JPH083539B2 - Core structure of pressure tube reactor - Google Patents

Core structure of pressure tube reactor

Info

Publication number
JPH083539B2
JPH083539B2 JP62037996A JP3799687A JPH083539B2 JP H083539 B2 JPH083539 B2 JP H083539B2 JP 62037996 A JP62037996 A JP 62037996A JP 3799687 A JP3799687 A JP 3799687A JP H083539 B2 JPH083539 B2 JP H083539B2
Authority
JP
Japan
Prior art keywords
region
enrichment
fuel
core
heavy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62037996A
Other languages
Japanese (ja)
Other versions
JPS63206692A (en
Inventor
国寿 栗原
和雄 畦倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62037996A priority Critical patent/JPH083539B2/en
Publication of JPS63206692A publication Critical patent/JPS63206692A/en
Publication of JPH083539B2 publication Critical patent/JPH083539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉の燃料構成に関するものである。TECHNICAL FIELD The present invention relates to a fuel structure of a nuclear reactor.

〔従来の技術〕[Conventional technology]

従来の圧力管型原子炉では、第2図に示すように、燃
料棒1を複数本束ねて燃料集合体を構成し、この燃料集
合体を圧力管2の中に装荷した構成であり、圧力管2の
外部には断熱材としてのガス(CO2ガス等)を充填した
ギヤツプ領域3を介してカランドリア管4が取巻いてお
り、その外部に中性子減速材5(重水等)が充填されて
いる。燃料棒内の核分裂で発生した熱を除去するため
に、圧力管2の内部を冷却材(軽水等)6が流されてい
る。重水減速沸騰軽水冷却圧力管型原子炉では、カラン
ドリア管4の外部には減速材5として重水が使われてい
る。冷却材6である軽水は圧力管2内に炉心下部から流
入し、燃料棒からの熱を受けて沸騰しつつ上部から流出
してゆき、燃料集合体の軸方向平均ボイド率は約40%で
ある。このような圧力管型原子炉では、第3図に示すよ
うに、前記圧力管2を多数格子状に配列して炉心を構成
しており、減速材5である重水はカランドリアタンク7
の中に蓄えられている。
In a conventional pressure tube type reactor, as shown in FIG. 2, a plurality of fuel rods 1 are bundled to form a fuel assembly, and the fuel assembly is loaded in a pressure tube 2. The outside of the tube 2 is surrounded by a calandria tube 4 via a gap region 3 filled with a gas (CO 2 gas or the like) as a heat insulating material, and the outside is filled with a neutron moderator 5 (heavy water, etc.). There is. In order to remove the heat generated by the nuclear fission in the fuel rod, a coolant (light water or the like) 6 is flown inside the pressure pipe 2. In the heavy water moderated boiling light water cooling pressure tube reactor, heavy water is used as a moderator 5 outside the calandria tube 4. Light water, which is the coolant 6, flows into the pressure tube 2 from the lower part of the core, receives heat from the fuel rods, boils and flows out from the upper part, and the average axial void fraction of the fuel assembly is about 40%. is there. In such a pressure tube type nuclear reactor, as shown in FIG. 3, a large number of the pressure tubes 2 are arranged in a lattice to form a core, and heavy water as a moderator 5 is a calandria tank 7
Stored in.

圧力管型原子炉では、上記の構造によつて、定格出力
で運転中でも各圧力管ごとに燃料交換を可能とし、プラ
ント稼動率の向上、燃料の有効活用などを実現してい
る。また、圧力管2内部の冷却材領域とカランドリア管
4外部の減速材(重水)領域とを分離する。そして、重
水中に混入する中性子吸収材(液水ポイズン)の量を調
節して出力を制御する方法が容易に適用できて炉心運用
が簡素化される。これと共に、燃料棒1が圧力管2内に
束ねられているため外部の重水領域で減速された中性子
に対する共鳴エネルギーでの自己しやへい効果が大きく
なり、熱中性子の割合が増えて中性子経済が向上し、燃
料の利用率が向上するなどの利点がある。
In the pressure tube reactor, the above structure enables the fuel exchange for each pressure tube even during operation at the rated output, thereby improving the plant operation rate and effectively utilizing the fuel. Further, the coolant region inside the pressure pipe 2 and the moderator (heavy water) region outside the calandria pipe 4 are separated. Then, the method of controlling the output by adjusting the amount of the neutron absorbing material (liquid water poison) mixed in the heavy water can be easily applied, and the core operation can be simplified. At the same time, since the fuel rods 1 are bundled in the pressure tube 2, the self-sustaining effect of resonance energy for neutrons decelerated in the external heavy water region is increased, the ratio of thermal neutrons is increased, and the neutron economy is increased. There are advantages such as improvement in fuel efficiency and fuel utilization.

前記のように、圧力管2内の冷却材(軽水)が沸騰し
燃料集合体の軸方向にボイド分布を形成するが(下部で
ボイド率0%,上部で約70%)、ボイド反応度係数の絶
対値が非常に小さいため、ボイド分布によつて軸方向出
力分布が歪む割合が小さいから、沸騰水型軽水炉のよう
に、軸方向出力分布の平坦化のために燃料集合体を軸方
向に2領域に分割して上下で燃料の富化度や可燃性中性
子吸収材(ガドリニア)の充填割合を変える(上部を高
くする)などの対策は必要でなく、圧力管型原子炉に装
荷される燃料集合体では、燃料富化度やガドリニア充填
割合の軸方向分布を一様とするのが普通である。
As described above, the coolant (light water) in the pressure pipe 2 boils and forms a void distribution in the axial direction of the fuel assembly (void ratio 0% in the lower part, about 70% in the upper part), but the void reactivity coefficient Since the absolute value of is extremely small, the axial power distribution is distorted by the void distribution in a small proportion.Therefore, as in the boiling water type LWR, the fuel assembly is axially distributed to flatten the axial power distribution. It is divided into two regions and no measures such as changing the fuel enrichment and the filling ratio of combustible neutron absorbing material (gadolinia) above and below (raising the upper part) are required, and it is loaded in a pressure tube reactor. In the fuel assembly, it is usual to make the axial distribution of fuel enrichment and gadolinia filling ratio uniform.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、炉心の上部あるいは下部に、炉心内
の減速材よりも中性子減速能の強い反射体が設置された
原子炉においては、燃料集合体の上部あるいは下部に大
きな出力ピークが生じ、燃料健全性の観点から炉心の出
力を下げて運転する必要が生じるなどの問題があつた。
The above-mentioned prior art is a reactor in which a reflector having a neutron moderating ability stronger than the moderator in the core is installed in the upper or lower part of the core, and a large output peak occurs in the upper part or the lower part of the fuel assembly. From the point of view of soundness, there was a problem that it was necessary to reduce the power output of the core for operation.

