JPH0422893A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPH0422893A
JPH0422893A JP2125564A JP12556490A JPH0422893A JP H0422893 A JPH0422893 A JP H0422893A JP 2125564 A JP2125564 A JP 2125564A JP 12556490 A JP12556490 A JP 12556490A JP H0422893 A JPH0422893 A JP H0422893A
Authority
JP
Japan
Prior art keywords
region
core
fuel assembly
light water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2125564A
Other languages
Japanese (ja)
Inventor
Kunitoshi Kurihara
栗原 国寿
Kazuo Azekura
畦倉 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2125564A priority Critical patent/JPH0422893A/en
Publication of JPH0422893A publication Critical patent/JPH0422893A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To quickly operate and control a reactor core by packing an upper area with a neutron moderator and flowing cooling water to a lower area from the lower part of the core to flow it out to a cooling area from an aperture part provided in the upper end part. CONSTITUTION:The upper area is packed with a neutron moderator 5. Light water is flowed from the lower part of the core in a lower area circular pipe structure and is flowed out from an aperture part 12 to a cooling area 8. Light water in the cooling area 8 is flowed in from the lower part of the core and is heated by heat generation of a fuel rod in a core part, and voids are generated by boiling. Then, the quantity of the neutron moderator 5 in a central moderation area 4 in the upper part of the core is not reduced and a proportion of light water in the cooling area 8 is increased to shift the void reactivity change to the negative side. Thus, the output distribution in a fuel assembly is flattened and the thermal margin is increased to quickly operate and control the core.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、重水減速沸騰軽水冷却圧力管型原子炉に係り
、とくに、熱的余裕の向Fにより、長寿命・高燃焼度を
達成する燃料集合体および炉心に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heavy water-moderated, boiling, light-water-cooled pressure tube nuclear reactor, and in particular, achieves a long life and high burnup due to the thermal margin. Regarding fuel assemblies and reactor cores.

[従来の技術] 重水減速沸騰軽水冷却圧力管型原子炉の燃料集合体は、
複数の燃料棒を多数のリング状に束ねた構造をしており
、通常、燃料集合体の中央部に管の内部を軽水が炉心下
部から上部に流れる構造の水ロンドを配置しており、水
平断面図は第13図に示す構成である。燃料集合体中央
部に、燃料棒より直径の大きい太径水ロットを配置する
ことにより、太径水ロツド内の軽水の中性子減速効果に
より低エネルギーの熱中性子の割合を増やして。
[Prior art] The fuel assembly of a heavy water-moderated, boiling light water-cooled pressure tube reactor is as follows:
It has a structure in which multiple fuel rods are bundled into a large number of rings. Usually, a water rond is placed in the center of the fuel assembly, in which light water flows inside the tube from the bottom of the core to the top, and the horizontal A cross-sectional view shows the configuration shown in FIG. By placing a large-diameter water rod with a larger diameter than the fuel rod in the center of the fuel assembly, the proportion of low-energy thermal neutrons is increased due to the neutron moderating effect of the light water in the large-diameter water rod.

集合体中央部の内層リング燃料棒の核分裂割合を高めて
集合体内の出力分布を平坦化して核分裂物質を有効に(
各リングごとに平均的に)燃焼できるので、内層リング
の燃料棒の核分裂性物質の富化度を下げることにより集
合体平均の核分裂性物質の装荷量を低減して燃料コスト
の低減を図っている。また、炉心の出力上昇によって冷
却材である軽水の沸騰割合が増加(ボイド率が増加)す
ることにより投入される炉心反応度の変化(ボイド反応
度変化)は、太径水ロッドを装備することにより集合体
平均のボイド率を相対的に下げることができる(ボイド
しない水ロットの寄与が増大する)ので、細径水ロンド
の集合体や水ロットを装備しない集合体に比へ、負側に
移行することが知られている。
Increasing the fission rate of the inner ring fuel rods in the center of the assembly flattens the power distribution within the assembly and makes the fissile material more effective (
Since each ring can be burned (on average), by lowering the enrichment of fissile material in the fuel rods of the inner ring, the average loading of fissile material in the aggregate can be reduced and fuel costs can be reduced. There is. In addition, the change in core reactivity (void reactivity change) caused by the increase in the boiling rate of light water, which is a coolant (increase in void ratio) due to the increase in core power, can be handled by installing large-diameter water rods. As a result, the average void rate of the aggregate can be relatively lowered (the contribution of non-voided water lots increases), so it becomes more negative compared to aggregates with small diameter water rondos and aggregates without water lots. known to migrate.

