force, the temperature is preferably 0 to 100°C, more preferably 0 to 50°C.

【0023】不活性ガス中に含まれる水蒸気が10g/
m3 未満の場合には、より均一且つ緻密な酸化被膜の
生成が困難である。50g/m3 を越える場合にもよ
り均一且つ緻密な酸化被膜の生成が可能であるが必要以
上に添加する意味がない。
[0023] The water vapor contained in the inert gas is 10g/
If it is less than m3, it is difficult to form a more uniform and dense oxide film. Even if the amount exceeds 50 g/m3, it is possible to form a more uniform and dense oxide film, but there is no point in adding more than necessary.

【0024】本発明における酸化被膜の生成は、必要に
より、水蒸気を含む不活性ガスと酸素含有ガスとの混合
ガス中における処理並びに水蒸気を含む不活性ガス中に
おける処理を繰り返し行うことができ、このことによっ
てより一層緻密で均一な被膜を形成することができる。
The formation of the oxide film in the present invention can be carried out by repeating the treatment in a mixed gas of an inert gas containing water vapor and an oxygen-containing gas and the treatment in an inert gas containing water vapor, if necessary. This makes it possible to form a more dense and uniform coating.

【0025】[0025]

【作用】先ず、本発明において最も重要な点は、針状含
水酸化第二鉄粒子又は針状ヘマタイト粒子を加熱還元し
て得られた長軸径0.05μm以上0.2μm未満の針
状鉄合金磁性粒子を10〜50g/m3 の水蒸気を含
む不活性ガスと酸素含有ガスとの混合ガス中において、
50℃未満の温度で処理した場合には、前記針状鉄合金
磁性粒子の粒子表面に、緻密で均一な酸化被膜を生成さ
せることができ、その結果、高い保磁力とより大きな飽
和磁化とを有し、しかも、S.F.D.が優れており、
且つ、酸化被膜生成による保磁力の低下率が小さい長軸
径0.05μm以上0.2μm未満の針状鉄合金磁性粒
子が得られるという事実である。
[Function] First, the most important point in the present invention is that acicular iron having a major axis diameter of 0.05 μm or more and less than 0.2 μm is obtained by heating and reducing acicular hydrated ferric oxide particles or acicular hematite particles. The alloy magnetic particles are placed in a mixed gas of an inert gas containing 10 to 50 g/m3 of water vapor and an oxygen-containing gas,
When treated at a temperature below 50°C, a dense and uniform oxide film can be formed on the particle surface of the acicular iron alloy magnetic particles, resulting in high coercive force and larger saturation magnetization. Moreover, S. F. D. is excellent,
Another fact is that acicular iron alloy magnetic particles having a major axis diameter of 0.05 μm or more and less than 0.2 μm can be obtained, and the rate of decrease in coercive force due to the formation of an oxide film is small.

【0026】本発明において、必要により、更に、50
℃未満の温度において10〜50g/m3 の水蒸気を
含む不活性ガス中で処理した場合には、部分的に不必要
な酸化被膜の生成が防止されるので、針状鉄合金磁性粒
子の粒子表面により緻密で均一な酸化被覆が形成され、
その結果、飽和磁化の大きさ、S.F.D.及び酸化被
膜生成による保磁力の低下率等の諸特性がより優れた長
軸径0.05μm以上0.2μm未満の針状鉄合金磁性
粒子が得られる。
[0026] In the present invention, if necessary, further 50
When treated in an inert gas containing 10 to 50 g/m3 of water vapor at a temperature below °C, the formation of an unnecessary oxide film is partially prevented, so the particle surface of the acicular iron alloy magnetic particles is A dense and uniform oxide coating is formed by
As a result, the magnitude of saturation magnetization, S. F. D. Acicular iron alloy magnetic particles having a major axis diameter of 0.05 μm or more and less than 0.2 μm, which have better properties such as the rate of decrease in coercive force due to the formation of an oxide film, can be obtained.