本発明の目的は、前記のような反射体を設置された原
子炉において、燃料の利用率及び炉心の安全性を同時に
向上することにある。
An object of the present invention is to simultaneously improve the fuel utilization rate and core safety in a nuclear reactor equipped with such a reflector.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するための第1手段は、原子炉燃料が
装荷され反射体で囲われた炉心に中性子減速材として気
体減速材を有し、前記原子炉燃料は、燃料の上下方向領
域のうち最下端および最上端の核分裂性物質の低富化度
領域が上下方向に5cm〜10cm形成され、前記最下端より
2番目および前記最上端より2番目の核分裂性物質の中
富化度領域が5cm〜15cm形成され、前記中富化度領域の
上下間の領域には核分裂性物質の高富化度領域が形成さ
れ、前記低富化度領域の富化度は2w/o以下に、前記中富
化度領域の富化度は3w/o〜5w/oに、前記高富化度領域の
富化度は前記中富化度領域の富化度を越える富化度に設
定されている圧力管型原子炉の炉心構造であり、同じく
第2手段は、原子炉燃料が装荷され反射体で囲われた炉
心を内側領域と外側領域と前記内外側両領域の中間に位
置する中間領域とに各領域を仕切る手段を前記炉心に備
え、前記内側領域内には中性子減速材として気体減速材
を、前記中間領域内には中性子減速材としてポイズン含
有重水を、前記外側領域内には中性子減速材として重水
を、それぞれ備え、前記原子炉燃料は、燃料の上下方向
領域のうち最下端および最上端の核分裂性物質の低富化
度領域が上下方向に5cm〜10cm形成され、前記最下端よ
り2番目および前記最上端より2番目の核分裂性物質の
中富化度領域が5cm〜15cm形成され、前記中富化度領域
の上下間の領域には核分裂性物質の高富化度領域が形成
され、前記低富化度領域の富化度は2w/o以下に、前記中
富化度領域の富化度は3w/o〜5w/oに、前記高富化度領域
の富化度は前記中富化度領域の富化度を越える富化度に
設定されている圧力管型原子炉の炉心構造である。
A first means for achieving the above object has a gas moderator as a neutron moderator in a reactor core loaded with a reactor fuel and surrounded by a reflector, and the reactor fuel is a fuel in a vertical region of the fuel. A low enrichment region of the fissile material at the lowermost end and the uppermost end is formed in the vertical direction by 5 cm to 10 cm, and a middle enrichment region of the fissile material second from the lowermost end and second from the uppermost end is 5 cm to 10 cm. 15 cm is formed, in the region above and below the middle enrichment region, a high enrichment region of fissile material is formed, the enrichment of the low enrichment region is 2 w / o or less, the middle enrichment region Is set to 3w / o to 5w / o, and the enrichment in the high enrichment region is set to an enrichment exceeding the enrichment in the medium enrichment region. The second means is a structure in which a reactor core loaded with a reactor fuel and surrounded by a reflector is provided with an inner region and an outer region. The core is provided with means for partitioning each region into an intermediate region located in the middle of both outer regions, a gas moderator as a neutron moderator in the inner region, and a poison-containing neutron moderator in the intermediate region. Heavy water, heavy water as a neutron moderator in the outer region, respectively, respectively, the reactor fuel, the lower enrichment region of the fissile material at the lowermost and uppermost ends of the vertical region of the fuel, the vertical direction 5 to 10 cm from the bottom and the second and the second from the top and the middle enrichment region of the fissionable material is formed from 5 to 15 cm, and the fissionable region is located above and below the middle enrichment region. A high enrichment region of the substance is formed, the enrichment of the low enrichment region is 2 w / o or less, the enrichment of the medium enrichment region is 3 w / o to 5 w / o, and the high enrichment is The enrichment of the area is set to an enrichment exceeding that of the medium enrichment area. And it has a core structure of a pressure tube reactor.

〔作用〕[Action]

第1手段によれば、減速材が気体減速材であるから、
従来の重水減速材に比べて炉心内の中性子スペクトルが
ハードに成り、炉心内の燃料の転換比が向上する作用が
得られ、その作用により、燃料の利用率が高まって、省
ウラン資源の面で大きな効果が得られる。しかし、同時
に炉心内の中性子スペクトルがハードに成るので、反射
体近傍の炉心内では重水を減速材として用いる場合より
も急激に中性子スペクトルがハードに成り、出力ピーク
が大きく出る現象を併発する。そこで、反射体近傍の炉
心内の燃料の核分裂性物質の富化度の程度を段階的に変
えて出力ピークを低減する。即ち、反射体で反射される
た様に、反射体近傍では中性子スペクトルが強くなり、
そのスペクトルが強い部分から順に燃料の核分裂性物質
の富化度の程度が低中高と配備されることと成る。この
配備によれば、本願明細書に添付した図面の第4図中実
線グラフ右側に示すように、複数箇所で鋭角的に出力を
下げる特性が得られるという作用が得られます。これを
一箇所で下げるようにすると、下げたあとの上昇量が、
或は下げる前の上昇量が大きくなり、出力平坦化が十分
にならないところ、反射体に近づくに従い中性子スペク
トルが次第に強くなるのに応じて富化度を反射体に近づ
くに従い低くした燃料レイアウト、作用にして言い替え
れば出力曲線が鋸状に成るもののその平均は横ばいと成
る作用が得られ、燃料集合体の上下端部の相対出力を一
箇所で下げるものに比べて出力の平坦化度合いが向上
し、軸方向に沿った空間的なスペクトルシフトの影響を
最適な領域分割数と領域幅と領域ごとの燃料富化度で達
成でき、出力を上げても極端な出力ピークを併発せず、
燃料破損に至ることも無く燃料経済性も向上する効果が
得られる。これとともに、減速材がボイドを生じる液体
ではなく気体であるから、ボイド反応度係数が負にな
り、炉心の安全性を確保できる作用が得られる。
According to the first means, the moderator is a gas moderator,
Compared with conventional heavy water moderators, the neutron spectrum in the core becomes harder, and the effect of improving the conversion ratio of the fuel in the core is obtained.By this effect, the fuel utilization rate is increased and the uranium resource saving aspect is improved. Great effect can be obtained with. However, since the neutron spectrum in the core becomes hard at the same time, the neutron spectrum becomes harder in the core near the reflector than in the case where heavy water is used as a moderator, and a large output peak appears. Therefore, the power peak is reduced by gradually changing the degree of enrichment of the fissile material in the fuel in the core near the reflector. That is, as reflected by the reflector, the neutron spectrum becomes strong near the reflector,
From the part having the strongest spectrum, the degree of enrichment of the fissile material in the fuel is set to low, medium and high. According to this deployment, as shown on the right side of the solid line graph in Fig. 4 of the drawing attached to this specification, it is possible to obtain the effect of reducing the output sharply at multiple points. If you lower this in one place, the amount of rise after lowering will be
Alternatively, the amount of increase before lowering becomes large and the output flattening is not sufficient, but the neutron spectrum gradually becomes stronger as it gets closer to the reflector. In other words, although the output curve has a sawtooth shape, its average is flat, and the degree of output flattening is improved compared to the case where the relative output at the upper and lower ends of the fuel assembly is lowered at one place. , The effect of spatial spectral shift along the axial direction can be achieved with the optimal number of region divisions, region widths and fuel enrichment for each region, and even if the output is increased, extreme output peaks do not occur simultaneously,
It is possible to obtain an effect of improving fuel economy without causing fuel damage. At the same time, since the moderator is a gas rather than a liquid that causes voids, the void reactivity coefficient becomes negative, and the effect of ensuring the safety of the core can be obtained.

