JPH04228202A - Manufacture of channel material - Google Patents

Manufacture of channel material

Info

Publication number
JPH04228202A
JPH04228202A JP41631390A JP41631390A JPH04228202A JP H04228202 A JPH04228202 A JP H04228202A JP 41631390 A JP41631390 A JP 41631390A JP 41631390 A JP41631390 A JP 41631390A JP H04228202 A JPH04228202 A JP H04228202A
Authority
JP
Japan
Prior art keywords
channel material
thickness
bending
bent
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41631390A
Other languages
Japanese (ja)
Inventor
Osamu Furuta
古 田   修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP41631390A priority Critical patent/JPH04228202A/en
Publication of JPH04228202A publication Critical patent/JPH04228202A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/095U-or channel sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PURPOSE:To prevent the roughening of the external surface of the channel material at the time of forming process. CONSTITUTION:First, a stainless steel blank 11 is bent into a U-shape in cross section, and a bending process for an intermediate member 14 of which a web part and a flange part are approximately at right angle is performed. Then, a rolling-down process in which the intermediate member 14 is rolled down mainly in the direction of the thickness to have a final thickness is performed. After that, a shaping process in which the member is bent into the final shape for the channel material is performed. In this manner, since the bending process, the rolling down process in the direction of the thickness, and the final shaping process are independently performed, no excess force between a cavity die and a workpiece is generated. Consequently, the manufactured channel material does not have the rough surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,工場プラント,建築物
等に用いられるチャンネル材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing channel materials used in factories, buildings, etc.

【0002】0002

【従来技術】チャンネル材は,化学プラント,建築物等
に多用されている。特に,ステンレス製のチャンネル材
は,メンテナンスフリー,美観等の観点から,核融合,
原子力,化学等のプラント,プール材,カーテンウォー
ル,公告塔等の建築物,ショーケース枠,エレベータ内
装等の装飾用建材,更には冷凍器枠,厨房器具,タンク
補強材,医療器具など,各種の分野に利用されている。 また,同様の観点から,最近はチタン製のチャンネル材
も製造され,利用分野が広がっている。ところで,従来
,チャンネル材は,図2に示す方法によって製造される
場合が多い。この方法は,素材であるビレット71を,
例えばK5〜K1の孔型を用いて,チャンネル材75に
成形するものである。そして,上記製造に当たっては,
ビレット71を,K5により2か所に突出部を有する串
状体に成形し,その後K4により上記突出部を折り曲げ
部分として下方に折り曲げる。次いで,K3,K2にお
いて更に両側を曲げ,K1において最終的なチャンネル
材製品とする。なお,上記孔型は代表的なものを示し,
実際は約14個の孔型を用いて成形される。そして,こ
こで重要なことは,このK4〜K1においては,上記素
材に対して,上記折り曲げ成形を行うと共に,厚み調整
のための圧下成形を併行して行っていることである。上
記のK4〜K1における「折曲げ及び圧下成形」は,図
3に示す成形ロール8を用いて行う。該ロール8は上ロ
ール81と下ロール82とよりなる。上ロール81は,
チャンネル材75のウェブ部及びフランジ部の外側面を
成形するための,凹状傾斜部810と,チャンネル材の
外側角部を形成するための直角底面815を有する。一
方,下ロール82は,上記上ロールの凹状傾斜部810
及び直角底面815に対面する,凸状傾斜部820とチ
ャンネル材の内側角部を形成するための直角突面825
を有する。そして,両ロール81と82とは,両者を対
向させたとき,上記K4〜K1の孔型が形成されるよう
,構成されている。なお,図3は前記孔型K3の状態を
示している。
BACKGROUND OF THE INVENTION Channel materials are widely used in chemical plants, buildings, etc. In particular, stainless steel channel materials are suitable for nuclear fusion and
Nuclear and chemical plants, swimming pool materials, curtain walls, buildings such as public notice towers, decorative building materials such as showcase frames and elevator interiors, as well as refrigerator frames, kitchen equipment, tank reinforcing materials, medical equipment, etc. It is used in the field of In addition, from a similar perspective, channel materials made of titanium have recently been manufactured, and the fields of use are expanding. By the way, conventionally, channel materials are often manufactured by the method shown in FIG. This method uses billet 71, which is the raw material,
For example, the channel material 75 is formed using hole molds K5 to K1. In the above manufacturing,
The billet 71 is formed into a skewer-like body having two protrusions using K5, and then bent downward using K4, using the protrusions as bending parts. Next, both sides are further bent at K3 and K2, and the final channel material product is obtained at K1. The hole shapes above are representative ones.
Actually, about 14 hole molds are used for molding. What is important here is that in K4 to K1, the above-mentioned bending process is performed on the above-mentioned material, and at the same time, reduction forming for thickness adjustment is performed on the above-mentioned material. The above-mentioned "bending and pressure forming" in K4 to K1 is performed using a forming roll 8 shown in FIG. 3. The roll 8 consists of an upper roll 81 and a lower roll 82. The upper roll 81 is
It has a concave slope 810 for forming the outer surface of the web and flange portions of the channel material 75, and a right-angled bottom surface 815 for forming the outer corner of the channel material. On the other hand, the lower roll 82 has a concave inclined portion 810 of the upper roll.
and a right-angled protruding surface 825 facing the right-angled bottom surface 815 for forming a convex inclined portion 820 and an inner corner of the channel material.
has. Both rolls 81 and 82 are configured so that when they are opposed to each other, the above-mentioned hole shapes K4 to K1 are formed. Note that FIG. 3 shows the state of the hole K3.