【0027】本発明においては、必要により、水蒸気を
含む不活性ガスと酸素含有ガスとの混合ガス中における
処理並びに水蒸気を含む不活性ガス中における処理を繰
り返して行うことにより、より一層緻密で均一な酸化被
膜が生成され、その結果、前記諸特性がより一層優れた
長軸径0.05μm以上0.2μm未満の針状鉄合金磁
性微粒子が得られる。
[0027] In the present invention, if necessary, the treatment in a mixed gas of an inert gas containing water vapor and an oxygen-containing gas and the treatment in an inert gas containing water vapor are repeated, thereby making the product even more dense and uniform. As a result, acicular iron alloy magnetic fine particles having a major axis diameter of 0.05 μm or more and less than 0.2 μm, which have even better properties as described above, are obtained.

【0028】本発明において、緻密且つ均一な被覆が生
成される理由について、本発明者は、後出比較例に示す
通り、10〜50g/m3 の水蒸気を含む不活性ガス
と酸素含有ガスとの混合ガス中において、50℃以上の
温度で処理した場合、10g/m3 未満又は50g/
m3 を越える水蒸気を含む不活性ガスと酸素含有ガス
との混合ガス中において、50℃未満の温度で処理した
場合のいずれの場合にも本発明の目的とする諸特性を有
する針状鉄合金磁性粒子粉末が得られないことから、水
蒸気を含む不活性ガスと酸素含有ガスとの混合ガス中の
水蒸気含有量と温度との相乗効果によるものと考えてい
る。
[0028] As to the reason why a dense and uniform coating is produced in the present invention, the present inventor has discovered that the combination of an inert gas containing 10 to 50 g/m3 of water vapor and an oxygen-containing gas as shown in the comparative example below. When treated at a temperature of 50°C or higher in a mixed gas, less than 10g/m3 or 50g/m3
Acicular iron alloy magnetic material which has the various properties targeted by the present invention in any case when treated at a temperature below 50°C in a mixed gas of an inert gas and an oxygen-containing gas containing water vapor exceeding 3 m3. Since no particle powder was obtained, it is believed that this is due to a synergistic effect between the water vapor content and temperature in the mixed gas of an inert gas containing water vapor and an oxygen-containing gas.

【0029】[0029]

【実施例】次に、実施例並びに比較例により、本発明を
説明する。
[Examples] Next, the present invention will be explained with reference to Examples and Comparative Examples.

【0030】尚、以下の実施例並びに比較例における粒
子の長軸、軸比(長軸径/短軸径)は、電子顕微鏡写真
から測定した数値の平均値で示した。針状鉄合金磁性粒
子粉末の磁気特性は、「振動試料磁力計VSM−3S−
15」(東英工業(株)製)を使用し、外部磁場10K
Oeまでかけて測定した。
The long axes and axial ratios (long axis diameter/short axis diameter) of the particles in the following Examples and Comparative Examples are shown as average values of values measured from electron micrographs. The magnetic properties of the acicular iron alloy magnetic particles were determined using the "Vibrating Sample Magnetometer VSM-3S-
15" (manufactured by Toei Kogyo Co., Ltd.) and an external magnetic field of 10K.
The measurement was performed up to Oe.

【0031】保磁力の低下率は、還元直後の針状鉄合金
磁性粒子粉末の一部をトルエン中に浸漬した後、空気中
に取り出してトルエンを蒸発して得られた風乾後の針状
鉄合金磁性粒子の保磁力値と各種方法により十分な酸化
被膜を生成して得られた安定な針状鉄合金磁性粒子の保
磁力値との差を風乾後の前記針状鉄合金磁性粒子の保磁
力値で除した値を百分率(%)で示した。
The rate of decrease in coercive force is determined by immersing a portion of the acicular iron alloy magnetic particles immediately after reduction in toluene, taking it out into the air, and evaporating the toluene. The difference between the coercive force value of the alloy magnetic particles and the coercive force value of stable acicular iron alloy magnetic particles obtained by generating a sufficient oxide film by various methods is calculated as the coercive force value of the acicular iron alloy magnetic particles after air drying. The value divided by the magnetic force value is expressed as a percentage (%).

