JPH04229955A - Alkaline storage battery and manufacture thereof - Google Patents

Alkaline storage battery and manufacture thereof

Info

Publication number
JPH04229955A
JPH04229955A JP2408125A JP40812590A JPH04229955A JP H04229955 A JPH04229955 A JP H04229955A JP 2408125 A JP2408125 A JP 2408125A JP 40812590 A JP40812590 A JP 40812590A JP H04229955 A JPH04229955 A JP H04229955A
Authority
JP
Japan
Prior art keywords
nickel
storage battery
sponge
alkaline storage
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2408125A
Other languages
Japanese (ja)
Inventor
Masafumi Enokido
雅史 榎戸
Hiromasa Hiramatsu
平松 宏正
▲よし▼井 史彦
Fumihiko Yoshii
Shingo Tsuda
津田 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2408125A priority Critical patent/JPH04229955A/en
Publication of JPH04229955A publication Critical patent/JPH04229955A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To provide an alkaline storage battery having a high capacity and a good discharge property by improving a spongy metal porous body for a base material of an electrode. CONSTITUTION:A spongy porous metal body having an electric resistance of less than 10X1/wmOMEGA for a sample of a surface density of 200-400g/m<2>, a length of 1mm, and a width of wmm is used for a base material for holding active material of an electrode. The electric resistance is reduced by this spongy porous metal body, thereby a high capacity alkaline storage battery having a good discharge property can be provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、アルカリ蓄電池の特性
の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the characteristics of alkaline storage batteries.

【0002】0002

【従来の技術】アルカリ蓄電池の代表的なものに、ニッ
ケル/カドミウム蓄電池(以下ニカド電池と記す)が挙
げられる。ポータブル機器の電源としてニカド電池と鉛
蓄電池を比較した場合、ニカド電池のほうが、単位重量
および単位体積当たりのエネルギー密度が高く、サイク
ル寿命等の信頼性に優れており、種々のポータブル機器
の電源として広く用いられている。
2. Description of the Related Art A typical example of an alkaline storage battery is a nickel/cadmium storage battery (hereinafter referred to as a nickel-cadmium battery). When comparing nickel-cadmium batteries and lead-acid batteries as a power source for portable devices, nickel-cadmium batteries have higher energy density per unit weight and unit volume, and are superior in reliability such as cycle life, making them suitable as power sources for various portable devices. Widely used.

【0003】しかしながら、ニカド電池と同様な信頼性
を有し、さらに高エネルギー密度の蓄電池がポータブル
機器用の電源として切望されている。近年、従来のニカ
ド電池の1.3倍以上の電池容量を有する高容量ニカド
電池や、ニカド電池のカドミウム負極に代わり亜鉛を用
いたニッケル/亜鉛蓄電池、あるいは電気化学的に水素
の吸蔵放出反応(充放電反応)が可能な水素吸蔵合金を
用いたニッケル/水素蓄電池が注目されている。
However, a storage battery with reliability similar to that of a nickel-cadmium battery and a higher energy density is desperately needed as a power source for portable equipment. In recent years, high-capacity nickel-cadmium batteries with a battery capacity of more than 1.3 times that of conventional nickel-cadmium batteries, nickel/zinc storage batteries that use zinc instead of the cadmium negative electrode of nickel-cadmium batteries, and electrochemical hydrogen storage and release reactions ( Nickel/hydrogen storage batteries using hydrogen storage alloys that are capable of charge/discharge reactions are attracting attention.

【0004】これらのアルカリ蓄電池に使用されている
ニッケル正極は、焼結式あるいはペースト式が用いられ
ており、なかでも面密度が500〜700g/m2のス
ポンジ状ニッケル多孔体にニッケル酸化物を主体とした
活物質を充填した発泡金属式正極では、容量密度が60
0mAh/cm3に達する。このような高容量の発泡金
属式正極を用いたニカド電池では、従来のニカド電池1
.6倍以上の高容量を可能にすることができる。
[0004] The nickel positive electrode used in these alkaline storage batteries is of the sintered type or the paste type, and is made of a sponge-like porous nickel material with an areal density of 500 to 700 g/m2 and mainly composed of nickel oxide. The foamed metal positive electrode filled with active material has a capacity density of 60
It reaches 0mAh/cm3. Ni-Cd batteries using such high-capacity foamed metal positive electrodes are different from conventional Ni-Cd batteries 1.
.. It is possible to achieve a higher capacity of 6 times or more.