原子炉のタイプが異なる沸騰型軽水炉(BWR)に対す
る従来技術として特開昭62−250392号公報に示
されている太径水ロッドの上部領域を二重管構造として
、下部から流入させた軽水を上部領域の細い内管を通し
て炉心上端まで導き、さらに、外管部を通して下方に遵
いて上部領域下端部に設けた開口部から外部の冷却材領
域に流出させるものがある。この技術は、集合体内の出
力分布の平坦化という面では、上記の重水減速沸騰軽水
冷却圧力管型原子炉に対する従来技術と同様な効果を有
するが、ボイド反応度変化に対する効果は、下部領域の
水ロッドおよび上部領域の水ロットに加えて軽水を流出
させて冷却材ボイド率を下げることは、いずれも逆の符
号(逆方向の効果)を持つことが知られている。但し、
沸騰型軽水炉では、燃料集合体あるいは炉心平均として
のボイド反応度変化は大きな負の値であるため、運転・
制御性、安全性の問題はない。
As a conventional technology for boiling light water reactors (BWRs), which have different types of reactors, Japanese Patent Laid-Open No. 62-250392 discloses a method in which the upper region of a large-diameter water rod is made into a double pipe structure, and light water is introduced from the lower part. There is one in which the coolant is guided to the upper end of the reactor core through a narrow inner tube in the upper region, and then flows downward through an outer tube portion to an external region through an opening provided at the lower end of the upper region. This technology has the same effect as the conventional technology for the above-mentioned heavy water-moderated, boiling, light-water-cooled pressure tube reactor in terms of flattening the power distribution within the assembly, but the effect on void reactivity changes is lower in the lower region. It is known that lowering the coolant void fraction by draining light water in addition to water rods and water lots in the upper region both have opposite signs (opposite effects). however,
In boiling light water reactors, the void reactivity change as a fuel assembly or core average is a large negative value, so it is difficult to operate and
There are no problems with controllability or safety.

[発明が解決しようとする課題] 上記従来技術は、炉心上部などのボイド率の大きい領域
でのボイド反応度変化の負側移行幅について十分な効果
が得られていない。
[Problems to be Solved by the Invention] The above-mentioned conventional techniques do not have sufficient effect on the negative shift width of the void reactivity change in a region with a large void ratio such as the upper part of the reactor core.

本発明の目的は、ボイド率の大きい炉心」一部でもボイ
ド反応度変化の負側移行幅を大きくすることを目的とし
ており、さらに運転・制御性に優れた長寿命・高燃焼度
の重水減速沸騰軽水冷却圧力管型原子炉の燃料集合体お
よび炉心を提供することを目的とする。
The purpose of the present invention is to widen the negative shift width of void reactivity change even in a part of the core with a large void ratio, and furthermore, to achieve long-life, high-burnup heavy water moderation with excellent operability and controllability. The purpose of the present invention is to provide a fuel assembly and core for a boiling light water cooled pressure tube nuclear reactor.

[課題を解決するための手段] 上記課題を解決するための本発明に係る燃料集合体の構
成は、圧力管内に配列された複数個の燃料棒の間を、下
部から上部へ向って軽水を流して炉心部を冷却する軽水
冷却圧力管f!:!原子炉の燃料集合体において、該燃
料集合体の中央部に上下2領域に分かれた減速領域を設
け、前記上部領域には中性子減速材を充填し、前記下部
領域には炉心下部から冷却水が流入する構造とし、流入
した冷却水が、前記下部領域の上端部に設けた開口部か
ら減速領域外部の冷却領域に流出する二とができるよう
にしたものである。
[Means for Solving the Problems] The configuration of the fuel assembly according to the present invention for solving the above problems is to flow light water from the bottom to the top between a plurality of fuel rods arranged in a pressure pipe. Light water cooling pressure pipe that flows to cool the reactor core f! :! In the fuel assembly of a nuclear reactor, a moderation region divided into two regions, upper and lower, is provided in the center of the fuel assembly, the upper region is filled with a neutron moderator, and the lower region is filled with cooling water from the lower part of the core. The inflowing cooling water is configured to flow into the cooling area outside the deceleration area through an opening provided at the upper end of the lower area.