【0032】S.F.D.の測定は、下記の方法により
得られたシート状試料片を用い、前記磁気測定器の微分
回路を使用して、磁気履歴曲線の減磁カーブの微分曲線
を得、この曲線の半値巾を測定し、この値を保磁力で除
することにより求めた。
[0032]S. F. D. The measurement involves using a sheet sample obtained by the following method, using the differential circuit of the magnetic measuring instrument to obtain a differential curve of the demagnetization curve of the magnetic hysteresis curve, and measuring the half-width of this curve. It was calculated by dividing this value by the coercive force.

【0033】シート状試料片は、100ccのポリビン
に鉄合金磁性粒子粉末、樹脂及び溶剤を下記の割合で入
れた後、ペイントコンディショナーで6時間混合分散を
行うことにより調整した磁性塗料を厚さ25μmのポリ
エチレンテレフタレートフィルム上にアプリケーターを
用いて50μmの厚さに塗布し、次いで、3KGaus
sの磁場中で乾燥させることにより得た。
[0033] The sheet-like sample piece was prepared by placing iron alloy magnetic particles, resin, and solvent in a 100 cc polybottle in the proportions shown below, and then mixing and dispersing the mixture in a paint conditioner for 6 hours. of polyethylene terephthalate film using an applicator to a thickness of 50 μm, and then 3K Gauss
Obtained by drying in a magnetic field of s.

【0034】   3mmφスチルボール             
                   800重量部
  鉄合金磁性粒子粉末              
                    100重量
部  スルホン酸ナトリウム基を有するポリウレタン樹
脂        20重量部  シクロヘキサノン 
                         
        83.3重量部  メチルエチルケト
ン                        
        83.3重量部  トルエン    
                         
             83.3重量部
3mmφ steel ball
800 parts by weight Iron alloy magnetic particle powder
100 parts by weight Polyurethane resin having sodium sulfonate group 20 parts by weight Cyclohexanone

83.3 parts by weight Methyl ethyl ketone
83.3 parts by weight toluene

83.3 parts by weight

【0035
】実施例1 Al化合物、Co化合物、Ni化合物及びB化合物によ
って粒子表面が被覆されている長軸0.16μm、軸比
(長軸径/短軸径)10の紡錘形を呈したゲータイト粒
子粉末(Al/Fe=3.1原子%、Co/Fe=6.
0原子%、Ni/Fe=0.5原子%、B/Fe=4.
3原子%)160gを空気中400℃てで加熱処理して
Al化合物、Co化合物、Ni化合物及びB化合物によ
って粒子表面が被覆されている長軸0.12μm、軸比
(長軸径/短軸径)8.5の紡錘形を呈したヘマタイト
粒子粉末を得た。
0035
Example 1 Goethite particle powder exhibiting a spindle shape with a major axis of 0.16 μm and an axial ratio (major axis diameter/minor axis diameter) of 10, the particle surface of which was coated with an Al compound, a Co compound, a Ni compound, and a B compound ( Al/Fe=3.1 at%, Co/Fe=6.
0 at%, Ni/Fe=0.5 at%, B/Fe=4.
3 at. A spindle-shaped hematite particle powder with a diameter of 8.5 was obtained.

【0036】上記ヘマタイト粒子粉末140gを容積3
  lのレトルト容器に投入し、駆動回転させながら水
素ガスを毎分20  lの割合で通気し、還元温度37
0℃で還元して針状鉄合金磁性粒子粉末とした。
[0036] 140 g of the above hematite particle powder was added to a volume of 3
The hydrogen gas was poured into a retort container with a capacity of 37 liters, and hydrogen gas was aerated at a rate of 20 liters per minute while rotating.
It was reduced at 0°C to obtain acicular iron alloy magnetic particles.