また、第2手段によれば、上記第1手段による作用を
発揮するばかりでなく、中性子減速効果の程度が異なる
複数種の中性子減速材を用いて内側領域にハードスペク
トルな領域を、外側領域にソフトスペクトルな領域を、
中間領域に内側と外側との各スペクトルの中間のスペク
トルとなる中間スペクトルな領域を一炉心内に作り出
し、内側領域から中間領域へ、中間領域から外側領域へ
と最初に装荷されていた燃料を順次移して行く原子炉燃
料の運用が可能と成り、このことにより、ハードスペク
トルな領域で核分裂性プルトニウムを多量に生成してお
き、次に中間スペクトルな領域へ、さらに次にソフトス
ペクトルな領域へと順次燃料を移すことで生成した核分
裂性プルトニウムをより一層効率良く燃焼させる作用が
得られ、炉心内の燃料滞在期間を長くして発生出力量を
増大でき、より一層燃料の利用率が高まる作用が得られ
る。
Further, according to the second means, not only the function of the first means is exhibited, but also a plurality of types of neutron moderators having different degrees of neutron moderating effect are used to form a hard spectrum area in the inner area and an outer area in the hard spectrum area. Soft spectrum region,
An intermediate spectrum region, which is an intermediate spectrum between the inner and outer spectra, is created in one core in the core, and the fuel initially loaded is sequentially loaded from the inner region to the intermediate region and from the intermediate region to the outer region. It becomes possible to operate the moving nuclear reactor fuel, which causes fissile plutonium to be produced in a large amount in the hard spectrum region, then to the intermediate spectrum region, and then to the soft spectrum region. The effect of more efficiently burning the fissile plutonium generated by sequentially transferring the fuel can be obtained, the fuel staying period in the core can be lengthened, and the generated output amount can be increased, which further increases the fuel utilization rate. can get.

〔実施例〕〔Example〕

圧力管の外部の減速材領域に気体(重水ガス,Heガス
等)を充填し、炉心の上部及び下部には中性子の漏洩を
防ぐために重水の反射体を設置した原子炉において、炉
心上半分の軸方向出力分布の一例を示す第4図に基づい
て本発明の作用について説明する。この図には、燃料集
合体の上半分を3領域に分割し、上端に近い領域ほど燃
料の富化度(核分裂性核種の含有割合)を下げて無限増
倍率を調節した場合の結果を示している。図から分るよ
うに、軸方向に一様な富化度をもつ従来の燃料集合体で
は、上部反射体内の強い中性子減速材である重水により
減速された多量の熱中性子(低エネルギーの中性子)が
炉心内にあたかも反射する如く流入してくるため、燃料
集合体の出力は第4図中点線で示すように上部にゆくほ
ど大きくなり、上端部で最大で、炉心中央部の3倍程度
となる。これに反し、本発明では、燃料富化度を上部ほ
ど下げてあるので、出力ピークも低減され、炉心中央部
と同程度までになり、軸方向出力分布が平坦化される。
In the reactor where the moderator region outside the pressure tube is filled with gas (heavy water gas, He gas, etc.) and reflectors of heavy water are installed in the upper and lower parts of the core to prevent neutron leakage, The operation of the present invention will be described based on FIG. 4 showing an example of the axial output distribution. This figure shows the results when the upper half of the fuel assembly is divided into three regions, and the infinite multiplication factor is adjusted by lowering the fuel enrichment (content ratio of fissile nuclides) in the region closer to the upper end. ing. As can be seen from the figure, in a conventional fuel assembly having a uniform enrichment in the axial direction, a large amount of thermal neutrons (low-energy neutrons) decelerated by heavy water, which is a strong neutron moderator in the upper reflector. As the fuel flows into the core as if reflected, the output of the fuel assembly increases as it goes to the upper part as shown by the dotted line in Fig. 4, and the maximum at the upper end is about 3 times that of the central part of the core. Become. Contrary to this, in the present invention, since the fuel enrichment is lowered toward the upper part, the output peak is also reduced to the same level as in the central part of the core, and the axial power distribution is flattened.

以下、本発明の具体的実施例を説明する。 Specific examples of the present invention will be described below.

第1図(a),(b)は、圧力管2の中に、燃料棒1
を複数本束ねた燃料集合体を装荷した状態を示している
が、第1の本実施例では、各燃料棒1を軸方向に5領域
に分割し、軸方向中央部の領域には、燃料集合体径方向
平均で核分裂性プルトニウム(Pu)の富化度が11w/oの
高富化度燃料8を充填し、この領域に隣接する上部及び
下部の領域には、富化度4w/oの中富化度燃料9を充填
し、さらにこれらの領域に隣接する上部及び下部の領域
には、天然ウラン(富化度0w/o)の低富化度燃料10を充
填している。各領域の軸方向長さは、低富化燃料領域が
各々5cm,中富化度燃料領域が各々5cm,高富化度燃料領域
が350cmである。
1 (a) and 1 (b) show a fuel rod 1 in a pressure pipe 2.
In the first embodiment, each fuel rod 1 is divided into 5 regions in the axial direction, and the fuel is bundled in the central region in the axial direction. Packed with high-enrichment fuel 8 with an enrichment of fissile plutonium (Pu) of 11 w / o on average in the radial direction of the aggregate, the upper and lower regions adjacent to this region were enriched with 4 w / o. The medium enriched fuel 9 is filled, and the upper and lower regions adjacent to these regions are filled with the low enriched fuel 10 of natural uranium (enrichment 0 w / o). The axial length of each region is 5 cm in the low enriched fuel region, 5 cm in the medium enriched fuel region, and 350 cm in the high enriched fuel region.