【0003】0003

【解決しようとする課題】しかしながら,上記従来の製
造方法により得られるチャンネル材75(図5)は,そ
の製造途中及び製品において,図4及び図5に示すごと
く,その外側面の下方及び上方に肌あれ751,752
を生じている。この肌あれは,細い凹状部が多数,チャ
ンネル材の長手方向に断続的に形成されたものである。 そして,かかる肌あれの発生原因は,これを種々検討す
ると,次のようであると考えられる。即ち,上記のごと
く,チャンネル材成形の後方工程では,「折曲げ及び圧
下成形」が行われる。そして,孔型はK4〜K1(図2
)の形状であり,図3に示した成形ロール8が用いられ
ている。このとき,例えば孔型K3においては,中間成
形品73は,図6に示すごとく,その内側面は下ロール
82の凸状傾斜面820及び直角突面825に強く接触
している。一方,外側面は上ロール81の凹状傾斜部8
10と直角底面815に強く接触している。そして,上
記中間成形品73は上記の上ロール81と下ロール82
とにより折曲げ及び圧下成形されながら,前方へ送られ
る。即ち,この成形時には,中間成形品73は,その両
側が直角状態に向かってその全体が曲げられると共に所
定の厚みとするための圧下圧延が併行して行われる。 そして,図3,図6に示すごとく,直角状態への曲げは
,主として上ロール81の凹状傾斜部810の先端部分
810Aで行われる。また,圧下圧延は,主として上ロ
ール81の凹状傾斜部810の基部,即ち直角底面81
5の近くまでにおいて,行われている。また,これらの
曲げ,圧下は強い力で行われるため,上ロール81の上
記先端部分810A及び基部と中間成形品73との間に
は,強い摩擦状態を生ずる。そのため,上記上ロール8
1の先端部分及び基部に面する中間成形品73の外表面
に,上記のごとく肌あれ751,752が発生すること
となる。そして,この肌あれ751,752は,チャン
ネル材75の長手方向に線状に生ずる(図5)。上記の
ごとき肌あれは前記のごとく,表面の美観をも重視して
使用されるステンレス製,チタン製などのチャンネル材
にとって都合の悪い表面状態である。本発明は,かかる
従来の問題点に鑑み,外表面に肌あれを生ずることのな
いチャンネル材の製造方法を提供しようとするものであ
る。
[Problem to be Solved] However, the channel material 75 (Fig. 5) obtained by the above-mentioned conventional manufacturing method has a problem that during its manufacturing process and in the finished product, as shown in Figs. 4 and 5, the channel material 75 (Fig. That skin 751,752
is occurring. This roughness is caused by many thin concave portions being formed intermittently in the longitudinal direction of the channel material. The causes of such rough skin are considered to be as follows after various considerations. That is, as mentioned above, "bending and pressure forming" is performed in the rear process of forming the channel material. The hole types are K4 to K1 (Fig. 2
), and the forming roll 8 shown in FIG. 3 is used. At this time, for example, in the hole mold K3, the inner surface of the intermediate molded product 73 is in strong contact with the convex inclined surface 820 and the right-angled projecting surface 825 of the lower roll 82, as shown in FIG. On the other hand, the outer surface is the concave inclined portion 8 of the upper roll 81.
10 and the right-angled bottom surface 815. The intermediate molded product 73 is formed by the upper roll 81 and the lower roll 82.
It is sent forward while being bent and pressed. That is, during this molding, the intermediate molded product 73 is bent in its entirety toward a perpendicular state on both sides, and simultaneously subjected to reduction rolling to obtain a predetermined thickness. As shown in FIGS. 3 and 6, the bending to the right angle state is mainly performed at the tip end portion 810A of the concave inclined portion 810 of the upper roll 81. Further, the reduction rolling is mainly performed at the base of the concave inclined portion 810 of the upper roll 81, that is, the right-angled bottom surface 81.
This is done until around 5. Furthermore, since these bending and rolling operations are performed with a strong force, a strong frictional state occurs between the intermediate molded product 73 and the tip portion 810A and the base portion of the upper roll 81. Therefore, the above upper roll 8
As described above, rough skin 751, 752 will occur on the outer surface of the intermediate molded product 73 facing the tip and base of the molded product 1. The rough skin 751, 752 occurs linearly in the longitudinal direction of the channel material 75 (FIG. 5). As mentioned above, the rough skin is an inconvenient surface condition for channel materials made of stainless steel, titanium, etc., which are used with emphasis on surface appearance. In view of these conventional problems, the present invention aims to provide a method for manufacturing a channel material that does not cause roughness on the outer surface.