【0037】次いで、水素ガスを窒素ガスに切り換えて
窒素ガスを流しながら冷却し、引き続き30g/m3 
の水蒸気を含む0.1体積%の酸素と窒素ガスとの混合
ガス中において0.5時間保持した後、酸素量を0.2
体積%に切り換え、水蒸気を含む酸素と窒素ガスとの混
合ガスを通気しながら反応温度40℃で7時間処理する
ことにより、針状鉄合金磁性粒子の粒子表面に酸化被膜
を生成させた。上記操作終了後、表面に酸化被膜が生成
されている針状鉄合金磁性粒子粉末をレトルトから空気
中に取り出した。
Next, hydrogen gas was switched to nitrogen gas, and cooling was continued while nitrogen gas was flowing.
After holding for 0.5 hours in a mixed gas of 0.1% by volume oxygen and nitrogen gas containing water vapor, the amount of oxygen was reduced to 0.2% by volume.
% by volume and treated at a reaction temperature of 40° C. for 7 hours while passing a mixed gas of oxygen and nitrogen gas containing water vapor to form an oxide film on the particle surface of the acicular iron alloy magnetic particles. After the above operation was completed, the acicular iron alloy magnetic particles having an oxide film formed on their surfaces were taken out from the retort into the air.

【0038】得られた針状鉄合金磁性粒子粉末は、電子
顕微鏡観察の結果、長軸0.11μm、軸比(長軸径/
短軸径)7であった。また、磁気特性は、保磁力が15
30Oe、飽和磁化が132emu/g、保磁力の低下
率が2.9%であり、塗膜特性は角型が0.84、S.
F.D.が0.45であった。
As a result of electron microscopic observation, the obtained acicular iron alloy magnetic particles had a long axis of 0.11 μm and an axial ratio (long axis diameter/
The short axis diameter) was 7. In addition, the magnetic properties have a coercive force of 15
30 Oe, saturation magnetization is 132 emu/g, coercive force reduction rate is 2.9%, coating film properties are 0.84 square, S.
F. D. was 0.45.

【0039】実施例2、比較例1〜4 出発原料の種類、加熱還元温度、水蒸気を含む不活性ガ
スと酸素含有ガスとの混合ガスによる処理工程における
水蒸気量、O2 量、温度及び時間を種々変化させた以
外は、実施例1と同様にして針状鉄合金磁性粒子粉末を
得た。この時の主要製造条件を表1に、針状鉄合金磁性
粒子粉末の諸特性を表2に示す。
Example 2, Comparative Examples 1 to 4 Various types of starting materials, thermal reduction temperature, amount of water vapor, amount of O2, temperature and time in the treatment step with a mixed gas of an inert gas containing water vapor and an oxygen-containing gas were varied. Acicular iron alloy magnetic particles were obtained in the same manner as in Example 1 except for the following changes. The main manufacturing conditions at this time are shown in Table 1, and the various properties of the acicular iron alloy magnetic particles are shown in Table 2.

【0040】実施例3 Al化合物、Co化合物、Ni化合物及びB化合物によ
って被覆されている高密度化された(加熱処理温度40
0℃)、長軸0.15μm、軸比(長軸径/短軸径)9
.5の紡錘形ヘマタイト粒子(Al/Fe=2.0原子
%、Co/Fe=5.0原子%、Ni/Fe=0.5原
子%、B/Fe=4.0原子%)140gを容積3  
lのレトルト容器に投入し、駆動回転させながら水素ガ
スを毎分20lの割合で通気し、還元温度400℃で還
元して針状鉄合金磁性粒子粉末とした。
Example 3 A densified material coated with Al compound, Co compound, Ni compound and B compound (heat treatment temperature 40
0°C), major axis 0.15 μm, axial ratio (major axis diameter/minor axis diameter) 9
.. 140 g of spindle-shaped hematite particles (Al/Fe = 2.0 at%, Co/Fe = 5.0 at%, Ni/Fe = 0.5 at%, B/Fe = 4.0 at%) in volume 3
The mixture was placed in a 1-liter retort container, and while being driven and rotated, hydrogen gas was passed through at a rate of 20 liters per minute, and the mixture was reduced at a reduction temperature of 400° C. to obtain acicular iron alloy magnetic particles.