次に、本発明の燃料集合体を適用した圧力管型原子炉
について、第5図から第7図を用いて説明する。
Next, a pressure tube reactor to which the fuel assembly of the present invention is applied will be described with reference to FIGS. 5 to 7.

第5図は、前記原子炉の炉心垂直断面図、第6図は、
炉心水平断面図を示す。この炉心は径方向中心に減速材
である気体の重水蒸気が循環するガス領域11を、その外
側にボロン溶液を含んだ重水が循環するポイズン含有重
水領域12を、さらにその外側に重水領域13を有してい
る。重水領域13は、第5図から分るように、ガス領域11
およびポイズン含有重水領域12の上下部に広がり、中性
子反射体として作用する。以上にあげた各領域は、仕切
板14によつて分離され、減速材どうしが混じらないよう
になつている。この炉心を、複数本の圧力管2が上下に
貫通するが、これらの圧力管は減速材である重水に直接
触れないように、重水領域内ではカランドリア管4内に
置かれる。圧力管2とカランドリア管4との間を断熱材
である炭酸ガスが下から上へ循環する。ガス領域を貫通
する圧力管の場合、カランドリア管は中性子反射体とし
て作用する炉心上部及び下部の重水領域の部分だけに置
かれ、この隙間は重水蒸気の出入口となる。
FIG. 5 is a vertical sectional view of the core of the reactor, and FIG.
A horizontal sectional view of the core is shown. This core has a gas region 11 in which heavy water vapor of a moderator gas circulates in the radial center, a poison-containing heavy water region 12 in which heavy water containing a boron solution circulates outside thereof, and a heavy water region 13 in further outside thereof. Have As shown in FIG. 5, the heavy water area 13 is a gas area 11
And spreads above and below the poison-containing heavy water region 12 and acts as a neutron reflector. The above-mentioned areas are separated by the partition plate 14 so that the moderators do not mix with each other. A plurality of pressure pipes 2 vertically pass through the core, and these pressure pipes are placed in the calandria pipe 4 in the heavy water region so as not to directly contact heavy water as a moderator. Carbon dioxide, which is a heat insulating material, circulates between the pressure pipe 2 and the calandria pipe 4 from the bottom to the top. In the case of a pressure tube penetrating the gas region, the calandria tube is placed only in the upper and lower heavy water regions, which act as neutron reflectors, and this gap serves as the inlet and outlet for heavy water vapor.

次に、本炉心で減速材物質として用いている重水の循
環フローを第7図に示す。図に示すように、重水領域13
およびポイズン含有重水領域12から出てきた重水はそれ
ぞれポンプ15および冷却器16を通つて、制御棒案内管17
の上部から炉心内へ戻される。ポイズン含有重水領域内
のボロン濃度はボロン濃度調節器21により調節される。
ガス領域を循環する重水蒸気はカランドリア管と圧力管
との隙間から出入する。ガス領域11から出てきた重水蒸
気はポンプを通つた後、冷却器で冷却され、再びカラン
ドリア管の隙間からガス領域へ戻される。即ち、蒸気状
態の重水は、冷却器で冷却されて液化され、液体化の重
水は重水タンク19に一時貯えられ、適時に蒸気発生器20
によつて気化された後に炉心内へ戻される。これらの循
環系は、重水が不足した時には重水タンク21から必要な
だけ補給される。
Next, FIG. 7 shows a circulation flow of heavy water used as a moderator material in the core. As shown in the figure, the heavy water area 13
And heavy water coming out of the poison-containing heavy water region 12 passes through a pump 15 and a cooler 16, respectively, and a control rod guide pipe 17
Is returned to the core from the upper part of. The boron concentration in the poison-containing heavy water region is adjusted by the boron concentration adjuster 21.
Heavy water vapor circulating in the gas region flows in and out through the gap between the calandria pipe and the pressure pipe. After passing through the pump, the heavy water vapor coming out of the gas region 11 is cooled by the cooler and returned to the gas region again through the gap of the calandria pipe. That is, the heavy water in the vapor state is cooled by the cooler and liquefied, and the liquefied heavy water is temporarily stored in the heavy water tank 19, and the steam generator 20 is timely stored.
After being vaporized by, it is returned to the core. These circulatory systems are replenished as needed from the heavy water tank 21 when there is a shortage of heavy water.

前記本発明の一実施例である燃料集合体は、最初、上
記炉心の最内領域(ガス領域)に装荷され十分燃焼させ
たのち、順次、中間領域(ポイズン含有重水領域)およ
び最外領域(重水領域)に移されてゆく。この燃料交換
法を上記炉心に適用した場合の、本実施例(燃料集合
体)の中性子無限増倍率と燃焼度との関係を示す第8図
に基づいて、本発明の効果を説明する。重水ガスを減速
材とする最内領域に装荷された本燃料集合体は、中性子
エネルギースペクトルがハード(平均エネルギーが高
い)であるため、燃料転換比が高く(0.8程度)、この
領域に滞在中に多量の新燃料(核分裂性Pu)を蓄積する
ことができる。できるだけ長期間この領域に滞在させた
のち、燃料集合体の無限増倍率がこの領域で必要な値以
下に低下した段階で、ポイズン含有の重水を減速材とす
るよりソフトなスペクトルの領域(中間領域)に移し、
燃料集合体の無限増倍率を高めて運転する。同様にし
て、この領域で燃焼させて無限増倍率が必要な値以下に
低下した段階で、よりスペクトルのソフトな重水減速材
領域(最外領域)に移し、さらに燃料集合体の無限増倍
率を高めて運転し、炉心内の燃料滞在期間を長くして発
生出力量(取出燃焼度)を増大する。このように、本炉
心では、燃料転換比の高いハード・スペクトル領域で核
分裂性Puを多量に生成しておき、つぎに、ソフト・スペ
クトルの領域に順次移してゆき、生成した核分裂性Puを
効率よく燃焼させるものである。このスペクトル・シフ
ト法により、同一燃料富化度の燃料集合体を装荷した従
来の単一スペクトル炉心に比べ、取出燃焼度を20%以上
増大することができ、燃料利用率の向上による省ウラン
資源,燃料サイクルコストの低減などの面で効果が大き
い。
The fuel assembly, which is one embodiment of the present invention, is first loaded in the innermost region (gas region) of the core and sufficiently burned, and then sequentially in the intermediate region (poison-containing heavy water region) and the outermost region ( It will be moved to the heavy water area). The effect of the present invention will be described based on FIG. 8 showing the relationship between the neutron infinite multiplication factor and the burnup of this example (fuel assembly) when this fuel exchange method is applied to the core. The fuel assembly loaded in the innermost region using heavy water gas as a moderator has a high neutron energy spectrum (high average energy), so the fuel conversion ratio is high (about 0.8), and we are staying in this region. Can accumulate a large amount of new fuel (fissile Pu). After staying in this region for as long as possible, when the infinite multiplication factor of the fuel assembly drops below the required value in this region, a region with a softer spectrum using heavy water containing poison (moderate region) ),
Operate by increasing the infinite multiplication factor of the fuel assembly. Similarly, when burning in this region and the infinite multiplication factor falls below the required value, it is moved to the heavy water moderator region (outermost region) with a softer spectrum, and the infinite multiplication factor of the fuel assembly is further increased. The operation is performed at a higher temperature, the fuel stay period in the core is lengthened, and the generated output amount (takeout burnup) is increased. In this way, in this core, a large amount of fissile Pu is generated in the hard spectrum region where the fuel conversion ratio is high, and then it is sequentially transferred to the soft spectrum region to efficiently generate the fissile Pu that is generated. It burns well. With this spectrum shift method, the take-out burnup can be increased by 20% or more compared to the conventional single-spectrum core loaded with fuel assemblies with the same fuel enrichment. The effect is great in terms of reducing fuel cycle costs.