【0005】[0005]

【発明が解決しようとする課題】このような従来のアル
カリ蓄電池に使用されている発泡金属式正極と、負極と
を単純に組み合わせて高容量のアルカリ蓄電池を構成し
た場合、正極体積の増加に伴い正極の厚さが増大する。
[Problem to be solved by the invention] When a high-capacity alkaline storage battery is constructed by simply combining the foam metal positive electrode used in conventional alkaline storage batteries and a negative electrode, as the volume of the positive electrode increases, The thickness of the positive electrode increases.

【0006】その結果、正極中の電気伝導性物質の含有
率が低下し、正極としての電気伝導性が低下する。さら
に容量の増大に伴い一定放電率で放電を行った場合には
放電電流密度が増大する。このような理由により、放電
電圧が低下するという課題があった。
As a result, the content of the electrically conductive substance in the positive electrode decreases, and the electrical conductivity of the positive electrode decreases. Further, as the capacity increases, the discharge current density increases when discharge is performed at a constant discharge rate. For these reasons, there was a problem that the discharge voltage decreased.

【0007】また放電特性を改善するため、正極面積を
増大させ極板厚さの減少を図った場合、正極面積の増大
に伴い負極およびセパレータの面積も増大させる必要が
ある。その結果電池ケース内に占める正極の体積比率が
減少し、容量が低下するという課題があった。
Furthermore, in order to improve the discharge characteristics, when increasing the area of the positive electrode and decreasing the thickness of the electrode plate, it is necessary to increase the areas of the negative electrode and the separator as well as the area of the positive electrode. As a result, there was a problem in that the volume ratio of the positive electrode in the battery case decreased, resulting in a decrease in capacity.

【0008】本発明はこのような課題を解決するもので
、高容量でかつ優れた放電特性のアルカリ蓄電池を提供
することを目的とする。
[0008] The present invention solves these problems, and aims to provide an alkaline storage battery with high capacity and excellent discharge characteristics.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明は、金属酸化物を主体とする活物質を、面密度
が200〜400g/m2のスポンジ状金属多孔体に保
持させた正極と、負極と、アルカリ電解液と、セパレー
タからなるアルカリ蓄電池において、前記スポンジ状金
属多孔体の電気抵抗が、長さlmm、幅wmmの試片に
おいて10×l/wmΩ以下としたことを特徴とするも
のである。
[Means for Solving the Problem] In order to solve this problem, the present invention provides a positive electrode in which an active material mainly consisting of a metal oxide is held in a sponge-like metal porous body with an areal density of 200 to 400 g/m2. and an alkaline storage battery consisting of a negative electrode, an alkaline electrolyte, and a separator, characterized in that the electrical resistance of the sponge-like porous metal material is 10×l/wmΩ or less in a specimen having a length of 1 mm and a width of w mm. It is something to do.

【0010】またこのスポンジ状金属多孔体の新規な製
造法を提供するものである。
The present invention also provides a novel method for producing this sponge-like porous metal body.

【0011】[0011]

【作用】この構成により、正極中の電池容量に関与しな
い金属量が減少するため、活物質量の増加が可能となり
、一定厚さでの容量密度が増大する。
[Function] This structure reduces the amount of metal that does not contribute to battery capacity in the positive electrode, making it possible to increase the amount of active material and increasing the capacity density at a constant thickness.

【0012】その結果、正極面積増大時においても高容
量が達成できる。さらに、一定放電率での放電時には正
極面積増大による放電電流密度の減少と、高電気伝導性
のスポンジ状金属多孔体を用いていることにより、優れ
た放電特性のアルカリ蓄電池が得られることとなる。
As a result, high capacity can be achieved even when the area of the positive electrode is increased. Furthermore, when discharging at a constant discharge rate, the discharge current density decreases due to an increase in the area of the positive electrode, and the use of a highly electrically conductive sponge-like porous metal material makes it possible to obtain an alkaline storage battery with excellent discharge characteristics. .

【0013】[0013]

【実施例】厚さ1.5mmのスポンジ状ウレタンにカー
ボンを塗布することにより、電気伝導性を付与し、ニッ
ケルを電解めっきし、水洗,焙焼することによりスポン
ジ状ニッケル多孔体を得た。その面密度は、電解めっき
時の電気量を種々変化させることにより調整した。また
一定面密度での電気抵抗値は、カーボン塗布工程の繰り
返し回数を2回,3回,4回と変化させることにより調
整した。
EXAMPLE A sponge-like porous nickel body was obtained by applying carbon to a sponge-like urethane having a thickness of 1.5 mm to impart electrical conductivity, electroplating with nickel, washing with water, and roasting. The areal density was adjusted by varying the amount of electricity during electrolytic plating. Further, the electrical resistance value at a constant surface density was adjusted by changing the number of repetitions of the carbon coating process to 2, 3, and 4 times.

【0014】このようにして得られたスポンジ状ニッケ
ル多孔体の面密度と長さ100mm、幅10mmの試片
の電気抵抗を表1に示す。
Table 1 shows the areal density of the sponge-like porous nickel material thus obtained and the electrical resistance of a sample having a length of 100 mm and a width of 10 mm.

【0015】スポンジ状ニッケル多孔体の電気抵抗は、
長さ100mm、幅10mmの試片の長さ方向の両端に
接続端子を設け、1Aの電流を流したときに発生する電
圧を測定し、抵抗値=電圧/電流の関係より算出した。
The electrical resistance of the sponge-like porous nickel material is
Connecting terminals were provided at both lengthwise ends of a specimen with a length of 100 mm and a width of 10 mm, and the voltage generated when a current of 1 A was applied was measured and calculated from the relationship of resistance value = voltage / current.

【0016】[0016]

【表1】ペースト式正極は、前記のスポンジ状ニッケル
多孔体へ、活物質である水酸化ニッケル粉末と金属コバ
ルト粉末とを水と混合しペースト状にして充填乾燥,プ
レス後、フッ素樹脂のディスパージョンに浸漬乾燥し所
定の寸法に切断したものを用いた。このようにして得ら
れたペースト式正極に使用したスポンジ状ニッケル多孔
体No.と正極寸法を表2に示す。
[Table 1] Paste-type positive electrodes are made by mixing active materials nickel hydroxide powder and metal cobalt powder with water, filling them into a paste, drying them, pressing them, and then using a fluororesin dispersant. The material was immersed in John, dried, and cut into predetermined dimensions. Sponge-like porous nickel material No. 1 used in the paste-type positive electrode thus obtained. Table 2 shows the dimensions of the positive electrode.

【0017】[0017]

【表2】 負極に用いた水素吸蔵合金負極は、CaCu
5型の結晶構造をもつ、水素吸蔵合金MmNi3.55
Mn0.4Al0.3Co0.75をボールミル中で3
8μ以下の粒径に粉砕し、KOH水溶液中に浸漬処理し
た後、水洗乾燥した粉末を、水と混合してペースト状に
し、面密度650g/m2で多孔度93〜94%のスポ
ンジ状ニッケル多孔体に所定量を充填乾燥プレス後、所
定の寸法に切断したものを用いた。
[Table 2] The hydrogen storage alloy negative electrode used for the negative electrode is CaCu
Hydrogen storage alloy MmNi3.55 with type 5 crystal structure
Mn0.4Al0.3Co0.75 in a ball mill
The powder was crushed to a particle size of 8 μ or less, immersed in a KOH aqueous solution, washed with water, and dried. The powder was mixed with water to form a paste, and the powder was made into a sponge-like nickel porous material with an areal density of 650 g/m2 and a porosity of 93-94%. A body was filled with a predetermined amount, dried and pressed, and then cut into a predetermined size.

【0018】つぎに、前記のペースト式正極と、厚さが
0.15mmで幅38mm、長さが正極の2倍+40m
mのポリプロピレンの不織布からなるセパレータと、理
論容量が正極の理論容量の1.6〜1.7倍で、緊縛率
が90〜100%になる厚さで、幅35mm、長さが正
極の長さ+35mmとなる前記の水素吸蔵合金負極の組
合わせを、渦巻状に捲回し4/5Aサイズの密閉電池を
構成した。 緊縛率は以下の数式1より算出した。
[0018] Next, we used the above paste type positive electrode, which has a thickness of 0.15 mm, a width of 38 mm, and a length twice that of the positive electrode + 40 m.
A separator made of polypropylene non-woven fabric with a thickness of 35 mm and a theoretical capacity of 1.6 to 1.7 times the theoretical capacity of the positive electrode and a binding rate of 90 to 100%, a width of 35 mm, and a length equal to the length of the positive electrode. The above combination of hydrogen storage alloy negative electrodes with a diameter of +35 mm was spirally wound to form a 4/5A size sealed battery. The bondage rate was calculated using Equation 1 below.

【0019】[0019]

【数式1】電解液には比重1.30のKOH水溶液中に
LiOH・H2Oを40g/l溶解させたものを用い、
1セル当たり2.5cm3注液した。これらの密閉電池
を20℃の雰囲気中で、0.1CmAにより15時間充
電後、0.2CmAにより1.0V迄の放電を2サイク
ル行った。このときの電池に使用した正極No.と、電
池容量と、電池容量を電池を構成した正極の体積で除し
た正極容量密度を表3に示す。
[Formula 1] The electrolyte used was a KOH aqueous solution with a specific gravity of 1.30 in which 40 g/l of LiOH/H2O was dissolved.
2.5 cm3 of liquid was injected per cell. These sealed batteries were charged at 0.1 CmA for 15 hours in an atmosphere at 20° C., and then discharged to 1.0 V at 0.2 CmA for two cycles. The positive electrode No. used in the battery at this time. Table 3 shows the battery capacity, and the positive electrode capacity density obtained by dividing the battery capacity by the volume of the positive electrode that constituted the battery.

【0020】また図1に20℃で1CmA(1500m
A)放電時の放電電圧を示す。正極hは、渦巻状に捲回
時、強度不足により破断し、電池を構成するに至らなか
った。このことから、面密度が200g/m2よりも小
さいスポンジ状ニッケル多孔体を使用したペースト式正
極では、強度不足により電池を構成できないことがわか
る。
[0020] Also, Fig. 1 shows that 1CmA (1500m
A) Shows the discharge voltage during discharge. When the positive electrode h was spirally wound, it broke due to insufficient strength, and the battery could not be constructed. This shows that a paste-type positive electrode using a sponge-like porous nickel material with an areal density of less than 200 g/m2 cannot constitute a battery due to insufficient strength.

【0021】[0021]

【表3】表1,表2,表3および図1からペースト式正
極に従来の面密度650g/m2のスポンジ状ニッケル
多孔体を用いてニッケル/水素蓄電池を構成した場合(
電池a)高容量が得られるが、1CmA放電時の放電平
均電圧が1.18V以下となり、また放電電圧改善のた
めに極板面積の増加、極板厚さを減少させた電池(b)
では、焼結式ニッケル正極を用いた4/5Aサイズのニ
カド電池(700mAh)に比べ2.0倍以下の容量し
か得られず、コスト等を考慮すると工業的価値は少ない
[Table 3] From Tables 1, 2, 3, and Figure 1, when a nickel/hydrogen storage battery is constructed using a conventional sponge-like porous nickel material with an areal density of 650 g/m2 as a paste type positive electrode (
Battery a) High capacity is obtained, but the average discharge voltage at 1CmA discharge is 1.18V or less.Battery in which the electrode plate area is increased and the electrode plate thickness is decreased to improve the discharge voltage (b)
In this case, the capacity is only 2.0 times lower than that of a 4/5A size Ni-Cd battery (700mAh) using a sintered nickel positive electrode, and it has little industrial value when considering cost and other factors.

【0022】面密度200〜400g/m2のスポンジ
状ニッケル多孔体を用いた場合には、極板面積の増加、
極板厚さを減少させた電池(c,d,e,f,g)でも
焼結式ニッケル正極を用いた4/5Aサイズのニカド電
池(700mAh)に比べ2.0倍以上の容量が得られ
た。 また、スポンジ状ニッケル多孔体の長さ100mm、幅
10mmの試片の電気抵抗が100mΩ以下のものを使
用した電池(c,d,e,g)は、すぐれた放電特性を
示したが、120mΩのものを使用した電池(f)は、
放電電圧が低下した。
[0022] When a sponge-like porous nickel material with an areal density of 200 to 400 g/m2 is used, the electrode plate area increases;
Even batteries with reduced electrode plate thickness (c, d, e, f, g) can achieve more than 2.0 times the capacity compared to a 4/5A size nickel-cadmium battery (700mAh) using a sintered nickel positive electrode. It was done. In addition, batteries (c, d, e, g) using sponge-like porous nickel materials with electrical resistance of 100 mΩ or less in specimens with a length of 100 mm and a width of 10 mm showed excellent discharge characteristics; The battery (f) using
Discharge voltage has decreased.

【0023】以上のように本発明電池c,d,e,gは
、焼結式ニッケル正極を用いた4/5Aサイズのニカド
電池(700mAh)に比べ2.0倍以上の高容量で、
かつすぐれた放電特性が得られた。
As described above, the batteries c, d, e, and g of the present invention have a capacity that is more than 2.0 times higher than that of a 4/5A size nickel-cadmium battery (700mAh) using a sintered nickel positive electrode.
Moreover, excellent discharge characteristics were obtained.

【0024】また本実施例では、スポンジ状高分子多孔
体に電気伝導性を付与する方法として、カーボン塗布法
を用いたが、ニッケルの真空蒸着法や、ニッケルの化学
めっき法を用いることにより、電気抵抗の低いスポンジ
状金属多孔体が得られ、高容量かつすぐれた放電特性の
アルカリ蓄電池を構成することができる。
Furthermore, in this example, carbon coating was used as a method of imparting electrical conductivity to the sponge-like porous polymer material, but by using nickel vacuum evaporation or nickel chemical plating, A sponge-like porous metal body with low electrical resistance can be obtained, and an alkaline storage battery with high capacity and excellent discharge characteristics can be constructed.

【0025】なお、本実施例では、ニッケル/水素蓄電
池を説明したが、ニッケル/亜鉛蓄電池,ニカド電池等
のアルカリ蓄電池においても、高容量かつすぐれた放電
特性のアルカリ蓄電池を構成することができる。
Although a nickel/hydrogen storage battery has been described in this embodiment, an alkaline storage battery such as a nickel/zinc storage battery or a nickel-cadmium battery can also be used to construct an alkaline storage battery with high capacity and excellent discharge characteristics.

【0026】[0026]

【発明の効果】以上のように本発明によれば、面密度が
200〜400g/m2で、電気抵抗が長さlmm、幅
wmmの試片において10×l/wmΩ以下であるスポ
ンジ状金属多孔体に、金属酸化物を主体とする活物質を
保持させた正極を用いることにより、高容量かつすぐれ
た放電特性のアルカリ蓄電池の提供を可能にするという
効果が得られる。
As described above, according to the present invention, a sponge-like metal porous material having an areal density of 200 to 400 g/m2 and an electrical resistance of 10×l/wmΩ or less in a specimen having a length of 1 mm and a width of w mm is provided. By using a positive electrode in which an active material mainly composed of metal oxides is retained, an effect can be obtained in that an alkaline storage battery with high capacity and excellent discharge characteristics can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例による放電特性を示す図FIG. 1 is a diagram showing discharge characteristics according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

a,b,f  比較例 c,d,e,g  実施例 a, b, f Comparative example c, d, e, g Example

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物を主体とする活物質を、面密度
が200〜400g/m2のスポンジ状金属多孔体に保
持させた正極と、負極と、アルカリ電解液と、セパレー
タからなるアルカリ蓄電池において、前記スポンジ状金
属多孔体の電気抵抗が、長さlmm、幅wmmの試片に
おいて10×l/wmΩ以下であるアルカリ蓄電池。
Claim 1: An alkaline storage battery consisting of a positive electrode, a negative electrode, an alkaline electrolyte, and a separator, in which an active material mainly composed of metal oxides is held in a sponge-like metal porous body with an areal density of 200 to 400 g/m2. An alkaline storage battery, wherein the electrical resistance of the sponge-like metal porous body is 10×l/wmΩ or less in a test piece having a length of 1 mm and a width of w mm.
【請求項2】スポンジ状金属多孔体が、スポンジ状有機
高分子に電気伝導性を付与した後、ニッケルを電気めっ
きし、前記高分子を燃焼除去して得られたものであり、
前記電気伝導性を付与する方法が、カーボン塗布法,ニ
ッケルの真空蒸着法,ニッケルの化学めっき法のいずれ
かであるアルカリ蓄電池の製造法。
2. A sponge-like porous metal body is obtained by imparting electrical conductivity to a sponge-like organic polymer, electroplating with nickel, and burning off the polymer,
A method for producing an alkaline storage battery, wherein the method for imparting electrical conductivity is any one of a carbon coating method, a nickel vacuum deposition method, and a nickel chemical plating method.
JP2408125A 1990-12-27 1990-12-27 Alkaline storage battery and manufacture thereof Pending JPH04229955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408125A JPH04229955A (en) 1990-12-27 1990-12-27 Alkaline storage battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408125A JPH04229955A (en) 1990-12-27 1990-12-27 Alkaline storage battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04229955A true JPH04229955A (en) 1992-08-19

Family

ID=18517619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408125A Pending JPH04229955A (en) 1990-12-27 1990-12-27 Alkaline storage battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04229955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8531703B2 (en) 2009-04-20 2013-09-10 Sharp Kabushiki Kaisha Print control program, print control method, and printing system for saving more resources than a function selected prior to the input operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8531703B2 (en) 2009-04-20 2013-09-10 Sharp Kabushiki Kaisha Print control program, print control method, and printing system for saving more resources than a function selected prior to the input operation

Similar Documents

Publication Publication Date Title
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2012227106A (en) Nickel-metal hydride battery
JP3136668B2 (en) Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same
JP3092222B2 (en) Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same
US5492543A (en) Preparation of electrodes and Ni/MHx electrochemical storage cell
JP2007518244A (en) Positive electrode active material for nickel electrodes
JP5557385B2 (en) Energy storage device with proton as insertion species
CN108199009B (en) Low-temperature nickel-hydrogen battery with negative electrode double-sided coating
JPH04229955A (en) Alkaline storage battery and manufacture thereof
US6573006B2 (en) Non-sintered type positive electrode for alkaline storage battery and alkaline storage battery
Kuriyama et al. Solid-state metal hydride batteries using tetramethylammonium hydroxide pentahydrate
JP2926732B2 (en) Alkaline secondary battery
JP3094033B2 (en) Nickel hydride rechargeable battery
JPH09213362A (en) Alkali storage battery
JP5309479B2 (en) Alkaline storage battery
JP4706163B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the same
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP4531874B2 (en) Nickel metal hydride battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JPH0935718A (en) Alkaline secondary battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JPH08185864A (en) Electrode plate for alkaline storage battery and its manufacture