【0041】次いで、水素ガスを窒素ガスに切り換えて
窒素ガスを流しながら冷却し、引き続き、12g/m3
 の水蒸気を含む0.1体積%の酸素と窒素ガスとの混
合ガス中において、0.5時間保持した後、酸素含有量
を0.3体積%に切り換え、水蒸気を含む不活性ガスと
酸素含有ガスとの混合ガスを通気しながら、反応温度4
5℃で5.0時間処理し、次いで反応温度40℃におい
て12g/m3 の水蒸気を含む窒素ガスを0.5時間
通気することにより、針状鉄合金磁性粒子の粒子表面に
酸化被膜を生成させた。
Next, hydrogen gas was switched to nitrogen gas, and cooling was performed while flowing nitrogen gas, and then 12 g/m3
After holding for 0.5 hours in a mixed gas of 0.1 volume % oxygen and nitrogen gas containing water vapor, the oxygen content was switched to 0.3 volume %, and the inert gas containing water vapor and oxygen containing While aerating the mixed gas with the gas, the reaction temperature was 4.
An oxide film was formed on the particle surface of the acicular iron alloy magnetic particles by treating at 5°C for 5.0 hours, and then passing nitrogen gas containing 12 g/m3 of water vapor for 0.5 hours at a reaction temperature of 40°C. Ta.

【0042】上記操作終了後、表面に酸化被膜が生成さ
れている針状鉄合金磁性粒子粉末をレトルトから空気中
に取り出した。この時の主要製造条件を表1に、針状鉄
合金磁性粒子粉末の諸特性を表2に示す。
After the above operation was completed, the acicular iron alloy magnetic particles having an oxide film formed on their surfaces were taken out of the retort into the air. The main manufacturing conditions at this time are shown in Table 1, and the various properties of the acicular iron alloy magnetic particles are shown in Table 2.

【0043】実施例4〜6 出発原料の種類、加熱還元温度、水蒸気を含む不活性ガ
スと酸素含有ガスとの混合ガスによる処理工程における
水蒸気量、O2 量、温度及び時間並びに水蒸気を含む
不活性ガスによる処理工程における水蒸気量、温度、時
間及び一連の処理の実施回数を種々変化させた以外は、
実施例3と同様にして針状鉄合金磁性粒子粉末を得た。 この時の主要製造条件を表1に、針状鉄合金磁性粒子粉
末の諸特性を表2に示す。
Examples 4 to 6 Types of starting materials, thermal reduction temperature, amount of water vapor, O2 amount, temperature and time in the treatment step with a mixed gas of inert gas containing water vapor and oxygen-containing gas, and inert gas containing water vapor Except for varying the amount of water vapor, temperature, time, and number of times a series of treatments were performed in the gas treatment process,
Acicular iron alloy magnetic particles were obtained in the same manner as in Example 3. The main manufacturing conditions at this time are shown in Table 1, and the various properties of the acicular iron alloy magnetic particles are shown in Table 2.

【0044】[0044]

【表1】[Table 1]

【0045】[0045]

【表2】[Table 2]

【0046】[0046]

