JPH0422747Y2 - - Google Patents

Info

Publication number
JPH0422747Y2
JPH0422747Y2 JP1987107277U JP10727787U JPH0422747Y2 JP H0422747 Y2 JPH0422747 Y2 JP H0422747Y2 JP 1987107277 U JP1987107277 U JP 1987107277U JP 10727787 U JP10727787 U JP 10727787U JP H0422747 Y2 JPH0422747 Y2 JP H0422747Y2
Authority
JP
Japan
Prior art keywords
ozone
sterilized
water
sterilization
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987107277U
Other languages
Japanese (ja)
Other versions
JPS6412533U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987107277U priority Critical patent/JPH0422747Y2/ja
Publication of JPS6412533U publication Critical patent/JPS6412533U/ja
Application granted granted Critical
Publication of JPH0422747Y2 publication Critical patent/JPH0422747Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、微生物の培養器材等の殺菌を行うオ
ゾン殺菌装置に関する。 (従来の技術) オゾンは、強力な殺菌力を有しているため、殺
菌、滅菌の目的で近年使用されており、上水の殺
菌等に広く利用されてきている。オゾンの殺菌力
は、次式のようにオゾンが分解したときに発生す
る発生期の酸素(O)が強力な酸化反応を起こす
ことにより生ずるものである。 O3→O2+(O) しかし、オゾンの空気中での自然分解による半
減期は、オゾン濃度1%以下で16時間かかるとい
われているように、気相中でオゾン殺菌を行う場
合には、非常に長い時間オゾンと接触させなくて
はならず、最もよく用いられているオートクレー
ブ等の蒸気による殺菌方法に比べて長い時間を必
要としている。 一方、水中におけるオゾンの半減期は、約20分
といわれ、さらにオゾンの分解で生じた発生期の
酸素が、次式の如く水と反応してヒドロキシラジ
カル(HO)を生成する。 (O)+H2O→2HO このヒドロキシラジカルが酸化反応の開始剤と
して働き、有機物、即ち微生物を強力に酸化させ
て殺菌が行われる。このように、水中でのオゾン
による殺菌力は、半減期が短いこととヒドロキシ
ラジカルの生成により、気相中に比べて高くなつ
ている。 〔考案が解決しようとする問題点〕 しかしながら、オゾンは、水に対して極めて難
溶性であるため、連続してオゾン水を得るために
は、多量のオゾンを水に溶解せしめないまま逃が
すこととなり極めて効率が悪い。また、オゾン水
として用いる場合、上向きの凹部がある容器等で
は、例えば下向きに傾斜したセンサー口等の凹部
内に空気等が溜り、オゾン水がこの内部を浸すこ
とができず、この部分の殺菌ができなかつた。 そこで、本考案は、オゾンによる殺菌、滅菌を
効果的かつ短時間で行うことのできるオゾン殺菌
装置を提供することを目的としている。 〔問題点を解決するための手段〕 上記の目的を達成するため、本考案は、被殺菌
部にオゾンを供給するオゾン発生器と、前記被殺
菌部を湿潤状態とするために被殺菌部に微細水滴
を供給する噴霧装置あるいは加湿装置とを備え、
前記オゾン発生器から被殺菌部に供給されるオゾ
ンを前記微細水滴に接触せしめることを特徴とし
ている。 〔作用〕 被殺菌部内を湿潤状態とすることにより、微細
となり表面積の大きくなつた水滴にオゾンが溶解
しやすくなつてオゾン水が生成し、水中における
オゾンの半減期が速いことと、ヒドロキシラジカ
ルの生成により強力な殺菌力が生じ、さらにオゾ
ン水が霧状であるから、被殺菌部内に満遍なくい
きわたり、被殺菌部内を確実に殺菌、滅菌するこ
とができる。 〔実施例〕 以下本考案の実施例を図面に基づいて説明す
る。 まず第1図及び第2図は、噴霧装置を用いた例
を示すものであつて、第1図はオゾン発生装置部
分を示し、第2図はオゾン殺菌装置の全体を示し
ている。 オゾン発生装置1は、オゾン発生器2と該オゾ
ン発生器2に放電を発生させるための高圧電源部
3及び噴霧装置4を主要部として構成されてい
る。 酸素ボンベ又はコンプレツサー等の供給源5か
ら供給された原料酸素(又は空気)は、フイルタ
ー6を通り、流量調節バルブ7で流量を調節さ
れ、流量計8と圧力計9で流量と圧力を確認され
てオゾン発生器2に導入される。 一方、オゾン発生器2に印加される電圧は、遮
断器10からスライダツク等の電圧調整器11に
入り、一次電圧を調整され、電圧計12で電圧を
確認されながら高圧電源部3に入り、高電圧とな
りオゾン発生器2に加えられる。 オゾン発生器2では、放電により原料酸素(又
は空気中の酸素)がオゾンに変化し、ニードルバ
ルブ13を通つて圧力を調整されて噴霧装置4に
送出される。放電に伴う発熱は、冷却水を流入口
14から流入させ流入口15から流出させて除去
している。また流出口15には、過熱感知器16
が設けられており、オゾン発生器2の過熱を感知
して電源の遮断器10が作動する。 噴霧装置4は、噴霧ノズル17と無菌水タンク
18とを備えており、前記オゾンの送出圧力によ
り無菌水タンク18内の無菌水が噴霧され、オゾ
ンとともに被殺菌部に導入される。この時の水滴
の直径は、できるだけ小さい方が比表面積を大き
くするために望ましいが、10〜60μの範囲が噴霧
ノズル17の構造や比表面積の上で好ましい。 このように生成されたオゾンと微細水滴は、被