【0004】0004

【課題の解決手段】本発明は,ウェブ部とその両側に位
置するフランジ部とが直角状に当接してなるチャンネル
材を製造する方法において,素材を断面コ字状に曲げて
いきウェブ部とフランジ部とが略直角である中間部材に
成形する曲げ加工工程と,該中間部材をその厚み方向に
圧下していく圧下加工工程と,チャンネル材の最終形状
に曲げる成形工程とよりなることを特徴とするチャンネ
ル材の製造方法にある。本発明において,曲げ加工工程
は,ビレット等の素材を熱間において,ウェブ部とフラ
ンジ部との境界成形部分を,略直角状に曲げていく加工
工程である。このとき,素材は主として,ウェブ部形成
部分とフランジ部形成部分とが互いに略直角状になるよ
うに曲げられていき,チャンネル材を構成するためのウ
ェブ部とフランジ部の原形状が作られていく。そして,
この曲げ加工工程において得られる中間部材は,そのウ
ェブ部とフランジ部とが略直角状を呈しているが,これ
らの厚みはチャンネル材の最終形状の厚みに比してかな
り厚い状態にある。次に,上記中間部材は,圧下加工工
程においてその厚み方向に圧下してチャンネル材の略最
終厚みに加工していく。その後,これを成形工程におい
てチャンネル材の最終形状に曲げ加工する。上記の曲げ
加工工程は,例えば5〜7個の孔型を用いて行う。また
,圧下加工工程は,例えば4〜6個の孔型を用いて行う
。また,成形工程は,4〜8個の孔型を用いて行う。 また,これらの加工工程は熱間で行うことが好ましいが
,加工温度を限定するものではない。また,本発明は,
一般鋼材料のチャンネル材の製造方法に適用することが
できるが,特に外観を重視し,かつ加工困難なステンレ
ス鋼,チタン材料に対してその利用効果が大である。
[Means for Solving the Problems] The present invention provides a method for manufacturing a channel material in which a web portion and flange portions located on both sides of the web portion are in contact with each other at right angles. It is characterized by consisting of a bending process in which the intermediate member is formed at a substantially right angle to the flange part, a rolling process in which the intermediate member is rolled down in the thickness direction, and a forming process in which the intermediate member is bent into the final shape of the channel material. There is a method for manufacturing a channel material. In the present invention, the bending step is a processing step in which a material such as a billet is heated and the boundary formed portion between the web portion and the flange portion is bent into a substantially right angle shape. At this time, the material is mainly bent so that the web part forming part and the flange part forming part are approximately perpendicular to each other, and the original shapes of the web part and flange part to constitute the channel material are created. go. and,
The intermediate member obtained in this bending process has a web portion and a flange portion that are substantially perpendicular, but the thickness of these portions is considerably thicker than the thickness of the final shape of the channel material. Next, in the rolling step, the intermediate member is rolled down in its thickness direction to approximately the final thickness of the channel material. This is then bent into the final shape of the channel material in a forming process. The above bending process is performed using, for example, 5 to 7 holes. Further, the rolling step is performed using, for example, four to six hole molds. Moreover, the molding process is performed using 4 to 8 hole molds. Further, although it is preferable that these processing steps be performed hot, the processing temperature is not limited. Moreover, the present invention
Although it can be applied to the manufacturing method of channel materials for general steel materials, it is particularly effective for stainless steel and titanium materials where appearance is important and difficult to process.