また、炉心中央部にボイド反応度係数が負である気体
減速材領域を設けてあるので、炉心全体のボイド反応度
係数も負側に移行し、過渡時あるいは事故時の炉心安全
性が向上する。
In addition, since a gas moderator region with a negative void reactivity coefficient is provided in the central part of the core, the void reactivity coefficient of the entire core also shifts to the negative side, improving core safety during a transient or accident. .

なお、上記炉心構成において、気体減速材としては上
記重水ガスのほか、Heガス,CO2ガスなどの各種ガスが使
用でき、減速材及び反射体としては、上記の重水やポイ
ズン入り重水以外にも、軽水,重水と軽水との混合液な
どの各種中性子減速材が使用でき、液体の代りに、黒
鉛,LiやBeの化合物などの固体も使用できる。
In the core structure, in addition to the heavy water gas as the gas moderator, various gases such as He gas and CO 2 gas can be used, and as the moderator and the reflector, in addition to the heavy water and the heavy water containing poison, Various neutron moderators such as light water, mixed liquid of heavy water and light water can be used, and solids such as graphite and compounds of Li and Be can be used instead of liquid.

次に、本発明の燃料集合体を適用した炉心の他の例
を、第9図から第11図までを使つて説明する。
Next, another example of the core to which the fuel assembly of the present invention is applied will be described with reference to FIGS. 9 to 11.

第9図は、炉心の垂直断面図を、第10図は、水平断面
図を示す。この炉心は、本発明の燃料集合体を装荷した
圧力管2を複数本束ねた構成であり、圧力管外部に減速
材として気体(重水蒸気)を充填したガス領域11を設
け、炉心領域の軸方向上部及び下部、径方向周辺部に中
性子反射体として重水層22を設けている。径方向出力分
布の平坦化のため、外側1層の燃料集合体24だけ富化度
を低くしている。減速材である重水蒸気と反射体である
重水との循環フローを第11図に示した。前記のスペクト
ル・シフト炉心の場合の循環フロー(第7図)に比べ、
ポイズン含有重水を循環させるループが減り、系統が簡
素化されている。
FIG. 9 shows a vertical sectional view of the core, and FIG. 10 shows a horizontal sectional view. This core has a structure in which a plurality of pressure tubes 2 loaded with the fuel assembly of the present invention are bundled, and a gas region 11 filled with a gas (heavy steam) as a moderator is provided outside the pressure pipe, and the axis of the core region is provided. Heavy water layers 22 are provided as neutron reflectors in the upper and lower parts in the direction and on the peripheral part in the radial direction. In order to flatten the radial power distribution, the enrichment of only the outermost one-layer fuel assembly 24 is reduced. The circulation flow of heavy water vapor as a moderator and heavy water as a reflector is shown in FIG. Compared with the circulation flow (Fig. 7) in the case of the spectrum shift core,
The loop that circulates the heavy water containing poison is reduced and the system is simplified.

この炉心では、減速材を気体にしてスペクトルをハー
ドにしているため、燃料の転換比が0.8以上になり、従
来の重水を減速材とする圧力管型原子炉に比べ30%以上
増大し、燃料の利用率が高まり、省ウラン資源の面で大
きな効果がある。また、この炉心は、高転換炉心である
と同時に、ポイド反応度係数が負であるため、過渡時あ
るいは事故時の安全性にも勝れた高安全炉心でもある。
In this core, the moderator is gas and the spectrum is hard, so the conversion ratio of fuel is 0.8 or more, which is more than 30% higher than that of the conventional pressure tube reactor using heavy water as moderator. The utilization rate of uranium is increased, and it has a great effect in terms of uranium resource saving. In addition to being a high conversion core, this core is also a highly safe core that excels in safety during a transient or accident because the void reactivity coefficient is negative.

上記のような大きな改善効果をもつスペクトル・シフ
ト炉心や高転換炉心は、本発明の燃料集合体と組合わせ
て、初めて実現できるものである。これらの炉心では、
炉心上部及び下部の反射体領域で減速された熱中性子が
多量に炉心内に流入してくるため、燃料集合体の上下端
部と中央部とは中性子エネルギースペクトルが大幅に異
なつており、中央部でハードであるが、上下端に近づく
につれ急激にソフト(中性子の平均エネルギーが低く)
になつてゆく。したがつて、従来の一様富化度燃料集合
体の例では上下端部の出力は中央部の3倍程度にもな
り、出力ピーキング係数が増大するため燃料健全性の面
から出力密度を下げて運転せざるを得なくなり、これら
の炉心の上記の改善効果は消失してしまう。燃料集合体
は、このような軸方向に沿つた空間的なスペクトル・シ
フトの影響を打消すのに最適な領域分割数,領域幅,燃
料富化度を炉物理的考察と解析結果により決定してい
る。その検討結果によれば、領域分割数は第1図のよう
に全体で5領域が最適であるが、燃料集合体の平均富化
度や燃料本数などの違いにより、その他のパラメータは
最適値の範囲に幅が生じ、次の表のようになる。
The spectrum shift core and the high conversion core having the above-mentioned great improvement effect can be realized only by combining with the fuel assembly of the present invention. In these cores,
Since a large amount of thermal neutrons decelerated in the reflector regions above and below the core flow into the core, the neutron energy spectra of the upper and lower ends of the fuel assembly and the central part are significantly different, and the central part Hard, but suddenly softer as the upper and lower ends are approached (average energy of neutrons is low)
Continue to grow. Therefore, in the case of the conventional uniform enrichment fuel assembly, the output at the upper and lower ends is about three times that at the center, and the output peaking coefficient increases, so the output density is lowered from the aspect of fuel integrity. Inevitably, the above-mentioned improvement effects of these cores disappear. The fuel assembly determines the optimal number of zone divisions, zone widths, and fuel enrichment to cancel the influence of such spatial spectral shifts along the axial direction based on reactor physical considerations and analysis results. ing. According to the results of the examination, the optimal number of regions is 5 as a whole, as shown in Fig. 1, but other parameters may have optimal values due to differences such as the average enrichment of fuel assemblies and the number of fuels. The range has a width, as shown in the following table.

なお、以上の検討結果は、ウラン・プルトニウム混合
酸化物燃料に対し検討した結果であるが、ウラン酸化物
燃料を使用した場合も、同範囲内の値を選択すれば軸方
向出力分布を平坦化できる。
The above study results are the results of studies conducted on uranium-plutonium mixed oxide fuel, but even when uranium oxide fuel is used, the axial power distribution can be flattened by selecting a value within the same range. it can.

本発明の他の実施例について、第12図に基づいて説明
する。前記実施例と同様に、燃料棒の上・下端部のそれ
ぞれに2つの短尺な小領域を設け、各小領域に濃度の異
なる可燃性吸収材(ガドリニアなど)を添加したことが
特徴であり、上・下端に最も近い高濃度ガドリニア領域
25、それらの領域に隣接する低濃度ガドリニア領域26、
及び中央部のガドリニア不添加領域27で構成されるガド
リニア添加燃料棒を同図の水平断面に示すように外層か
ら数えて第2層目に、周方向にはガドリニナ無添加燃料
棒と交互に配置した燃料集合体である。ガドリニア等の
可燃性吸収材は、熱中性子に対し非常に大きい吸収断面
積をもつので、その濃度を上・下端部でそれぞれ2段階
に調節することにより、炉心上下の反射体から流入して
くる熱中性子を効果的に吸収して、軸方向に平坦な出力
分布を実現できる。また、この実施例では、ガドリニア
の濃度を適切に調節すれば、スペクトル・シフト炉心に
適用する場合、気体減速材領域からの取出時期にガドリ
ニアが燃えつきるようにでき、以後の領域に装荷した際
の軸方向出力分布の平坦化に関しては、前記の富化度差
を用いる実施例以上に勝れている。その他の場合は、前
記実施例と同様な改善効果が得られる。
Another embodiment of the present invention will be described with reference to FIG. Similar to the above-mentioned example, two small small areas are provided at each of the upper and lower ends of the fuel rod, and a flammable absorbent having a different concentration (such as gadolinia) is added to each small area. High concentration gadolinia region closest to the top and bottom
25, low concentration gadolinia area 26 adjacent to those areas,
And, the gadolinia-added fuel rods composed of the gadolinia-free region 27 in the central portion are arranged alternately with the gadolinina-free fuel rods in the second layer, which is the second layer counting from the outer layer as shown in the horizontal cross section of the figure. It is a fuel assembly. Combustible absorbers such as gadolinia have a very large absorption cross section for thermal neutrons, so by adjusting the concentration in two steps at the upper and lower ends, they flow in from the reflectors above and below the core. It is possible to effectively absorb thermal neutrons and realize a flat power distribution in the axial direction. Further, in this example, if the concentration of gadolinia is appropriately adjusted, when applied to a spectrum shift core, gadolinia can be burned at the time of extraction from the gas moderator region, and when loaded in the subsequent region. Regarding flattening of the axial power distribution, it is superior to the embodiment using the enrichment difference described above. In other cases, the same improvement effect as in the above-mentioned embodiment can be obtained.

本実施例に関しては、各種の変形が可能であり、例え
ば、第13図に示すようにガドリニア添加燃料棒28を最外
層に装備したり、2層以上にわたつて装備することも考
えられる。また、ガドリニア濃度は上・下端部の各二領
域で変えないで、ガドニリア添加領域長さを変えた2種
類のガドリニア添加燃料棒(それぞれ1領域分と2領域
分の長さ)を適切に組合わせて燃料集合体を構成するこ
とも考えられる。ガドリニア添加燃料棒の中央部の領域
にもガドリニアを添加して、炉心の余剰反応度の燃焼特
性を制御して運転性能を向上することも考えられる。
Various modifications can be made to this embodiment. For example, as shown in FIG. 13, the gadolinia-added fuel rod 28 may be provided in the outermost layer or may be provided in two or more layers. Also, do not change the gadolinia concentration in each of the two regions of the upper and lower ends, and properly combine two types of gadolinia-added fuel rods with different gadolinia addition region lengths (one region length and two region lengths, respectively). It is also possible to construct a fuel assembly together. It is also possible to add gadolinia to the central region of the gadolinia-added fuel rod to control the combustion characteristics of the excess reactivity of the core and improve the operating performance.

他の実施例について、第14図に基づいて説明する。こ
の実施例は、前記の二つの実施例に対してさらに軸方向
出力分布の平坦化機能を高めたものであり、気体減速材
領域に装荷した場合には、ボイド反応度係数が比較的大
きな負の値を持ち、冷却材ボイド率の低い下部はボイド
率の高い上部に比べ出力が高くなるので、この傾向を抑
えるため中央部の下部に低・高富化度燃料(あるいは高
濃度ガドリニア添加燃料)31を充填し、上部に高・高富
化度燃料(あるいは低濃度ガドリニア添加燃料)32を充
填した6領域燃料棒により平坦化し、それ以後の液体減
速材領域に装荷された場合には、ボイド反応度係数の絶
対値が小さく、軸方向分布は中央で出力ピークが増大す
るので、燃料棒の軸方向中央部に中・高富化度燃料(高
濃度ガドリニア添加燃料)30を充填した7領域燃料棒に
より軸方向出力分布を平坦化する。なお、スペクトル・
シフト炉心には、上記6領域及び7領域燃料棒が必要で
あるが高転換炉に対しては、6領域燃料棒のみで良い。
Another embodiment will be described with reference to FIG. This embodiment has a function of flattening the axial power distribution further enhanced in comparison with the above two embodiments, and when loaded in the gas moderator region, the void reactivity coefficient has a relatively large negative value. , The lower part of the coolant with a low void ratio has a higher output than the upper part with a high void ratio, so in order to suppress this tendency, a low / high enrichment fuel (or a high concentration gadolinia-added fuel) is provided in the lower part of the center part Void reaction when flattened by a 6-region fuel rod filled with 31 and filled with high / high enrichment fuel (or low-concentration gadolinia-added fuel) 32, and then loaded in the liquid moderator region thereafter. Since the absolute value of the degree coefficient is small and the output peak increases in the center of the axial distribution, 7-region fuel rods filled with medium / high enrichment fuel (high concentration gadolinia-added fuel) 30 in the axial center part of the fuel rod Due to axial output The flattening. The spectrum
The shift core requires the 6-region and 7-region fuel rods, but for the high conversion reactor, only the 6-region fuel rods are required.

以上述べてきた実施例では、上部及び下部の領域の各
領域長さ、燃料富化度、可燃性吸収材濃度などを上部と
下部とで区別なく同じとしてきたが、炉心上部及び下部
の反射体厚さが異なる場合や、反射体物質が異なる場合
には、これらのパラメータを上部及び下部で変えて、そ
れぞれの領域で最適化して、軸方向出力分布の平坦化機
能を増すこともできる。
In the embodiments described above, the length of each region in the upper and lower regions, the fuel enrichment, the combustible absorbent concentration, etc. are the same without distinction between the upper and lower regions. For different thicknesses or different reflector materials, these parameters can be varied at the top and bottom and optimized in each region to increase the flattening function of the axial power distribution.

また、本発明の効果を得るために、上・下端領域の燃
料富化度や可燃性吸収材濃度を調節する方法以外に、燃
料の充填密度を変える方法、中空ペレツトの中空部の面
積を変える方法、燃流棒の本数を変える方法(燃料棒の
長さを変える)なども有効である。
In order to obtain the effect of the present invention, in addition to the method of adjusting the fuel enrichment and the concentration of the combustible absorbent in the upper and lower end regions, the method of changing the packing density of the fuel and the area of the hollow portion of the hollow pellet are changed. The method, changing the number of fuel rods (changing the length of the fuel rods) is also effective.

なお、以上の実施例では、上部,下部を3領域に分割
する場合について説明したが、領域分割数が4以上でも
本発明の効果は得られる。
In the above embodiment, the case where the upper portion and the lower portion are divided into three regions has been described, but the effect of the present invention can be obtained even if the number of divided regions is four or more.

また、圧力管を水平方向に配置し、炉心の横方向に中
性子反射体を有する原子炉に対しても、本発明は適用で
き、前記と同様な効果を実現できる。
Further, the present invention can be applied to a nuclear reactor in which the pressure tubes are arranged in the horizontal direction and the neutron reflector is provided in the lateral direction of the core, and the same effects as the above can be realized.

〔発明の効果〕〔The invention's effect〕

本発明によれば、反射体を周辺に有する炉心にあける
軸方向出力分布をできるだけ平坦化できるので、燃料の
利用効率が高くなる上、安全でもある。
According to the present invention, the axial power distribution in the core having the reflector in the periphery can be flattened as much as possible, so that the utilization efficiency of fuel is improved and it is also safe.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の第1実施例における燃料集合体
の断面図、第1図(b)は第1図(a)のA−A′矢視
図、第2図は従来の燃料集合体の水平断面図、第3図は
従来の炉心の水平断面図である。第4図は本発明の原理
特性図、第5図は本発明の燃料集合体を用いた原子炉炉
心の垂直断面図、第6図は同じく水平断面図、第7図は
第5図の炉心の減速材循環フロー図、第8図は第5図の
炉心における、本発明の燃料集合体の無限増倍率の変化
のグラフ図、第9図は本発明の第2の実施例であつて、
燃料集合体を別の原子炉へ適用した時の炉心垂直断面
図、第10図は同じく水平断面図、第11図は第9図の炉心
の減速材循環フロー図、第12図,第13図および第14図は
本発明の第2,第3および第4の実施例である。第12図
(a)は本発明の第3実施例を示す燃料集合体の縦断面
図、第12図(b)は第12図(a)のA−A′矢視断面
図、第13図は本発明の第4実施例を示す燃料集合体の平
断面図、第14図は本発明の第5実施例を示す燃料集合体
の縦断面図である。 1……燃料棒、2……圧力管、3……ギヤツプ領域、4
……カランドリア管、5……減速材、6……冷却材、7
……カランドリア・タンク、8……高富化度燃料、9…
…中富化度燃料、10……低富化度燃料、11……ガス領
域、12……ポイズン含有重水領域、13……重水領域、14
……仕切板、15……ポンプ、16……冷却器、17……制御
棒案内管、18……ボロン濃度調節器、19……重水タン
ク、20……蒸気発生器、21……重水タンク、22……重水
層、23……高富化度燃料集合体、24……低富化度燃料集
合体、25……高濃度ガドリニア領域、26……低濃度ガド
リニア領域、27……ガドリニア無添加領域、28……ガド
リニア添加燃料棒、29……ガドリニア無添加燃料棒、30
……中・高富化度燃料、31……低・高富化度燃料、32…
…高・高富化度燃料。
FIG. 1 (a) is a sectional view of the fuel assembly in the first embodiment of the present invention, FIG. 1 (b) is a view taken along the line AA 'in FIG. 1 (a), and FIG. FIG. 3 is a horizontal sectional view of the fuel assembly, and FIG. 3 is a horizontal sectional view of the conventional core. FIG. 4 is a characteristic diagram of the present invention, FIG. 5 is a vertical sectional view of a nuclear reactor core using the fuel assembly of the present invention, FIG. 6 is a horizontal sectional view of the same, and FIG. 7 is the core of FIG. Fig. 8 is a moderator circulation flow chart of Fig. 8, Fig. 8 is a graph showing the change of the infinite multiplication factor of the fuel assembly of the present invention in the core of Fig. 5, and Fig. 9 is a second embodiment of the present invention.
A vertical cross-sectional view of the core when the fuel assembly is applied to another reactor, Fig. 10 is a horizontal cross-sectional view of the same, Fig. 11 is a moderator circulation flow diagram of the core of Fig. 9, Fig. 12 and Fig. 13. And FIG. 14 shows the second, third and fourth embodiments of the present invention. FIG. 12 (a) is a longitudinal sectional view of a fuel assembly showing a third embodiment of the present invention, FIG. 12 (b) is a sectional view taken along the line AA 'in FIG. 12 (a), and FIG. Is a plan sectional view of a fuel assembly showing a fourth embodiment of the present invention, and FIG. 14 is a vertical sectional view of a fuel assembly showing a fifth embodiment of the present invention. 1 ... fuel rod, 2 ... pressure tube, 3 ... gear region, 4
...... Calandria tube, 5 ...... Moderator, 6 …… Coolant, 7
...... Calandria tank, 8 ...... Highly enriched fuel, 9 ・ ・ ・
… Medium enrichment fuel, 10 …… Low enrichment fuel, 11 …… Gas region, 12 …… Poison-containing heavy water region, 13 …… Heavy water region, 14
Partition plate, 15 pump, 16 cooler, 17 control rod guide tube, 18 boron concentration controller, 19 heavy water tank, 20 steam generator, 21 heavy water tank , 22 …… Heavy water layer, 23 …… High enrichment fuel assembly, 24 …… Low enrichment fuel assembly, 25 …… High concentration gadolinia region, 26 …… Low concentration gadolinia region, 27 …… No gadolinia addition Area, 28 …… Gadolinia-added fuel rods, 29 …… Gadolinia-free fuel rods, 30
…… Medium / high enrichment fuel, 31 …… Low / high enrichment fuel, 32…
… High and high enrichment fuel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原子炉燃料が装荷され反射体で囲われた炉
心に中性子減速材として気体減速材を有し、前記原子炉
燃料は、燃料の上下方向領域のうち最下端および最上端
の核分裂性物質の低富化度領域が上下方向に5cm〜10cm
形成され、前記最下端より2番目および前記最上端より
2番目の核分裂性物質の中富化度領域が5cm〜15cm形成
され、前記中富化度領域の上下間の領域には核分裂性物
質の高富化度領域が形成され、前記低富化度領域の富化
度は2w/o以下に、前記中富化度領域の富化度は3w/o〜5w
/oに、前記高富化度領域の富化度は前記中富化度領域の
富化度を越える富化度に設定されている圧力管型原子炉
の炉心構造。
1. A reactor core loaded with a reactor fuel and surrounded by a reflector has a gas moderator as a neutron moderator, and the reactor fuel is a nuclear fission at a lowermost end and an uppermost end of a vertical region of the fuel. Area of low enrichment of organic substances is 5 cm to 10 cm vertically
Formed, the middle enrichment region of the fissile material second from the lowermost end and second from the uppermost end is formed by 5 cm to 15 cm, and the high enrichment of the fissile material is formed in the region above and below the middle enrichment region. Area is formed, the enrichment of the low enrichment area is 2 w / o or less, and the enrichment of the medium enrichment area is 3 w / o to 5 w.
/ o, the enrichment of the high-enrichment region is set to an enrichment exceeding the enrichment of the medium-enrichment region.
【請求項2】原子炉燃料が装荷され反射体で囲われた炉
心を内側領域と外側領域と前記内外側両領域の中間に位
置する中間領域とに各領域を仕切る手段を前記炉心に備
え、前記内側領域内には中性子減速材として気体減速材
を、前記中間領域内には中性子減速材としてポイズン含
有重水を、前記外側領域内には中性子減速材として重水
を、それぞれ備え、前記原子炉燃料は、燃料の上下方向
領域のうち最下端および最上端の核分裂性物質の低富化
度領域が上下方向に5cm〜10cm形成され、前記最下端よ
り2番目および前記最上端より2番目の核分裂性物質の
中富化度領域が5cm〜15cm形成され、前記中富化度領域
の上下間の領域には核分裂性物質の高富化度領域が形成
され、前記低富化度領域の富化度は2w/o以下に、前記中
富化度領域の富化度は3w/o〜5w/oに、前記高富化度領域
の富化度は前記中富化度領域の富化度を越える富化度に
設定されている圧力管型原子炉の炉心構造。
2. A means for partitioning a reactor fuel-loaded reactor-enclosed core surrounded by a reflector into an inner region, an outer region, and an intermediate region located between the inner-outer region and the inner-outer region. A gas moderator as a neutron moderator in the inner region, poison-containing heavy water as a neutron moderator in the intermediate region, heavy water as a neutron moderator in the outer region, respectively, the reactor fuel Is a lower-enrichment region of the fissile material at the lowermost and uppermost ends of the fuel in the vertical direction, which is formed in the vertical direction by 5 cm to 10 cm, and is the second fissionable from the lowermost end and second from the uppermost end. A medium enrichment region of the substance is formed from 5 cm to 15 cm, a high enrichment region of fissile material is formed between the upper and lower regions of the middle enrichment region, and the enrichment of the low enrichment region is 2 w / Below, the enrichment of the above-mentioned medium enrichment range is 3 w / o ~ The core structure of the pressure tube reactor, wherein the enrichment in the high enrichment region is set to 5 w / o, which is higher than the enrichment in the medium enrichment region.
JP62037996A 1987-02-23 1987-02-23 Core structure of pressure tube reactor Expired - Lifetime JPH083539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62037996A JPH083539B2 (en) 1987-02-23 1987-02-23 Core structure of pressure tube reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62037996A JPH083539B2 (en) 1987-02-23 1987-02-23 Core structure of pressure tube reactor