【発明の効果】本発明に係る針状鉄合金磁性粒子粉末の
製造法によれば、前出実施例に示した通り、高い保磁力
とより大きな飽和磁化とを有し、しかも、S.F.D.
が優れており、且つ、酸化被膜生成による保磁力の低下
率が小さい長軸径0.05μm以上0.2μm未満の針
状鉄合金磁性粒子粉末が得られるので、高記録密度、高
出力、低ノイズレベル用磁性粒子粉末として好適である
Effects of the Invention According to the method for producing acicular iron alloy magnetic particles according to the present invention, as shown in the above embodiments, the powder has a high coercive force and a larger saturation magnetization. F. D.
Acicular iron alloy magnetic particles with a major axis diameter of 0.05 μm or more and less than 0.2 μm can be obtained, which have excellent magnetic properties and a low rate of decrease in coercive force due to oxide film formation, resulting in high recording density, high output, and low coercive force. Suitable as magnetic particle powder for noise level.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  針状含水酸化第二鉄粒子又は針状ヘマ
タイト粒子を加熱還元して得られた長軸径0.05μm
以上0.2μm未満の針状鉄合金磁性粒子を、10〜5
0g/m3 の水蒸気を含む不活性ガスと酸素含有ガス
との混合ガス中において、50℃未満の温度で処理する
ことにより、前記針状鉄合金磁性粒子の粒子表面に酸化
被膜を生成させることを特徴とする磁気記録用針状鉄合
金磁性粒子粉末の製造法。
Claim 1: Long axis diameter 0.05 μm obtained by thermal reduction of acicular hydrated ferric oxide particles or acicular hematite particles
10 to 5 acicular iron alloy magnetic particles with a diameter of less than 0.2 μm
Forming an oxide film on the particle surface of the acicular iron alloy magnetic particles by treating at a temperature of less than 50° C. in a mixed gas of an inert gas and an oxygen-containing gas containing 0 g/m3 of water vapor. A method for producing acicular iron alloy magnetic particles for magnetic recording.
【請求項2】  針状含水酸化第二鉄粒子又は針状ヘマ
タイト粒子を加熱還元して得られた長軸径0.05μm
以上0.2μm未満の針状鉄合金磁性粒子を、10〜5
0g/m3 の水蒸気を含む不活性ガスと酸素含有ガス
との混合ガス中において、50℃未満の温度で処理し、
次いで、10〜50g/m3 の水蒸気を含む不活性ガ
ス中において、150℃以下の温度で処理することによ
り、前記針状鉄合金磁性粒子の粒子表面に酸化被膜を生
成させることを特徴とする磁気記録用針状鉄合金磁性粒
子粉末の製造法。
Claim 2: Long axis diameter of 0.05 μm obtained by thermal reduction of acicular hydrated ferric oxide particles or acicular hematite particles.
10 to 5 acicular iron alloy magnetic particles with a diameter of less than 0.2 μm
Treated at a temperature below 50°C in a mixed gas of an inert gas and an oxygen-containing gas containing 0 g/m3 of water vapor,
Next, the acicular iron alloy magnetic particles are treated in an inert gas containing 10 to 50 g/m3 of water vapor at a temperature of 150°C or lower to form an oxide film on the particle surface of the acicular iron alloy magnetic particles. A method for producing acicular iron alloy magnetic particles for recording purposes.
【請求項3】  針状含水酸化第二鉄粒子又は針状ヘマ
タイト粒子を加熱還元して得られた長軸径0.05μm
以上0.2μm未満の針状鉄合金磁性粒子を、10〜5
0g/m3 の水蒸気を含む不活性ガスと酸素含有ガス
との混合ガス中において、50℃未満の温度で処理し、
次いで、10〜50g/m3 の水蒸気を含む不活性ガ
ス中において、150℃以下の温度で処理した後、更に
、水蒸気を含む不活性ガスと酸素含有ガスとの混合ガス
中における前記処理並びに水蒸気を含む不活性ガス中に
おける前記処理を繰り返して行うことにより前記針状鉄
合金磁性粒子の粒子表面に酸化被膜を生成させることを
特徴とする磁気記録用針状鉄合金磁性粒子粉末の製造法
3. Long axis diameter 0.05 μm obtained by thermal reduction of acicular hydrated ferric oxide particles or acicular hematite particles
10 to 5 acicular iron alloy magnetic particles with a diameter of less than 0.2 μm
Treated at a temperature below 50°C in a mixed gas of an inert gas and an oxygen-containing gas containing 0 g/m3 of water vapor,
Next, after treatment in an inert gas containing 10 to 50 g/m3 of water vapor at a temperature of 150°C or lower, the above treatment and water vapor are further carried out in a mixed gas of an inert gas containing water vapor and an oxygen-containing gas. A method for producing acicular iron alloy magnetic particles for magnetic recording, characterized in that an oxide film is formed on the particle surface of the acicular iron alloy magnetic particles by repeatedly performing the above-mentioned treatment in an inert gas containing the acicular iron alloy magnetic particles.
JP2415967A 1990-12-27 1990-12-27 Method for producing acicular iron alloy magnetic particles for magnetic recording Expired - Fee Related JP2904225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2415967A JP2904225B2 (en) 1990-12-27 1990-12-27 Method for producing acicular iron alloy magnetic particles for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2415967A JP2904225B2 (en) 1990-12-27 1990-12-27 Method for producing acicular iron alloy magnetic particles for magnetic recording