【0005】[0005]

【作用及び効果】本発明においては,上記のごとく,ま
ず加工初期においてビレット等の素材を,ウェブ部とフ
ランジ部との境界において略直角状に曲げ,次いでこれ
らをチャンネル材における所望厚みに圧下加工し,然る
後チャンネル材の形状に成形していく。そのため,前記
従来技術のごとく「折曲げ及び圧下成形」を同時に行う
場合のように,被加工材に折り曲げ力と圧下力とが同時
に加わらない。それ故,本発明では被加工物は,円滑に
,先ず略直角状に曲げられ,次いで所望厚みに圧下され
,その後チャンネル形状に成形される。したがって,孔
型と被加工物との間には,従来のごとき無理な加工に基
づく強い摩擦力が発生し難く,得られたチャンネル材に
は肌あれを生ずることがない。以上のごとく,本発明に
よれば,外表面に肌あれを生ずることのないチャンネル
材の製造方法を提供することができる。
[Operations and Effects] As described above, in the present invention, a material such as a billet is first bent at a substantially right angle at the boundary between the web portion and the flange portion at the initial stage of processing, and then the material is rolled down to the desired thickness of the channel material. Then, it is formed into the shape of the channel material. Therefore, the bending force and the rolling force are not applied to the workpiece at the same time, unlike when "bending and rolling" are performed at the same time as in the prior art. Therefore, in the present invention, the workpiece is smoothly first bent into a substantially right angle shape, then rolled down to the desired thickness, and then formed into a channel shape. Therefore, strong frictional force due to conventional forced machining is unlikely to occur between the hole mold and the workpiece, and the resulting channel material will not have roughness. As described above, according to the present invention, it is possible to provide a method for manufacturing a channel material that does not cause roughness on the outer surface.

【0006】[0006]