Publications (2)

Publication Number Publication Date
JPS63206692A JPS63206692A (en) 1988-08-25
JPH083539B2 true JPH083539B2 (en) 1996-01-17

Family

ID=12513186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62037996A Expired - Lifetime JPH083539B2 (en) 1987-02-23 1987-02-23 Core structure of pressure tube reactor

Country Status (1)

Country Link
JP (1) JPH083539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5302156B2 (en) * 2009-09-29 2013-10-02 日立Geニュークリア・エナジー株式会社 Fast breeder reactor core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855789A (en) * 1981-09-29 1983-04-02 株式会社日立製作所 Incore structure of reactor

Also Published As

Publication number Publication date
JPS63206692A (en) 1988-08-25

Similar Documents

Publication Publication Date Title
US3147191A (en) Nuclear reactor fuel
EP0691657B1 (en) Nuclear reactor core and fuel assembly for a light water cooled nuclear reactor ,
US4629599A (en) Burnable absorber arrangement for fuel bundle
US4591479A (en) Boiling water reactor fuel bundle
JP3531011B2 (en) Fuel assemblies and reactors
JPS60192294A (en) Non-deceleration nuclear reactor
JP2804205B2 (en) Fuel assemblies and cores
WO2018074341A1 (en) Fuel assembly and reactor core of boiling water nuclear reactor loaded with same
JPH07101237B2 (en) Fuel assembly and nuclear reactor
JP2017534864A (en) Fuel assemblies for nuclear boiling water reactors
JP2856728B2 (en) Fuel assembly
JP2000241582A (en) Fuel assembly, fuel rod and reactor core
JPH083539B2 (en) Core structure of pressure tube reactor
JP3651522B2 (en) Nuclear reactor core
JP6965200B2 (en) Fuel assembly
JP2931573B2 (en) Fuel assembly
JPH06174874A (en) Fuel assembly and reactor core
JPH0785115B2 (en) Pressure tube reactor and operating method of the reactor
JP3958545B2 (en) Fuel assembly
JP2563492B2 (en) Fuel assembly
JPH07333373A (en) Fuel assembly for boiling water reactor
JPH06273558A (en) Fuel rod
JPS5816157B2 (en) Nenriyousyuugoutai
JPH02112795A (en) Fuel assembly, spectrum shift rod, nuclear reactor and method for controlling output of nuclear reactor
JPS6258193A (en) Operation control rod for nuclear reactor