[作用コ 重水減速沸騰軽水冷却圧力管型原子炉の炉心に装荷され
た本発明の燃料集合体では、炉心下部から流入した軽水
が集合体内の冷却領域および減速領域を炉心の下部から
上部に流れるが、燃料棒の発熱により加熱されて冷却領
域の軽水は炉心の下部から沸騰が始まりボイドが生成さ
れるため炉心軸方向に第2図(移報する)に示すボイド
分布が形成される。冷却材のボイド率は炉心下端から約
1/4までは零であるが、炉心高さとともに増大し炉心
上端では約80%に達する。このように冷却領域のボイ
ド率が高い炉心上部では、通常は、ボイド反応度変化が
小さくなるが9本発明では減速領域の下部領域から炉心
上部の冷却領域に軽水が流入するのでボイド率を下げる
働きをするため、低ボイド率の反応度特性、即ち、ボイ
ド反応度変化が負側に移行することになる。
[Operations] In the fuel assembly of the present invention loaded in the core of a heavy water moderation boiling light water cooling pressure tube reactor, light water flowing from the lower part of the core flows through the cooling region and moderation region in the assembly from the lower part of the core to the upper part. However, as the light water in the cooling region is heated by the heat generated by the fuel rods, boiling starts from the lower part of the core and voids are generated, so that the void distribution shown in FIG. 2 (transferred) is formed in the axial direction of the core. The void ratio of the coolant is zero up to about 1/4 from the bottom of the core, but increases with the height of the core and reaches about 80% at the top of the core. In the upper part of the core where the void ratio in the cooling region is high, normally the change in void reactivity is small.9 However, in the present invention, light water flows from the lower region of the deceleration region into the cooling region in the upper part of the core, thereby reducing the void ratio. As a result, the reactivity characteristic with a low void ratio, that is, the change in void reactivity shifts to the negative side.

[実施例コ 以下本発明の実施例を、第1図〜第12図を用いて説明
する。
[Embodiments] Examples of the present invention will be described below with reference to FIGS. 1 to 12.

第1図(a)は、本発明の第1実施例で、重水減速沸騰
軽水冷却圧力管型原子炉の燃料集合体の部分模式図、第
1図(b)は、同上のA−A’切断の水平断面図である
FIG. 1(a) is a partial schematic diagram of a fuel assembly of a heavy water-moderated, boiling, light-water-cooled pressure tube reactor according to the first embodiment of the present invention, and FIG. 1(b) is a partial schematic diagram of a fuel assembly taken along the line A-A' FIG. 3 is a horizontal cross-sectional view of the cut.

第1図(a)、(b)において、1は、燃料棒、2は、
圧力管、3は、カランドリア管、4は、減速領域、5は
、中性子減速材、8は、冷却領域、12は、開口部であ
る。
In FIGS. 1(a) and (b), 1 is a fuel rod, 2 is
3 is a pressure pipe, 3 is a calandria tube, 4 is a moderation region, 5 is a neutron moderator, 8 is a cooling region, and 12 is an opening.

第1図(a)、(b)は、本発明になる重水減速沸騰軽
水冷却圧力管型原子炉の燃料集合体の部分断面を示すも
ので、複数の燃料棒1を多層のリング状に束ねた燃料集
合体の径方向中央部には減速領域4が装備されており、
軸方向に三領域に分けた上部領域には固体あるいは液体
の中性子減速材5が充填されており、下部領域は円管構
造をしていて炉心下部から流入した軽水が上方に流れて
きて開口部12から冷却領域8に流出する構成である。
FIGS. 1(a) and 1(b) show a partial cross-section of a fuel assembly for a heavy water-moderated, boiling, light-water-cooled, pressure tube nuclear reactor according to the present invention, in which a plurality of fuel rods 1 are bundled into a multilayer ring shape. A deceleration region 4 is equipped in the radial center of the fuel assembly.
The upper region, which is divided into three regions in the axial direction, is filled with a solid or liquid neutron moderator 5, and the lower region has a circular tube structure, through which light water that has flowed in from the bottom of the core flows upward, and the opening is filled with solid or liquid neutron moderator 5. 12 into the cooling area 8 .