Publications (2)

Publication Number Publication Date
JPH04230004A true JPH04230004A (en) 1992-08-19
JP2904225B2 JP2904225B2 (en) 1999-06-14

Family

ID=18524227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2415967A Expired - Fee Related JP2904225B2 (en) 1990-12-27 1990-12-27 Method for producing acicular iron alloy magnetic particles for magnetic recording

Country Status (1)

Country Link
JP (1) JP2904225B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841271B2 (en) 2002-03-07 2005-01-11 Dowa Mining Co., Ltd. Ferromagnetic iron alloy powder for magnetic recording medium and method of producing the same
US7270718B2 (en) * 2003-11-20 2007-09-18 Denso Corporation Method for manufacturing a soft magnetic powder material
US7473469B2 (en) 2005-12-23 2009-01-06 Dowa Electronics Materials Co., Ltd. Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder
JP2010092587A (en) * 2010-01-27 2010-04-22 Dowa Holdings Co Ltd Ferromagnetic metal powder and magnetic recording medium using the same
JP2011162882A (en) * 2011-03-11 2011-08-25 Dowa Holdings Co Ltd Ferromagnetic metal powder, and magnetic recording medium using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841271B2 (en) 2002-03-07 2005-01-11 Dowa Mining Co., Ltd. Ferromagnetic iron alloy powder for magnetic recording medium and method of producing the same
US7166172B2 (en) 2002-03-07 2007-01-23 Dowa Mining Co., Ltd. Method of making ferromagnetic iron alloy powder for magnetic recording medium
US7270718B2 (en) * 2003-11-20 2007-09-18 Denso Corporation Method for manufacturing a soft magnetic powder material
US7473469B2 (en) 2005-12-23 2009-01-06 Dowa Electronics Materials Co., Ltd. Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder
JP2010092587A (en) * 2010-01-27 2010-04-22 Dowa Holdings Co Ltd Ferromagnetic metal powder and magnetic recording medium using the same
JP2011162882A (en) * 2011-03-11 2011-08-25 Dowa Holdings Co Ltd Ferromagnetic metal powder, and magnetic recording medium using the same

Also Published As

Publication number Publication date
JP2904225B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
JPH04230004A (en) Manufacture of magnetic recording needle ferroalloy magnetic particle powder
EP0100669A1 (en) Acicular ferromagnetic alloy particles for use in magnetic recording media
JP3129414B2 (en) Manufacturing method of acicular iron alloy magnetic particles for magnetic recording
JPH04357119A (en) Production of needle-like iron oxide particle powder
JPH0143683B2 (en)
JP2827190B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
CN1971718B (en) Ferromagnetic powder used for magnetic recording medium, preparing method of the same and magnetic recording medium using the same
JP3242102B2 (en) Magnetic powder and method for producing the same
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JPH0349026A (en) Magnetic powder of acicular alloy and production thereof and magnetic recording medium formed by using this powder
JP2711719B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JPH02156001A (en) Manufacture of ferromagnetic iron powder
JPS5941453A (en) Needle crystal iron alloy magnetic particulate powder for magnetic recording and preparation thereof
JP2767048B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JPH03253505A (en) Production of ferromagnetic metal powder
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
US7473469B2 (en) Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH01115827A (en) Spindle-shaped goethite particle power and production thereof
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JP2000327334A (en) Spindle-shaped goethite grain, spindle-shaped hematite grain, spindle-shaped metal magnetic grain consisting essentially of iron and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees