JPH02249995A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPH02249995A
JPH02249995A JP1072827A JP7282789A JPH02249995A JP H02249995 A JPH02249995 A JP H02249995A JP 1072827 A JP1072827 A JP 1072827A JP 7282789 A JP7282789 A JP 7282789A JP H02249995 A JPH02249995 A JP H02249995A
Authority
JP
Japan
Prior art keywords
fuel
coolant
rod
water
rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1072827A
Other languages
Japanese (ja)
Inventor
Taro Ueki
植木 太郎
Junichi Yamashita
淳一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1072827A priority Critical patent/JPH02249995A/en
Publication of JPH02249995A publication Critical patent/JPH02249995A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To greatly change a deceleration effect of a neutron by containing a burnable poison in at least 50% of an adjacent fuel rod of a water rod for changing the height of a liquid level of a coolant of the inside of a fuel assembly by a reactor core flow rate control. CONSTITUTION:A fuel assembly 15 is provided with plural fuel rods 11 filled with nuclear fuel and a water rod 7. In this rod 7, by controlling a reactor core coolant flow rate, a liquid level of the reactor core coolant in its tube is varied. Therefore, since a liquid level rises and falls in accordance with an increase and a decrease of its flow rate, a thermal neutron increases and decreases and the reactivity rises and falls. In this nuclear reactor, it is operated by lowering the liquid level in the first half of an operation cycle and heightening it gradually in the latter half. Therefore, when abnormality for increasing suddenly pressure in the nuclear reactor and a coolant flow rate is generated in the first half of the operation, and the liquid level rises suddenly and the thermal neutron increases, the reactivity rise is suppressed by absorbing the thermal neutron exceeding the increase thermal neutron of a burnable poison contained in a fuel rod 3 containing >=50% gadolinia being adjacent to the rod 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料集合体に係り、特に沸騰水型原子炉に適
用して核燃料物質を有効活用するに好適な燃料集合体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel assembly, and particularly to a fuel assembly suitable for application to a boiling water nuclear reactor to effectively utilize nuclear fuel material.

〔従来の技術〕[Conventional technology]

従来の沸騰水型原子炉は、特開昭54−12138.9
号公報に記載されているように、中性子の減速を促進さ
せるために冷却水のみが流れる管(以下、水ロッドと称
する)を有する燃料集合体を炉心内に装荷している。こ
のような水ロッドを使用すれば、従来の沸騰水型原子炉
の運転条件下では、ウラン原子に対する水素原子の数が
多いほど、反応度が高くなり、炉心に装荷された核燃料
物質を有効に活用できる。
The conventional boiling water reactor is disclosed in Japanese Patent Application Laid-Open No. 54-12138.9.
As described in the publication, a fuel assembly having a pipe (hereinafter referred to as a water rod) through which only cooling water flows is loaded in a reactor core in order to accelerate the moderation of neutrons. If such water rods are used, under the operating conditions of conventional boiling water reactors, the greater the number of hydrogen atoms relative to uranium atoms, the higher the degree of reactivity, and the more effective the nuclear fuel material loaded into the reactor core. Can be used.

しかし、さらに核燃料物質の有効活用を図るためには、
核燃料物質の燃焼に伴って炉心内の水素原子数を変えた
ほうがよい。
However, in order to make more effective use of nuclear fuel materials,
It is better to change the number of hydrogen atoms in the reactor core as the nuclear fuel material burns.

時開%57−125390号公報及び特開昭57−12
5391号公報は、その1つの方法を示している。すな
わち、これらの公報は、低速中性子吸収水押棒及びこの
水押棒よりも反応度価値が大きいステンレス鋼にて構成
される中速中性子吸収水押棒を設け、これらの水押捧の
炉心内への挿入量を制御して炉心内の冷却水量を調節す
ることを述べている。水押捧が、炉心内の水素原子数を
変える手段である。水押棒の炉心内への挿入量を増すと
炉心内の冷却水量が減り、この挿入量を減らすと炉心内
の冷却水量が増加する。以上述べた方法は種類の異なる
水押棒を新たに設け、廃動手段にて水押棒を操作しなけ
ればならないので、構造上、操作上複雑になる。
Jikai %57-125390 Publication and JP-A-57-12
Publication No. 5391 shows one such method. In other words, these publications provide a slow neutron absorbing water rod and a medium speed neutron absorbing water rod made of stainless steel, which has a higher reactivity value than this water rod, and the introduction of these water rods into the reactor core. It states that the amount of cooling water in the core is adjusted by controlling the amount of water. Water depletion is a means of changing the number of hydrogen atoms in the reactor core. Increasing the amount of water push rods inserted into the reactor core will reduce the amount of cooling water in the core, and reducing this amount of insertion will increase the amount of cooling water in the core. The method described above is structurally and operationally complicated because different types of water push rods must be newly provided and the water push rods must be operated by a displacing means.