この燃料集合体は、圧力管2の中に装荷されており、径
方向外部にはカランドリア管3を介して中性子減速材で
ある重水を満たした重水減速領域がとりかこんでいる。
This fuel assembly is loaded into a pressure tube 2, and a heavy water moderation region filled with heavy water, which is a neutron moderator, is surrounded by a calandria tube 3 on the outside in the radial direction.

冷却領域8の軽水は、炉心下部から流入するが、炉心部
では燃料棒の発熱により加熱されて沸騰によるボイドが
発生し、炉心軸方向のボイド分布は第2図のようになる
。冷却材のボイド率が変化(増加)した場合に投入され
る炉心反応度であるボイド反応度変化は、ボイド率が低
い場合(およそ60%以下)には冷却材である軽水の中
性子減速機能の喪失による負の反応度効果が支配的であ
ることが知られている。ところが、ボイド率が高くなる
と、第3図に示すように、燃料集合体中央部の熱中性子
束分布の盛上りにより、核分裂性物質の富化度が高い内
層リング燃料棒の正の反応度効果が強調されるため、上
記の負の効果が相殺される傾向にある。したがって、ボ
イド反応度変化をより負側に移行させるためには、ボイ
ド率の高い炉心−に部の冷却領域の軽水の割合を増やせ
ばよいことになる。本実施例では、炉心上部で中央の減
速領域の中性子減速材の量を減らすことなく、冷却領域
の軽水割合を増やしており、他の炉心性能に影響を及ぼ
すことなくボイド反応度変化の負側移行を達成している
。ボイド反応度変化を第4図に示した。すなわち、第4
図から、従来例では、ボイド率が60%以上では、ボイ
ド反応度が正の傾向となるが5本発明の燃料集合体では
、負の反応度を増加する傾向をたどる。本発明では、燃
料集合体の径方向中央に配置した減速領域は径方向出力
分布の平坦化に効果的であり、炉心上部の軽水割合増加
による冷却機能の向上とあいまって熱的余裕を大幅に増
大できるため、燃料の高燃焼度化による燃料サイクルコ
ストの低減などの経済性の向上を達成できる。
The light water in the cooling region 8 flows from the lower part of the core, but in the core, it is heated by the heat generated by the fuel rods and voids are generated due to boiling, and the void distribution in the axial direction of the core is as shown in FIG. 2. Void reactivity change, which is the core reactivity injected when the void ratio of the coolant changes (increases), is the neutron moderating function of light water, which is the coolant, when the void ratio is low (approximately 60% or less). It is known that the negative reactivity effect due to loss is dominant. However, as the void fraction increases, as shown in Figure 3, the thermal neutron flux distribution rises in the center of the fuel assembly, causing a positive reactivity effect of the inner ring fuel rods that are highly enriched in fissile material. is emphasized, so the negative effects mentioned above tend to be offset. Therefore, in order to shift the void reactivity change to a more negative side, it is sufficient to increase the proportion of light water in the cooling region of the core, which has a high void ratio. In this example, the proportion of light water in the cooling region is increased without reducing the amount of neutron moderator in the central moderation region at the top of the reactor core, and the void reactivity change is on the negative side without affecting other core performance. Achieving the transition. Figure 4 shows the change in void reactivity. That is, the fourth
From the figure, it can be seen that in the conventional example, when the void ratio is 60% or more, the void reactivity tends to be positive, but in the fuel assembly of the present invention, the negative reactivity tends to increase. In the present invention, the moderation region placed in the radial center of the fuel assembly is effective in flattening the radial power distribution, and together with the improvement of the cooling function by increasing the proportion of light water in the upper part of the core, the thermal margin can be greatly increased. Since the fuel burn-up can be increased, it is possible to improve economic efficiency such as reducing fuel cycle costs by increasing the burn-up of the fuel.

つぎに減速領域を上部と下部の三領域に分割する軸方向
位置の選定方法について説明する。炉心軸方向の冷却材
のボイド率および出力分布を、電気出力60万kWクラ
スの大型炉に対して示したものが第2図である。この炉
心では、燃料集合体を軸方向に三領域に分割し、上部お
よびト部の燃料棒の核分裂性物質の富化度を中央部に比
へて高くして軸方向出力分布を平坦化している。そのた
め、出力分布は5図のように三つのピークを持っている
。減速領域を上下に分割する点の下限としては、下部領
域の上端に設けた開口部がボイド開始点より上側(下側
はボイド率は零)に位置していることが必要であるため
に、第2図から分るように、炉心下端から炉心高さの約
1/4の位置が選ばれる。次に、上下を分割する点の上
限としては、第2図に示した出力分布から分るように、
炉心下端から炉心全長の約415をこえる炉心」二部で
は炉心出力が急激に減少しており、この部分に開口部を
設けて冷却領域のボイド率を低くしてやってもボイド反
応度変化に対する効果が小さいため、この点が選ばれる
。すなわち、減速領域の上部および下部領域の分割点と
しては、炉心の下端から炉心全長の約1/4から約41
5の間で、炉心の運転条件や温度条件などに応じて適切
に選定すればよいことが分る。
Next, a method of selecting axial positions for dividing the deceleration region into three regions, an upper region and a lower region, will be explained. Figure 2 shows the void ratio and power distribution of the coolant in the axial direction of the core for a large reactor with an electrical output of 600,000 kW class. In this core, the fuel assembly is divided into three regions in the axial direction, and the enrichment of fissile material in the upper and lower fuel rods is higher than that in the center, thereby flattening the axial power distribution. There is. Therefore, the output distribution has three peaks as shown in Figure 5. The lower limit of the point at which the deceleration region is divided into upper and lower parts is that the opening provided at the upper end of the lower region must be located above the void starting point (void ratio is zero on the lower side). As can be seen from FIG. 2, a position approximately 1/4 of the core height from the lower end of the core is selected. Next, as seen from the output distribution shown in Figure 2, the upper limit of the point that divides the upper and lower parts is as follows:
In the second part of the core, which exceeds approximately 415 mm of the total length of the core from the bottom of the core, the core power decreases rapidly, and even if openings are provided in this part to lower the void ratio in the cooling region, there is no effect on changes in void reactivity. This point was chosen because it is small. In other words, the dividing point between the upper and lower regions of the deceleration region ranges from about 1/4 to about 41% of the total length of the core from the lower end of the core.
It can be seen that an appropriate selection can be made between 5 and 5 depending on the operating conditions and temperature conditions of the core.

また、減速領域の上部領域に充填する中性子減速材とし
ては、熱中性子の吸収断面積が小さく中性子減速断面積
の大きい物質が適しており、固体ではZrHz、TiH
2などの金属水素化物がよく、液体では軽水2重水など
が用いられる。
In addition, as the neutron moderator to be filled in the upper region of the moderation region, a material with a small thermal neutron absorption cross section and a large neutron moderation cross section is suitable, and solid materials such as ZrHz, TiH
Metal hydrides such as 2 are preferred, and liquids such as light water and deuterium water are used.

第5図は、本発明の第2実施例に係る燃料集合体の部分
鳥敵図である。符号は、第1実施例と同様である。
FIG. 5 is a partial bird's-eye view of a fuel assembly according to a second embodiment of the present invention. The symbols are the same as in the first embodiment.

本実施例は、減速領域4の上部領域の中性子減速材とし
て固体減速材の代りに軽水を用いた場合であり、5部領
域を2重管構造として内管を通して炉心の下部から軽水
を上部領域に導く構造である。下部領域の外管を通して
炉心の下部から流れてきた軽水は、下部領域の上端に設
けた開口部12から冷却領域8に流出する構成である。
In this example, light water is used instead of a solid moderator as the neutron moderator in the upper region of the moderation region 4, and the 5-part region has a double pipe structure, and the light water is supplied from the lower part of the reactor core to the upper region through the inner pipe. It is a structure that leads to. The light water flowing from the lower part of the reactor core through the outer pipe of the lower region flows into the cooling region 8 from an opening 12 provided at the upper end of the lower region.

本実施例は、上記の第1の実施例に比へ上部および下部
領域の中性子減速材とし5て、いずれも軽水を利用でき
るという特徴をもっている。発明の作用は、第1の実施
例と同じであり、燃料経済性の向丘。
This embodiment is different from the first embodiment described above in that light water can be used as the neutron moderator in both the upper and lower regions. The operation of the invention is the same as that of the first embodiment, and has improved fuel economy.

運転、制御性の向上などの同様な発明の効果が得られる
Similar effects of the invention, such as improved driving and controllability, can be obtained.

つぎに、第3の実施例について、第6〜第8図に基づい
て説明する。符号は、第1実施例と同様である。
Next, a third embodiment will be described based on FIGS. 6 to 8. The symbols are the same as in the first embodiment.