【実施例】本発明の実施例にかかるチャンネル材の製造
方法につき,図1を用いて説明する。本例において得よ
うとするチャンネル材は,同図に示す孔型Eとほぼ同じ
断面形状を有するものである。そして,上記チャンネル
材を製造するに当たっては,図1に示すごとく,素材1
1を孔型A〜Eを用いて順次成形する。ここに示す孔型
A〜Eは,加工途中に用いる代表的な孔型を示している
。また,孔型Eは最終工程の孔型を示している。そして
,孔型Aにおいては素材11の上方及び下方の中央付近
を若干凹ませた状態に,また孔型Bにおいては下方両端
が拡開されて逆W字状に曲げた状態に曲げ加工する。 更に,孔型Cにおいては,更に曲げ加工を施し,ここで
ウェブ部とフランジ部との境界部分が略直角状に曲げら
れた中間部材14を得る。以上により,曲げ加工工程を
終わる。次に,上記中間部材14は,圧下加工工程に移
され,孔型Dにおいてその全体が厚み方向に圧下され,
最終の所望厚みに加工される。その後,孔型Eにおいて
全体をコ字状に成形し,チャンネル材16が得られる。 また,同図より知られるごとく,曲げ加工工程は素材を
,ウェブ部とフランジ部の境界部において,略直角状に
曲げていく工程であるが,このとき両辺部の厚みも若干
薄くなる(例えば孔型C)。また,上記においては,曲
げ加工工程に用いる孔型として孔型A〜Cを,また圧下
加工工程に用いる孔型として孔型Dを,また成形工程に
用いる孔型として孔型Eを示したが,通常,曲げ加工工
程は5〜7個の孔型を,圧下加工工程は4〜6個の孔型
を,また成形工程は4〜5個の孔型を用いて加工するこ
とが好ましい。次に,具体例につき説明する。本例にお
いては,素材11は,厚み125mm,幅125mmの
ステンレス鋼材(SUS304)のビレットを用いた。 該素材は,1080℃に加熱して,孔型A内に供給した
。そして,順次曲げ加工工程を進め,略直角状の中間部
材14とした。このとき,中間部材14は約950℃で
あった。次に,上記中間部材14は,圧下加工工程に供
給した。そして,最終的に孔型Eによる成形工程により
,チャンネル材に成形した。このとき,チャンネル材は
約800℃であった。また,得られたチャンネル材は,
ウェブ部及びフランジ部の厚みが約100mm,ウェブ
部の外側面の長さが約50mmであって,厚みは6mm
であった。また,得られたチャンネル材には,前記従来
技術による場合のごとく(図5),肌あれは認められな
かった。
EXAMPLE A method for manufacturing a channel material according to an example of the present invention will be explained with reference to FIG. The channel material to be obtained in this example has approximately the same cross-sectional shape as the hole type E shown in the figure. In manufacturing the above channel material, as shown in Figure 1, the material 1
1 is sequentially molded using hole molds A to E. Hole shapes A to E shown here indicate typical hole shapes used during processing. Moreover, the hole shape E indicates the hole shape of the final step. Then, in hole type A, the upper and lower center areas of the material 11 are slightly recessed, and in hole type B, both lower ends are widened and bent into an inverted W shape. Further, in the hole type C, bending is further performed to obtain an intermediate member 14 in which the boundary between the web portion and the flange portion is bent at a substantially right angle. With the above steps, the bending process is completed. Next, the intermediate member 14 is transferred to a rolling process, in which the entire intermediate member 14 is rolled down in the thickness direction in the hole D.
Processed to the final desired thickness. Thereafter, the entire structure is formed into a U-shape in the hole mold E, and the channel material 16 is obtained. Also, as can be seen from the figure, the bending process is a process in which the material is bent approximately at right angles at the boundary between the web part and the flange part, but at this time, the thickness of both sides becomes slightly thinner (for example, Pore type C). In addition, in the above, hole types A to C are shown as holes used in the bending process, hole type D is shown as a hole used in the rolling process, and hole type E is shown as a hole used in the forming process. Generally, it is preferable to use 5 to 7 holes in the bending process, 4 to 6 holes in the rolling process, and 4 to 5 holes in the forming process. Next, a specific example will be explained. In this example, the material 11 is a stainless steel billet (SUS304) with a thickness of 125 mm and a width of 125 mm. The material was heated to 1080° C. and fed into the hole mold A. Then, the bending process was sequentially performed to obtain a substantially right-angled intermediate member 14. At this time, the temperature of the intermediate member 14 was approximately 950°C. Next, the intermediate member 14 was supplied to a rolling process. Finally, it was molded into a channel material by a molding process using hole mold E. At this time, the temperature of the channel material was approximately 800°C. In addition, the obtained channel material is
The thickness of the web part and flange part is approximately 100 mm, the length of the outer surface of the web part is approximately 50 mm, and the thickness is 6 mm.
Met. Further, in the obtained channel material, no roughness was observed as in the case of the prior art (FIG. 5).

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例におけるチャンネル材の製造方法に用い
る孔型の説明図。
FIG. 1 is an explanatory diagram of a hole mold used in a method for manufacturing a channel material in an example.

【図2】従来の製造方法における孔型の説明図。FIG. 2 is an explanatory diagram of a hole shape in a conventional manufacturing method.

【図3】従来の成形用のロールの正面図。FIG. 3 is a front view of a conventional forming roll.

【図4】従来法による肌あれを有する中間部材の斜視図
FIG. 4 is a perspective view of an intermediate member having rough skin according to a conventional method.

【図5】従来法による肌あれを有するチャンネル材の斜
視図。
FIG. 5 is a perspective view of a channel material with rough skin obtained by a conventional method.

【図6】従来法による折曲げ及び圧下成形の説明図。FIG. 6 is an explanatory diagram of bending and pressure forming by a conventional method.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ウェブ部とその両側に位置するフラン
ジ部とが直角状に当接してなるチャンネル材を製造する
方法において,素材を断面コ字状に曲げていきウェブ部
とフランジ部とが略直角である中間部材に成形する曲げ
加工工程と,該中間部材をその厚み方向に圧下していく
圧下加工工程と,チャンネル材の最終形状に曲げる成形
工程とよりなることを特徴とするチャンネル材の製造方
法。
Claim 1: A method for manufacturing a channel material in which a web portion and flange portions located on both sides of the web portion are in contact with each other at right angles, in which the material is bent into a U-shaped cross section so that the web portion and the flange portions are approximately in contact with each other. A channel material characterized by comprising a bending step of forming an intermediate member at right angles, a rolling step of rolling down the intermediate member in the thickness direction, and a forming step of bending it into the final shape of the channel material. Production method.
JP41631390A 1990-12-27 1990-12-27 Manufacture of channel material Pending JPH04228202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41631390A JPH04228202A (en) 1990-12-27 1990-12-27 Manufacture of channel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41631390A JPH04228202A (en) 1990-12-27 1990-12-27 Manufacture of channel material

Publications (1)

Publication Number Publication Date
JPH04228202A true JPH04228202A (en) 1992-08-18

Family

ID=18524543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41631390A Pending JPH04228202A (en) 1990-12-27 1990-12-27 Manufacture of channel material

Country Status (1)

Country Link
JP (1) JPH04228202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464460A (en) * 2013-08-29 2013-12-25 沈阳和世泰通用钛业有限公司 Method for manufacturing titanium alloy Z-shaped material
CN103464458A (en) * 2013-08-29 2013-12-25 沈阳和世泰通用钛业有限公司 Production method for L type titanium alloy section materials
CN104275348A (en) * 2014-10-09 2015-01-14 武汉钢铁(集团)公司 Cap-shaped steel molding system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464460A (en) * 2013-08-29 2013-12-25 沈阳和世泰通用钛业有限公司 Method for manufacturing titanium alloy Z-shaped material
CN103464458A (en) * 2013-08-29 2013-12-25 沈阳和世泰通用钛业有限公司 Production method for L type titanium alloy section materials
CN104275348A (en) * 2014-10-09 2015-01-14 武汉钢铁(集团)公司 Cap-shaped steel molding system
CN104275348B (en) * 2014-10-09 2016-09-21 武汉钢铁(集团)公司 A kind of hat steel formation system

Similar Documents

Publication Publication Date Title
KR100396059B1 (en) Method for processing a bending deformation portion of metallic material, and metallic material for plastic processing used in the same
JPH04228202A (en) Manufacture of channel material
JPH0455002A (en) Manufacture of angle
JPH06170405A (en) Method for cold rolling blank-bent angle bar
JPH10146627A (en) Embossed metallic sheet and embossing die
JPH06246303A (en) Locally heating system manufacturing method for angle material and channel material
JPH03146229A (en) Production of angle material
JPH06246302A (en) Manufacture of plate bent angle material channel material
JPH057923A (en) Production of semihollow extrusion die stock
KR100419934B1 (en) Manufacturing Process of Beam for Grating by Cold Rolling
JPH04238602A (en) Manufacture of channel material
JPS6340614A (en) Manufacture of hollow extruded shape having three dimensional shape changes
JP2000042640A (en) Manufacture of stainless steel angle and its manufacturing device
JPH0360802A (en) Manufacture of angle steel
JPS623829A (en) Manufacture of siding board
JPS62224430A (en) Manufacture of die for drawing steel plate
JP2515811B2 (en) Bending method of metal profile
JPS566750A (en) Production of irregular shape metal strip
JPH06246301A (en) Method for cold rolling plate bent channel material
JPH0332401A (en) Production of angel material
JP2003147900A (en) Lightweight shape steel having high rigidity and its manufacturing method
JPH04238601A (en) Manufacture of channel material
JPS569715A (en) Production of irregular shaped rim wire for spectacles
JPH0832334B2 (en) Manufacturing method of modified cross-section strip
JPS5838631A (en) Forging die