このような問題を解決するための静的な手段を用いた燃
料集合体が特開昭61−38589号公報に示されてい
る。この公報は、水素原子数を変える手段として燃料集
合体の水ロツド内にウラン235濃度の低い燃料棒を設
置し、この燃料棒のウラン235の消失前後におけ゛る
水ロツド内のボイド量の変化を利用することを記載して
いる。
A fuel assembly using static means to solve this problem is disclosed in Japanese Patent Laid-Open No. 61-38589. In this publication, as a means to change the number of hydrogen atoms, a fuel rod with a low concentration of uranium-235 is installed in the water rod of a fuel assembly, and the amount of voids in the water rod is determined before and after the uranium-235 in the fuel rod disappears. It describes the use of change.

ここでボイドについて説明しておくと、ボイドとは冷却
水中に生じている蒸気泡のことであり、またつぎに出て
くるボイド率とは冷却水流路内におけるボイドの体積率
のことをいう。
To explain voids here, voids are vapor bubbles that occur in cooling water, and the next term, void ratio, refers to the volume ratio of voids in the cooling water flow path.

上記の方法では、発熱体として濃縮度の低い燃料棒を用
いているので、構造が複雑で製造が面倒である。また、
仮りに冷却材水路の3割を水ロッドの横断面にあてたと
しても、30%のボイド率変化は燃料集合体全体になら
すと9%(30%×0.3)にしか相当せず中性子減速
効果を変化させる効果は大きくない。
In the above method, a fuel rod with a low enrichment degree is used as a heating element, so the structure is complicated and manufacturing is troublesome. Also,
Even if 30% of the coolant channel were applied to the cross section of the water rod, a 30% change in void ratio would only correspond to 9% (30% x 0.3) of the entire fuel assembly, and neutrons would The effect of changing the deceleration effect is not large.

また、水押棒のような新たな操作手段を設ける必要のな
い方法として、炉心を流れる冷却水流量(以下、炉心流
量と称す)を調節する方法がある。
Furthermore, as a method that does not require the provision of a new operating means such as a water push rod, there is a method of adjusting the flow rate of cooling water flowing through the reactor core (hereinafter referred to as core flow rate).

燃料サイクルの始めには炉心流量を少なくし、燃料サイ
クル途中から炉心流量を増やすものである。
The core flow rate is reduced at the beginning of the fuel cycle, and increased midway through the fuel cycle.

この方法では、炉心流量の変化幅を80〜120%まで
としても、燃料集合体全体からみると高々9%程度のボ
イド率の変化幅としかならず、その効果は大きくない。
In this method, even if the range of change in core flow rate is 80 to 120%, the range of change in void ratio will only be about 9% at most when looking at the entire fuel assembly, and the effect is not large.

また、特開昭63−73187号公報は、冷却材上昇通
路及び冷却材下降通路を有し、炉心流量を調節すること
によって、可動部なしで管内の減速材の液面の高さを変
化させることのできる水ロッドを提案している。この水
ロッドを採用した燃料集合体を装荷した炉心においては
、炉心流量の制御により中性子減速効果を大きく変化さ
せることができるので、核燃料物質を効率的に燃焼させ
るのに非常に有効である。
Furthermore, Japanese Patent Application Laid-Open No. 63-73187 has a coolant ascending passage and a coolant descending passage, and by adjusting the core flow rate, the height of the moderator liquid level in the tube can be changed without a moving part. We are proposing a water rod that can do this. In a reactor core loaded with a fuel assembly that employs water rods, the neutron moderation effect can be greatly changed by controlling the core flow rate, making it very effective for efficiently burning nuclear fuel material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においては、中性子減速効果を変えて核燃
料物質の有効活用を図る手段が提案されてきた。特に、
特開昭63−73187号公報に示されたように炉心流
量の制御により管内の液面の高さを変化させることので
きる水ロッドを採用することが、可動部なしで中性子減
速効果を大きく変えることができるという点で有利であ
る。−方、この水ロッドを採用した燃料集合体を装荷し
た炉心においては、炉心の圧力や流量が急激に増大する
過渡時において、水ロンド内の液面が急激に上昇して、
中性子減速効果が急激に増大して大きな正の反応度が炉
心に投入され、熱的にきびしくなるという問題があった
In the above-mentioned prior art, means have been proposed for changing the neutron moderation effect to effectively utilize nuclear fuel materials. especially,
As shown in Japanese Unexamined Patent Publication No. 63-73187, the use of water rods that can change the height of the liquid level in the tube by controlling the core flow rate greatly changes the neutron moderation effect without any moving parts. It is advantageous in that it can be done. -On the other hand, in a reactor core loaded with a fuel assembly that employs this water rod, during a transient period when the core pressure and flow rate increase rapidly, the liquid level in the water rod rises rapidly.
There was a problem in that the neutron moderation effect rapidly increased and a large positive reactivity was injected into the reactor core, making it thermally severe.