本実施例は、減速領域の下部領域から冷却領域に軽水を
流出させる開口部の位置や配置に関するものである。第
6図は、第1の実施例において、開口部を上部領域にも
複数個設けた例である。第7図も同様であるが、上部領
域の中性子減速材を充填する領域の形状を工夫し、て軽
水の流路を外周部に近づけて設けた例である。第8図は
、第2の実施例において、開口部12を上部領域に複数
個設けた例である。
This embodiment relates to the position and arrangement of the opening that allows light water to flow from the lower area of the deceleration area to the cooling area. FIG. 6 shows an example in which a plurality of openings are also provided in the upper region in the first embodiment. FIG. 7 is similar, but is an example in which the shape of the region in which the neutron moderator is filled in the upper region is devised, and the light water flow path is provided closer to the outer periphery. FIG. 8 shows an example in which a plurality of openings 12 are provided in the upper region in the second embodiment.

本実施例は、炉心上部の冷却領域への軽水の流出割合を
軸方向に均一化することにより冷却能力の強化を図った
ものである。発明の効果は、前記の実施例と同様である
This embodiment aims to strengthen the cooling capacity by equalizing the proportion of light water flowing into the cooling region in the upper part of the core in the axial direction. The effects of the invention are similar to those of the embodiments described above.

つぎに、第4の実施例について、第9〜11図に基づい
て説明する。符号は、すべて第1実施例と同様であり、
11は、下部支持板である。
Next, a fourth embodiment will be described based on FIGS. 9 to 11. All symbols are the same as in the first embodiment,
11 is a lower support plate.

本実施例は、減速領域の下部および上部領域への軽水の
取入れ法に関するものである。第9図は、第1及び第3
の実施例において、減速領域4を燃料集合体の下部支持
板11に固定して開口部を支持板の上側に設けた例であ
る。第10図は、第2及び第3の実施例において、同様
に、下部および上部領域への軽水を取入れる開口部12
を支持板1]の上側に設けた例である。第11図は、下
部領域の内管を短かくして上部領域の軽水の取入れDを
上方に配置した例である。
This example relates to a method of introducing light water into the lower and upper regions of the deceleration region. Figure 9 shows the first and third
In this embodiment, the deceleration region 4 is fixed to the lower support plate 11 of the fuel assembly, and the opening is provided on the upper side of the support plate. FIG. 10 similarly shows openings 12 for admitting light water to the lower and upper regions in the second and third embodiments.
is provided on the upper side of the support plate 1]. FIG. 11 shows an example in which the inner pipe in the lower region is shortened and the light water intake D in the upper region is arranged upward.

本実施例は、減速領域の下部構造を簡素化したものであ
り、発明の効果は、前記の実施例と同様である。
In this embodiment, the lower structure of the deceleration region is simplified, and the effects of the invention are similar to those of the previous embodiments.

第12図は、本発明に係る燃料集合体からなる炉心の部
分平面図であり、第5実施例とする。
FIG. 12 is a partial plan view of a core made of fuel assemblies according to the present invention, and is a fifth embodiment.

第12図において、10は1重水減速領域、13は、カ
ランドリアタンク、15は5本発明の燃料集合体である
In FIG. 12, 10 is one heavy water moderation region, 13 is a calandria tank, and 15 is five fuel assemblies of the present invention.

第12図は、カランドリアタンク13に5重水を潤した
重水践速領域10内に本発明の燃料集合体15を装荷し
た場合の1/4炉心乎面同の例である。
FIG. 12 shows an example of a 1/4 reactor core when the fuel assembly 15 of the present invention is loaded in the heavy water staging area 10 in which the calandria tank 13 is filled with heavy water.

すでに、第1〜4実施例で説明した本発明の燃料集合体
15を、全数装荷した場合には、炉心の性能効果は最大
となるが、炉心内の1部に装荷した場合でも、相応の炉
心性能の向上が期待さ叡る。
When all the fuel assemblies 15 of the present invention explained in the first to fourth embodiments are loaded, the performance effect of the reactor core is maximized, but even when they are loaded only in a part of the core, a corresponding effect is achieved. It is expected that the core performance will improve.

[発明の効果] 本発明によれば、重水減速沸騰軽水冷却圧力管型原子炉
において、炉心のボイド反応度変化を、負側に移行しつ
つ燃料集合体内の出力分布の平坦化および熱的余裕の増
大化を達成する二とができるので、炉心の迅速な運転・
制御を可能にすると共に、将来における燃料の高燃焼度
化および、燃料サイクルコストの低減化に好適な、経済
性にすぐれた燃料集合体および原子炉炉心を提供するこ
とがてきる。
[Effects of the Invention] According to the present invention, in a heavy water-moderated, boiling, light-water-cooled pressure tube reactor, the void reactivity change in the core is shifted to the negative side, while flattening the power distribution and thermal margin within the fuel assembly. This allows for rapid operation and operation of the reactor core.
It is possible to provide a fuel assembly and a nuclear reactor core that are highly economical and are suitable for increasing fuel burnup and reducing fuel cycle costs in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は、本発明の第1実施例による燃
料集合体の部分断面図、第2図は、従来炉の原子炉軸方
向高さとボイド率、出力分布関係図、第3図は、径方向
距離と熱中性子束との関係図、第4図は、本発明および
従来例燃料集合体のボイド反応度特性図、第5図は、本
発明の第2実施例による燃料集合体の部分鳥轍図、第6
〜8図は、本発明の第3実施例による燃料集合体の部分
断面図、第9〜11図は、本発明の第4実施例による燃
料集合体の部分断面図、第12図は、本発明の燃料集合
体からなる炉心の部分平面図、第13図は、従来の軽水
冷却圧力管型原子炉の燃料集合体の水平断面図である。 〈符号の説明〉 1・・・燃料棒、2・・圧力管、3・・カランドリア管
、4・・減速領域、5・・中性子減速材、6・・燃料ペ
レット、7・・・被覆材、8・・冷却領域、9・炭酸ガ
ス、10・・重水減速領域、1]・下部支持板、12・
開口部、13・カランドリアタンク、1・1・水ロッド
、15・本発明の燃料集合体。
1(a) and 1(b) are partial cross-sectional views of a fuel assembly according to the first embodiment of the present invention, and FIG. 2 is a diagram of the relationship between the reactor axial height, void ratio, and power distribution of a conventional reactor. Fig. 3 is a relationship diagram between radial distance and thermal neutron flux, Fig. 4 is a void reactivity characteristic diagram of fuel assemblies of the present invention and conventional fuel assemblies, and Fig. 5 is a diagram of the relationship between the radial distance and thermal neutron flux. Partial bird track diagram of fuel assembly, No. 6
8 are partial sectional views of a fuel assembly according to a third embodiment of the present invention, FIGS. 9 to 11 are partial sectional views of a fuel assembly according to a fourth embodiment of the present invention, and FIG. 12 is a partial sectional view of a fuel assembly according to a fourth embodiment of the present invention. FIG. 13, a partial plan view of a reactor core comprising a fuel assembly of the invention, is a horizontal sectional view of a fuel assembly of a conventional light water-cooled pressure tube type nuclear reactor. <Explanation of symbols> 1... Fuel rod, 2... Pressure tube, 3... Calandria tube, 4... Moderation region, 5... Neutron moderator, 6... Fuel pellet, 7... Covering material, 8. Cooling area, 9. Carbon dioxide gas, 10. Heavy water moderation area, 1]. Lower support plate, 12.
Opening, 13. Calandria tank, 1. 1. Water rod, 15. Fuel assembly of the present invention.

Claims (1)

【特許請求の範囲】 1、圧力管内に配列された複数個の燃料棒の間を、下部
から上部へ向って軽水を流して炉心部を冷却する軽水冷
却圧力管型原子炉の燃料集合体において、該燃料集合体
の中央部に上下2領域に分かれた減速領域を設け、前記
上部領域には中性子減速材を充填し、前記下部領域には
炉心下部から冷却水が流入する構造とし、流入した冷却
水が、前記下部領域の上端部に設けた開口部から減速領
域外部の冷却領域に流出することができるようにしたこ
とを特徴とする燃料集合体。 2、請求項1、記載の燃料集合体において、前記減速領
域を上下2領域に分ける境界部を、前記減速領域下端か
らの軸方向高さ1/4〜4/5の位置に設けたことを特
徴とする燃料集合体。 3、請求項1、記載の燃料集合体において、前記上部領
域の中性子減速材に軽水を用い、前記下部領域から上部
領域に冷却用軽水を導く構造とし、前記下部領域の上端
部に設けた開口部から減速領域外部の冷却領域に軽水が
流出することができるようにしたことを特徴とする燃料
集合体。 4、請求項1〜3記載の燃料集合体において、前記下部
領域から前記冷却領域に軽水を流出させる開口部を、前
記上部領域の側面に複数個配設し、下部領域から軽水を
導く構造を併せて設けたことを特徴とする燃料集合体。 5、請求項1〜4記載の燃料集合体において、前記減速
領域の前記下部領域への軽水の開口部を燃料集合体の下
部支持板の上側に設けたことを特徴とする燃料集合体。 6、請求項1〜5記載の燃料集合体を少くとも1体以上
装荷してなることを特徴とする原子炉の炉心。
[Claims] 1. In a fuel assembly for a light water-cooled pressure tube nuclear reactor in which light water flows from the bottom to the top between a plurality of fuel rods arranged in a pressure tube to cool the reactor core. A moderating region divided into two upper and lower regions is provided in the center of the fuel assembly, the upper region is filled with a neutron moderator, and the lower region has a structure in which cooling water flows from the lower part of the core. A fuel assembly characterized in that cooling water can flow out from an opening provided at an upper end of the lower region to a cooling region outside the deceleration region. 2. In the fuel assembly according to claim 1, a boundary portion dividing the deceleration region into two upper and lower regions is provided at a position of 1/4 to 4/5 of the axial height from the lower end of the deceleration region. Characteristic fuel assembly. 3. The fuel assembly according to claim 1, wherein light water is used as a neutron moderator in the upper region, and the light water for cooling is guided from the lower region to the upper region, and an opening is provided at the upper end of the lower region. 1. A fuel assembly characterized in that light water can flow from the deceleration region to a cooling region outside the deceleration region. 4. The fuel assembly according to claims 1 to 3, wherein a plurality of openings for allowing light water to flow out from the lower region to the cooling region are provided on the side surface of the upper region, and the light water is guided from the lower region. A fuel assembly characterized in that it is also provided. 5. The fuel assembly according to claim 1, wherein an opening for light water to the lower region of the deceleration region is provided above a lower support plate of the fuel assembly. 6. A nuclear reactor core, characterized in that it is loaded with at least one fuel assembly according to claims 1 to 5.
JP2125564A 1990-05-17 1990-05-17 Fuel assembly Pending JPH0422893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125564A JPH0422893A (en) 1990-05-17 1990-05-17 Fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125564A JPH0422893A (en) 1990-05-17 1990-05-17 Fuel assembly

Publications (1)

Publication Number Publication Date
JPH0422893A true JPH0422893A (en) 1992-01-27

Family

ID=14913316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125564A Pending JPH0422893A (en) 1990-05-17 1990-05-17 Fuel assembly

Country Status (1)

Country Link
JP (1) JPH0422893A (en)

Similar Documents

Publication Publication Date Title
EP1085525B1 (en) Light water reactor core and fuel assembly
US4764339A (en) High flux reactor
JPS61278788A (en) Fuel assembly
US5388132A (en) Nuclear fuel assembly and core
US5432829A (en) Fuel assembly and reactor core
JP7011542B2 (en) Fast reactor core
JP2510612B2 (en) Reactor core and initial reactor core
JPS63235891A (en) Fuel aggregate
JPH0422893A (en) Fuel assembly
JPH07167988A (en) Boiling water type thermal neutron reactor and operating method thereof
JPH1082879A (en) Nuclear reactor core
JP2510559B2 (en) Reactor core
JPH02249995A (en) Fuel assembly
EP0514215A1 (en) Part length rod placement in boiling water reactor fuel assembly for reactivity control
JPS60177293A (en) Nuclear reactor
JP2550125B2 (en) Fuel assembly
JPH02112795A (en) Fuel assembly, spectrum shift rod, nuclear reactor and method for controlling output of nuclear reactor
JPH0436354B2 (en)
JP3212744B2 (en) Fuel assembly
JPH0448297A (en) Reactor core of nuclear reactor
JPH01172798A (en) Pressure tube type reactor
JPH1068789A (en) Mox fuel assembly and reactor core
JPH083539B2 (en) Core structure of pressure tube reactor
JPS63175797A (en) Control rod for boiling water type reactor and method of operating boiling water type reactor by using said control rod
JPH032691A (en) Fuel assembly for boiling water reactor