本発明の目的は、炉心流量制御により中性子減速効果を
大きく変えることができ、運転サイクルを通して炉心の
圧力や流量が急激に増大する過渡時において反応度上昇
を抑制することのできる燃料集合体・を提供することに
ある。
The purpose of the present invention is to provide a fuel assembly that can significantly change the neutron moderation effect through core flow rate control, and that can suppress an increase in reactivity during transient periods when the core pressure and flow rate increase rapidly throughout the operating cycle. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、核燃料を充填した複数の燃料棒と、該燃料
棒間に配置され該燃料棒の冷却材の流量制御により該冷
却材の一部が流入して形成する内部の液面高さを変化さ
せることができる水ロッドとを有する燃料集合体におい
て、前記水ロッドに隣接する燃料棒の少なくとも50%
が可燃性毒物を含有していることを特徴とする燃料集合
体により、達成される。
The above purpose is to reduce the internal liquid level height formed by a plurality of fuel rods filled with nuclear fuel and a portion of the coolant flowing into the fuel rods by controlling the flow rate of the coolant placed between the fuel rods. in a fuel assembly having variable water rods, at least 50% of the fuel rods adjacent to said water rods;
is achieved by a fuel assembly characterized in that it contains a burnable poison.

〔作用〕[Effect]

本発明による水ロッドにおいて、炉心冷却材流量を制御
することにより、水ロッドの管内の冷却材液面レベルが
変化する。すなわち、炉心冷却材流量を増して液面レベ
ルを高くすると熱中性子が増加して反応度が上昇する。
In the water rod according to the present invention, by controlling the core coolant flow rate, the coolant liquid level in the tube of the water rod is changed. That is, when the core coolant flow rate is increased to raise the liquid level, the number of thermal neutrons increases and the reactivity increases.

一方炉心冷却材流量を減少させて液面レベルを低くする
と熱中性子が減少して反応度が降下する。
On the other hand, if the core coolant flow rate is reduced to lower the liquid level, the number of thermal neutrons will decrease and the reactivity will drop.

上記のように炉心冷却材流量の制御により管内の冷却材
液面の高さを変えて中性子減速効果を変化させることが
できる水ロッドを採用した原子炉は、その運転サイクル
の前半においては炉心冷却材流量を少なく水ロッドの管
内の冷却材液面のレベルを低くして運転され、そして運
転サイクルの後半には炉心冷却材流量を徐々に増して水
ロッドの管内の冷却材液面のレベルを高くして運転され
る。
As mentioned above, a nuclear reactor that employs water rods that can change the neutron moderation effect by changing the height of the coolant liquid level in the tubes by controlling the core coolant flow rate is used to cool the core during the first half of the operation cycle. The core coolant flow rate is reduced to keep the coolant level in the water rod tubes low, and in the latter half of the operation cycle, the core coolant flow rate is gradually increased to lower the coolant level in the water rod tubes. It is driven high.

このように運転される原子炉において、運転の前半に原
子炉内の圧力や炉心冷却材流量が急激に増大する異常が
起き、水ロッドの管内の冷却材の液面が急上昇し、熱中
性子が増加した時、水ロッドに隣接する可燃性毒物入り
燃料中の毒物が増加した熱中性子を上回る熱中性子を吸
収するので反応度変化量を負にする。特に水ロッドに隣
接する燃料棒の50%以上が可燃性毒物入りである場合
In a nuclear reactor operated in this manner, an abnormality occurs in which the pressure inside the reactor and the flow rate of the core coolant suddenly increase during the first half of operation, and the liquid level of the coolant in the water rod tube rises rapidly, causing thermal neutrons to rise. When increased, the poison in the burnable poison-containing fuel adjacent to the water rod absorbs more thermal neutrons than the increased thermal neutrons, making the amount of change in reactivity negative. Especially if more than 50% of the fuel rods adjacent to the water rods contain burnable poison.

その可燃性毒物は時間の経過にしたがい減少するものの
、運転サイクル前半に起きる異常時には炉心の反応度変
化量を負にする効果を持ち、反応度上昇を抑制する。ま
た運転サイクル、後半においては、水ロッドの管内の冷
却材の液面レベルを高くして原子炉は運転されるので、
異常時に液面レベルが上昇しても反応度は問題になるほ
ど、大きくはならない。
Although the burnable poison decreases over time, it has the effect of making the amount of change in the reactivity of the core negative during abnormalities that occur in the first half of the operating cycle, suppressing the increase in reactivity. In addition, in the second half of the operation cycle, the reactor is operated with a high level of coolant in the water rod pipe.
Even if the liquid level rises during an abnormality, the reactivity does not become so large that it becomes a problem.

〔実施例〕〔Example〕

本発明の詳細な説明する前に1本発明の詳細な説明する
。本発明で採用した水ロッドにおいては、炉心冷却材流
量を制御することによって水ロッドの管内の液面高さが
変化する。すなわち、管内液面高さは、炉心冷却材流量
を増大させると上昇し、減少させると下降する。一方、
冷却材である水は、中性子減速効果をもつので、水ロツ
ド管内の液面の上昇は、原子炉炉心の反応度を増大させ
る。したがって、炉心冷却材流量を増大させて水ロツド
管内の液面を上昇させることにより、核燃料物質の燃焼
によって起きた反応度の損失を補償することができる。
Before giving a detailed explanation of the present invention, a detailed explanation of the present invention will be given. In the water rod adopted in the present invention, the liquid level height within the water rod tube is changed by controlling the core coolant flow rate. That is, the liquid level in the tube increases when the core coolant flow rate is increased, and decreases when it is decreased. on the other hand,
Since water, which is a coolant, has a neutron moderating effect, a rise in the liquid level in the water rod tube increases the reactivity of the reactor core. Therefore, by increasing the core coolant flow rate and raising the liquid level in the water rod tubes, the loss of reactivity caused by the combustion of nuclear fuel material can be compensated for.

このため、出力運転中の原子炉炉心の反応度を制御する
ために、炉心に挿入して反応度を制御する制御棒を操作
する必要がなくなる。すなわち、制御棒挿入のない炉心
流量制御のみによる運転が可能となる。また、運転サイ
クル前半においては、原子炉の余分な反応度を抑えて、
適切なレベルに反応度を維持するために、炉心流量を少
くして水ロツド管内の液面を低い位置に保つことになる
。したがって、燃料の上部領域では水ロツド管内のボイ
ド率が100%となるので、中性子の減速は充分でなく
、ウラン238のプルトニウムへの転換が促進させられ
る。このように運転サイクル前半においては、燃料上部
領域でプルトニウムの蓄積を図り、また後半において、
炉心流量の増大により水ロッド管内の液面を上昇させて
中性子減速効果を高めて、プルトニウムを燃焼させるこ
とができる。すなわち、核燃料物質の有効利用が向上し
、取出燃焼度の増加が可能となる。本発明の水ロッドは
以上に述べた特徴と効果を持つが、一方で圧力や流量が
急激に変化する異常時において、反応度変化量が非常に
大きくなるという問題がある。つまり、異常時に水ロツ
ド管内の液面が急激に上昇して、反応度が急激に増大し
、熱的に非常にきびしくなる。これについての対策とし
て、可燃性毒物入り燃料棒を水ロッドに隣接させて配置
することが有効である。なぜならば、水ロッド内液面の
上昇による水ロツド付近の急激な熱中性子の増大を可燃
性毒物による熱中性子の吸収により抑制することができ
るからである。ところが可燃性毒物は、燃料の炉内滞在
中における1サイクル目末期までに燃え尽きてしまうの
で、1サイクル以上経過した燃料については、単に可燃
性毒物入り燃料棒を水ロッドに隣接させて配置すること
だけでは、反応度の上昇を抑制することはできない。し
たがって、様々な炉内滞在サイクル数の燃料を内部に含
んでいる原子炉炉心の反応度上昇を抑制するためには、
1サイクル目燃料が、1サイクル以上炉内に滞在してい
る燃料の反応度上昇を打ち消す効果を持たなければなら
ない。このことを実現させるための有効な手段を提供す
るのが本発明の目的であり、その根拠を第10図に示す
。第10図は、可燃性毒物のうちの一つであるガドリニ
ア入り燃料棒の水ロッド隣接位置への配置の効果を示し
たものである。この図で、16ケ所の水ロッド隣接位置
のうち8ケ所以上をガドリニア入り燃料棒が占有した場
合には、水ロンド内液面急上昇時の1サイクル目燃料の
反応度変化量が、サイクル中期までの間、負になってい
る。すなわち、水ロッド隣接位置のうちの50%以上に
ガドリニア入り燃料棒を配置することにより、サイクル
中期まで、水ロツド内液面急上昇時の1サイクル目燃料
の反応度変化量が負になり、この負の反応度変化が1サ
イクル以上炉内に滞在している燃料の正の反応度変化の
一部を打ち消す。したがって、サイクル中期まで、圧力
や流量が増大する異常時に、原子炉炉心の反応度上昇を
抑制するためには、水ロッド隣接位置の50%以上にガ
ドリニア入り燃料棒を配置する手段が有効である。また
、サイクル後期では、炉心冷却材流量を大きくして水ロ
ツド内液面を高い位置に保っているので、異常時に液面
が上昇しても、反応度が変化するのは、燃料の上部領域
の一部に限られるので、原子炉炉心の反応度上昇は問題
になるほど大きくならない。以上に述べてきたように、
サイクルを通して、圧力や流量が増大する異常時の反応
度上昇を抑制して過渡特性を改善するためには、サイク
ル中期まで1サイクル目燃料の液面急上昇時の負の反応
度変化を持続させることが必要である。これは第6図に
示すように、水ロツド隣接位量の50%以上にガドリニ
ア入り燃料棒を配置することにより実現させることがで
きる。
Therefore, in order to control the reactivity of the nuclear reactor core during power operation, there is no need to operate control rods that are inserted into the reactor core to control the reactivity. In other words, it becomes possible to operate only by controlling the core flow rate without inserting control rods. In addition, in the first half of the operation cycle, the excess reactivity of the reactor is suppressed,
To maintain reactivity at an appropriate level, the core flow rate is reduced to keep the liquid level in the water rods low. Therefore, in the upper region of the fuel, the void ratio in the water rod tube is 100%, so that the moderation of neutrons is not sufficient, and the conversion of uranium-238 to plutonium is promoted. In this way, in the first half of the operation cycle, plutonium is accumulated in the upper region of the fuel, and in the second half,
By increasing the core flow rate, the liquid level in the water rod tubes can be raised, increasing the neutron moderation effect and burning plutonium. That is, the effective use of nuclear fuel material is improved, and the extraction burnup can be increased. Although the water rod of the present invention has the above-mentioned features and effects, there is a problem in that the amount of change in reactivity becomes extremely large in abnormal situations where the pressure or flow rate changes rapidly. In other words, when an abnormality occurs, the liquid level in the water rod pipe rises rapidly, the degree of reactivity increases rapidly, and the temperature becomes extremely severe. As a countermeasure against this, it is effective to arrange fuel rods containing burnable poison adjacent to water rods. This is because a sudden increase in thermal neutrons near the water rod due to a rise in the liquid level within the water rod can be suppressed by absorption of thermal neutrons by the burnable poison. However, the burnable poison burns out by the end of the first cycle while the fuel stays in the reactor, so for fuel that has passed one cycle or more, simply place the fuel rod containing the burnable poison adjacent to the water rod. alone cannot suppress the increase in reactivity. Therefore, in order to suppress the increase in the reactivity of the reactor core, which contains fuel with various in-reactor stay cycle numbers,
The first cycle fuel must have the effect of canceling out the increase in reactivity of the fuel staying in the reactor for one cycle or more. It is an object of the present invention to provide an effective means for realizing this, and the basis thereof is shown in FIG. FIG. 10 shows the effect of arranging a fuel rod containing gadolinia, which is one of the burnable poisons, adjacent to a water rod. In this figure, if gadolinia-containing fuel rods occupy 8 or more of the 16 adjacent positions of the water rods, the amount of change in reactivity of the fuel in the first cycle when the liquid level in the water rond rapidly increases until the middle of the cycle. It is negative during . In other words, by arranging fuel rods containing gadolinia at 50% or more of the positions adjacent to the water rods, the amount of change in reactivity of the first cycle fuel when the liquid level in the water rods rises becomes negative until the middle of the cycle. The negative reactivity change cancels out some of the positive reactivity change of fuel that remains in the reactor for more than one cycle. Therefore, in order to suppress the increase in reactivity of the reactor core during abnormal situations where the pressure and flow rate increase until the middle of the cycle, it is effective to place fuel rods containing gadolinia at 50% or more of the positions adjacent to the water rods. . In addition, in the latter stages of the cycle, the core coolant flow rate is increased to maintain the liquid level in the water rod at a high position, so even if the liquid level rises during an abnormality, the reactivity changes only in the upper part of the fuel. Since the increase in reactivity in the reactor core is limited to only a portion of the reactor core, the increase in reactivity in the reactor core does not become large enough to become a problem. As stated above,
In order to suppress the increase in reactivity during abnormal times when pressure and flow rate increase throughout the cycle and improve transient characteristics, it is necessary to maintain the negative reactivity change when the liquid level of the first cycle fuel rises until the middle of the cycle. is necessary. This can be achieved by arranging gadolinia-containing fuel rods in 50% or more of the adjacent water rods, as shown in FIG.

すなわち、1サイクル目燃料の負の反応度変化の効果に
より、第7図のサイクル増分燃焼度と反応度の関係に示
すように原子炉炉心の反応度上昇が抑制される。また、
第8図の燃焼度と無限増倍率の関係に示すように、サイ
クル末期ではガドリニアが燃えつきているので、すべて
の燃料において、水ロッド内液面上昇により正の反応度
利得が得られ、取出燃焼度を増大させることができる。
That is, due to the effect of the negative reactivity change of the first cycle fuel, the increase in reactivity of the reactor core is suppressed as shown in the relationship between cycle incremental burnup and reactivity in FIG. Also,
As shown in the relationship between burnup and infinite multiplication factor in Figure 8, gadolinia is burned out at the end of the cycle, so for all fuels, a positive reactivity gain is obtained due to the rise in the liquid level in the water rod, and the extraction combustion degree can be increased.

以上に述べた原理を利用した本発明の好適な実施例、す
なわち沸騰水型原子炉に適用する燃料集合体を以下に説
明する。
A preferred embodiment of the present invention utilizing the principles described above, that is, a fuel assembly applied to a boiling water reactor will be described below.

本発明による燃料集合体の第1実施例を第1図に示す。A first embodiment of a fuel assembly according to the present invention is shown in FIG.

第1図は、燃料集合体15の横断面を示しており、燃料
集合体15における燃料棒11の正方格子配列は9行9
列である。断面中央部の燃料棒9本の位置に相当する領
域には、水ロッド7を1本配置しており、この水ロッド
7の隣接位置に配置された燃料棒16本の内14本(8
8%)が可燃性毒物なるガドリニアを含有するガドリニ
ア入り燃料棒3である。この水ロッド7は炉心流量の制
御によって内部の冷却材の液面の高さを変化させ、この
冷却材は中性子の減速材でもあるの。
FIG. 1 shows a cross section of the fuel assembly 15, and the square lattice arrangement of the fuel rods 11 in the fuel assembly 15 is 9 rows and 9
It is a column. One water rod 7 is arranged in an area corresponding to the position of nine fuel rods at the center of the cross section, and 14 of the 16 fuel rods (8
8%) is the fuel rod 3 containing gadolinia, which contains gadolinia, which is a burnable poison. This water rod 7 changes the height of the internal coolant by controlling the core flow rate, and this coolant also acts as a moderator for neutrons.

で中性子減速効果を変えることのできる水ロッドである
。水ロッド7は冷却材上昇流路1、冷却材下降流路2を
備えており、これら流路と燃料棒等の位置関係を第9図
に示す。
It is a water rod that can change the neutron moderation effect. The water rod 7 is provided with a coolant ascending passage 1 and a coolant descending passage 2, and the positional relationship between these passages and the fuel rods is shown in FIG.

第9図において、燃料棒11(第1図のガドリニア入り
燃料棒3に該当する)の下端部は下部タイプレート5に
より保持され、また水ロッド7の下部も下部タイプレー
ト5により保持されている。
In FIG. 9, the lower end of the fuel rod 11 (corresponding to the gadolinia-containing fuel rod 3 in FIG. 1) is held by the lower tie plate 5, and the lower part of the water rod 7 is also held by the lower tie plate 5. .

水ロッド7は断面が略正方形で上部が閉塞された筒であ
り、この筒の内部が冷却材の上昇する冷却材上昇流路1
となっており、この冷却材上昇流路1は下部タイプレー
ト5の下方の領域に開口する冷却材流入口8を有してい
る。モして略正方形断面の水ロッド7の対角に位置する
一組の稜線に沿って、冷却材を下方に導く冷却材下降流
路2が設けられており、この冷却材下降流路2はその上
部で冷却材上昇流路1とつながる上昇管下降管連絡路1
0を有し、その下部には下部タイプレート5の上方に領
域に開口する冷却材吐出口9を有している。
The water rod 7 is a cylinder with a substantially square cross section and a closed top.
The coolant ascending flow path 1 has a coolant inlet 8 that opens in a region below the lower tie plate 5. A coolant downward flow path 2 that guides the coolant downward is provided along a set of ridge lines located diagonally to the water rod 7 having a substantially square cross section. Rising pipe descending pipe connecting passage 1 connected to coolant ascending passage 1 at its upper part
0, and its lower part has a coolant discharge port 9 opening in an area above the lower tie plate 5.

また、第9図に示した水ロッドのかわりに、第11図に
示す水ロッドを配置することもできる。
Moreover, the water rod shown in FIG. 11 may be arranged instead of the water rod shown in FIG. 9.

この水ロッドは内部の上部領域に冷却材流路の反転部が
ある二重管構造になっている。この二重管構造の内側の
管の内部が、冷却材上昇流路1であり、内側の管と外側
の管の間の間隙が冷却材下降流路2である。上記流路1
,2以外、この水ロッドの構成は第9図に示すものとほ
ぼ同様であるので、説明は省略する。
This water rod has a double tube structure with an inverted section of the coolant flow path in the upper region of the interior. The inside of the inner tube of this double-tube structure is the coolant upward flow path 1, and the gap between the inner tube and the outer tube is the coolant downward flow path 2. Above flow path 1
, 2, the configuration of this water rod is almost the same as that shown in FIG. 9, so a description thereof will be omitted.

本発明の第二の実施例の燃料集合体20を第2図に示す
。本実施例は2本発明を10行10列の正方格子配列に
適用したものであり、中央部の燃料棒16本を取り除い
た領域に、前記水ロッドを配置している。本実施例では
、前記水ロツド隣接位置の80%にガドリニア入り燃料
棒を配置している。
A fuel assembly 20 according to a second embodiment of the present invention is shown in FIG. In this embodiment, two of the present inventions are applied to a square lattice arrangement of 10 rows and 10 columns, and the water rods are arranged in an area where 16 fuel rods in the center are removed. In this embodiment, fuel rods containing gadolinia are arranged at 80% of the positions adjacent to the water rods.

本発明の第三の実施例の燃料集合体30を第3図に示す
。本実施例は本発明を10行10列の正方格子配列に適
用した他の実施例であって、2ケ所の燃料棒9本を取り
除いた領域に前記水ロッドを配置している。
A fuel assembly 30 according to a third embodiment of the present invention is shown in FIG. This embodiment is another embodiment in which the present invention is applied to a square lattice arrangement of 10 rows and 10 columns, and the water rods are arranged in areas where nine fuel rods are removed from two locations.

以上の第一から第三までの実施例が特に有効であるのは
以下の理由による。本発明を実施するためには、水ロツ
ド隣接位置にガドリニア入り燃料棒をたくさん配置しな
ければならない。しかし、ガドリニア入り燃料棒の総本
数を多くしすぎると、原子炉の反応度が低くなって臨界
を維持できなくなってしまう。第一から第三の実施例は
、以上の2つの要求を最適に調和させている。
The reasons why the first to third embodiments described above are particularly effective are as follows. In order to carry out the present invention, many fuel rods containing gadolinia must be placed adjacent to the water rods. However, if the total number of fuel rods containing gadolinia is increased too much, the reactivity of the reactor will become low and criticality will not be maintained. The first to third embodiments optimally balance the above two requirements.

次世代の軽水炉燃料にも本発明を適用可能である。第4
図に本発明の第4の実施例の燃料集合体4oを第5図に
第5の実施例の燃料集合体50を示す。これらの実施例
は、本発明を14行14列の燃料集合体に適用したもの
である。これらの実施例においては、水ロツド隣接位置
の50%以上にガドリニア入り燃料棒を配置し、さらに
原子炉を臨界に保つために必要な反応度が得られるよう
に、ガドリニア入り燃料棒の総本数と水ロッドの断面形
状が決められている。
The present invention can also be applied to next-generation light water reactor fuel. Fourth
The figure shows a fuel assembly 4o according to a fourth embodiment of the present invention, and FIG. 5 shows a fuel assembly 50 according to a fifth embodiment. In these embodiments, the present invention is applied to a fuel assembly with 14 rows and 14 columns. In these examples, gadolinia-containing fuel rods are arranged in 50% or more of the positions adjacent to the water rods, and the total number of gadolinia-containing fuel rods is adjusted to obtain the reactivity necessary to maintain the reactor criticality. The cross-sectional shape of the water rod is determined.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料集合体は複数の燃料棒と、その燃
料棒間に内部の冷却材液面の高さを炉心流量制御により
変えることができる水ロッドとを有し、その水ロッドに
隣接する燃料棒の少なくとも50%を可燃性毒物を含有
した可燃性毒物入り燃料棒としたので、中性子減速効果
を大きく変えることができると共に運転サイクルを通し
て炉心の圧力や冷却材流量が異常に急増する過渡時にお
いて1反応度の上昇を抑制することができ、過渡時の炉
心の熱的余裕を向上させる効果がある。
According to the present invention, the fuel assembly has a plurality of fuel rods and a water rod between the fuel rods, which can change the height of the internal coolant liquid level by controlling the core flow rate. Since at least 50% of the adjacent fuel rods are fuel rods containing burnable poison, the neutron moderation effect can be greatly changed, and the core pressure and coolant flow rate can increase abnormally throughout the operating cycle. It is possible to suppress an increase in 1 reactivity during a transient period, and has the effect of improving the thermal margin of the reactor core during a transient period.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の燃料集合体の横断面図、
第2図は本発明の第2実施例の燃料集合体の横断面図、
第3図は本発明の第3実施例の燃料集合体の横断面図、
第4図は本発明の第4奨施例の燃料集合体の横断面図、
第5図は本発明の第5実施例の燃料集合体の横断面図、
第6図は水ロッドの隣接位置における可燃性毒物入り燃
料棒本数の割合と水ロッド内液面高さ急上昇時の反応度
変化の関係を示す図、第7図はサイクル増分燃焼度と反
応度の関係を示す図、第8図は本発明の燃料集合体の燃
焼度と無限増倍率の関係を示す図、第9図は水ロッドの
一例を示す構造図、第10図は運転サイクルにおける水
ロンド内の液面急上昇時の反応度変化を示す図、第11
図は水ロッドの他の例の構造図である。 1・・・冷却材上昇流路、2・・・冷却材下降流路。 3・・・ガドリニア入り燃料棒、5・・・下部タイプレ
ート、7・・・水ロッド、8・・・冷却材流入口、9・
・・冷却材吐出口、11・・・燃料棒、15,20゜3
0.40.50・・・燃料集合体。
FIG. 1 is a cross-sectional view of a fuel assembly according to a first embodiment of the present invention;
FIG. 2 is a cross-sectional view of a fuel assembly according to a second embodiment of the present invention;
FIG. 3 is a cross-sectional view of a fuel assembly according to a third embodiment of the present invention;
FIG. 4 is a cross-sectional view of a fuel assembly according to a fourth preferred embodiment of the present invention;
FIG. 5 is a cross-sectional view of a fuel assembly according to a fifth embodiment of the present invention;
Figure 6 is a diagram showing the relationship between the ratio of the number of fuel rods containing burnable poison at adjacent positions to the water rod and the change in reactivity when the liquid level in the water rod suddenly rises, and Figure 7 is the relationship between cycle incremental burnup and reactivity. 8 is a diagram showing the relationship between burnup and infinite multiplication factor of the fuel assembly of the present invention, FIG. 9 is a structural diagram showing an example of a water rod, and FIG. 10 is a diagram showing the relationship between burnup and infinite multiplication factor of the fuel assembly of the present invention. Diagram showing the change in reactivity when the liquid level in the rondo rises rapidly, No. 11
The figure is a structural diagram of another example of the water rod. 1... Coolant upward flow path, 2... Coolant downward flow path. 3... Fuel rod containing gadolinia, 5... Lower tie plate, 7... Water rod, 8... Coolant inlet, 9...
・・Coolant discharge port, 11 ・・Fuel rod, 15, 20° 3
0.40.50...Fuel assembly.

Claims (1)

【特許請求の範囲】 1、核燃料を充填した複数の燃料棒と、該燃料棒間に配
置され該燃料棒の冷却材の流量制御により該冷却材の一
部が流入して形成する内部の液面高さを変化させること
ができる水ロッドとを有する燃料集合体において、前記
水ロッドに隣接する燃料棒の少なくとも50%が可燃性
毒物を含有していることを特徴とする燃料集合体。 2、前記水ロッドは、前記燃料棒の下端部を保持する下
部タイプイレートより下方の領域に開口した冷却材上昇
流路と、該冷却材上昇流路上方で連絡し該冷却材上昇流
路における冷却材の流れ方向とは逆に冷却材を下方に導
く冷却材下降流路と、該冷却材下降流路の出口として前
記下部タイプイレートよりも上方の領域に冷却水吐出口
を備えていることを特徴とする請求項1記載の燃料集合
体。 3、前記水ロッドが燃料集合体横断面の中央部に配置さ
れていることを特徴とする請求項1又は2記載の燃料集
合体。 4、前記燃料棒の配列が9行9列であって、前記水ロッ
ドが該配列の中央部の燃料棒9本に相当する領域に配置
されていることを特徴とする請求項3記載の燃料集合体
。 5、前記燃料棒の配列が10行10列であって、前記水
ロッドが該配列の中央部の燃料棒16本に相当する領域
に配置されていることを特徴とする請求項3記載の燃料
集合体。
[Claims] 1. A plurality of fuel rods filled with nuclear fuel, and an internal liquid that is arranged between the fuel rods and is formed by a portion of the coolant flowing into the fuel rods by controlling the flow rate of the coolant. 1. A fuel assembly comprising a water rod whose surface height can be changed, characterized in that at least 50% of the fuel rods adjacent to the water rod contain a burnable poison. 2. The water rod communicates with a coolant ascending channel opened in a region below the lower type plate that holds the lower end of the fuel rod above the coolant ascending channel, and connects the coolant ascending channel. a coolant descending flow path that guides the coolant downward in the opposite direction to the flow direction of the coolant; and a cooling water discharge port in an area above the lower type plate as an outlet of the coolant descending flow path. The fuel assembly according to claim 1, characterized in that: 3. The fuel assembly according to claim 1 or 2, wherein the water rod is arranged at the center of a cross section of the fuel assembly. 4. The fuel according to claim 3, wherein the fuel rods are arranged in 9 rows and 9 columns, and the water rod is arranged in a region corresponding to the 9 fuel rods in the center of the arrangement. Aggregation. 5. The fuel according to claim 3, wherein the fuel rods are arranged in 10 rows and 10 columns, and the water rods are arranged in a region corresponding to 16 fuel rods in the center of the arrangement. Aggregation.
JP1072827A 1989-03-24 1989-03-24 Fuel assembly Pending JPH02249995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072827A JPH02249995A (en) 1989-03-24 1989-03-24 Fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072827A JPH02249995A (en) 1989-03-24 1989-03-24 Fuel assembly

Publications (1)

Publication Number Publication Date
JPH02249995A true JPH02249995A (en) 1990-10-05

Family

ID=13500639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072827A Pending JPH02249995A (en) 1989-03-24 1989-03-24 Fuel assembly

Country Status (1)

Country Link
JP (1) JPH02249995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290989A (en) * 1991-03-19 1992-10-15 Hitachi Ltd Fuel assembly
EP2107572A1 (en) * 2008-03-31 2009-10-07 Areva NP Nuclear fuel assembly for boiling water reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290989A (en) * 1991-03-19 1992-10-15 Hitachi Ltd Fuel assembly
EP2107572A1 (en) * 2008-03-31 2009-10-07 Areva NP Nuclear fuel assembly for boiling water reactor
WO2009121852A1 (en) * 2008-03-31 2009-10-08 Areva Np Nuclear fuel assembly for boiling water reactor
US8644444B2 (en) 2008-03-31 2014-02-04 Areva Np Nuclear fuel assembly for boiling water reactor

Similar Documents

Publication Publication Date Title
US5112570A (en) Two-phase pressure drop reduction bwr assembly design
US5017332A (en) Two-phase pressure drop reduction BWR assembly design
JP2804205B2 (en) Fuel assemblies and cores
JP2856728B2 (en) Fuel assembly
JP3160341B2 (en) Fuel assembly
JPH02249995A (en) Fuel assembly
US5167911A (en) Fuel assembly and boiling water reactor
US5617456A (en) Fuel assembly and nuclear reactor
JPH03179293A (en) Fuel assembly
JP3079877B2 (en) Fuel assembly
JP3895529B2 (en) Boiling water reactor core
US5640435A (en) Fuel assembly and nuclear reactor
JP3958545B2 (en) Fuel assembly
JP2563492B2 (en) Fuel assembly
US4826654A (en) Fuel assembly
JP2791077B2 (en) Fuel assembly
US7215729B1 (en) Fuel assembly and nuclear reactor
JP2550125B2 (en) Fuel assembly
JPH0244290A (en) Fuel assembly
JP2625404B2 (en) Fuel assembly
JPH065317B2 (en) Fuel assembly
Moriwaki et al. ABWR-II core design with spectral shift rods for operation with all control rods withdrawn
JP2664167B2 (en) Fuel assembly
JPH04113296A (en) Nuclear reactor and fuel assembly
JPH0875884A (en) Initial loading core