殺菌部内に導入される。第2図では、被殺菌部と
してバイオリアクタ19の内部を殺菌する例を示
しており、湿潤状態となつているオゾンと微細水
滴の混合物は、微細水滴内にオゾンが溶解して、
霧状のオゾン水となりつつバイオリアクタ19の
内部に導入される。バイオリアクタ19の下部導
入口20から導入された霧状のオゾン水は、バイ
オリアクタ19の内部に充満し、内部を殺菌しな
がら上昇して上部排出口21から導出され、オゾ
ン吸着塔22でオゾン成分が吸着除去されて排出
される。この時、霧状のオゾン水は、センサ装着
部23のような凹部にも満遍なくいきわたり、バ
イオリアクタ19の内部全体を確実に殺菌、滅菌
する。 第3図は、オゾン発生器30と超音波加湿器3
1とを組合せた例を示すもので、オゾン発生器3
0及びその周辺機器の構成は、前記第1図に示す
ものと略同様の構成である。 オゾン発生器30で発生したオゾンは、導出口
32から被殺菌部である培養槽33に導入され
る。 また別に設けられた超音波加湿器31からは、
無菌水が微細水滴となつて放出され、加湿空気と
なつて培養槽33に導入される。 培養槽33内で前記オゾンと微細水滴が混合さ
れ、概略90〜100%の相対湿度の湿潤状態を保持
し、オゾンが微細水滴内に溶解してオゾン水とな
り、培養槽中に吊下げられた各種の菌を塗布した
ストリツプ34の殺菌が行われる。培養槽33を
出たオゾンあるいはオゾン水は、オゾン吸着筒2
2でオゾンを吸着除去されて排出される。また水
流式アスピレーター35で吸引することにより、
培養槽33内の湿潤状態のオゾンの移動を補助し
ている。 実験例 1 第2図に示すリアクター中に耐熱性菌と枯草菌
を各々塗布したストリツプを入れ、相対湿度を概
略100〜90%に保持しながら濃度18〜19gr/Nm3
のオゾンを毎分1.5導入し、殺菌時間を変えて
テストを行つた。 殺菌時間は、15分、30分、60分とし、各時間経
過後にストリツプを無菌的に取り出し、トリプト
ソイブイヨン培地の入つた試験管に入れ、耐熱性
菌は55℃、枯草菌は37℃で培養した。その結果を
第1表に示す。 比較例 1 密閉できる容器(容量10)に耐熱性菌と枯草
菌を各々塗布したストリツプを入れ、オゾン濃度
18〜19gr/Nm3のオゾンを毎分8で30分間流し
込み、次いでこれを密閉して12時間放置した。 また他方、同様にして菌のストリツプを入れて
オゾンを流し、密閉した容器(紫外線を透過する
材質のもの)に紫外線ランプにより紫外線を2時
間照射し、オゾンの分解を促進せしめ、12時間放
置した。これらのストリツプを無菌的に取り出
し、トリプトソイブイヨン培地により耐熱性菌は
55℃、枯草菌は37℃で培養し、菌の生死を検査し
た。これらの結果を第2表に示す。 第1表に示すごとく、本装置で殺菌を行つた場
合は、枯草菌は30分、耐熱性菌は60分で死滅して
いる。ところが第2表に示すようにオゾンのみ及
びオゾンに紫外線を照射して殺菌を行つた場合
は、長時間の殺菌を行つたにもかかわらず菌が死
滅していない。 このように加湿状態でのオゾンは、殺菌に極め
て効果的であることが明らかである。 実験例 2 第3図に示す培養槽に濃度8000〜10000ppmの
オゾンを1.5/minで送つた場合の、各菌種に
対する殺菌の結果を第3表に示す。第3表で明ら
かなように、耐熱性菌は60分、枯草菌は30分、大
腸菌は5分、酵母は5分、糸状菌は15分以内でそ
れぞれ殺菌がなされている。 尚、上記各例で用いた菌名を、下記に示す。 耐熱性菌:Bacillus stearothermophilus 枯草菌 :Bacillus subtilis 大腸菌 :Escherichia coli 酵 母:Saccharomyces Setevisiae 糸状菌 :Aspergillus niger
(Field of Industrial Application) The present invention relates to an ozone sterilizer for sterilizing microorganism culture equipment, etc. (Prior Art) Ozone has a strong sterilizing power and has been used in recent years for the purpose of sterilization and sterilization, and has been widely used for sterilizing tap water and the like. The sterilizing power of ozone is caused by the strong oxidation reaction of nascent oxygen (O) generated when ozone decomposes, as shown in the following equation. O 3 → O 2 + (O) However, the half-life of ozone due to natural decomposition in the air is said to be 16 hours at an ozone concentration of 1% or less. requires contact with ozone for a very long time, which is longer than the most commonly used steam sterilization methods such as autoclaves. On the other hand, the half-life of ozone in water is said to be about 20 minutes, and the nascent oxygen generated by the decomposition of ozone reacts with water to generate hydroxyl radicals (HO) as shown in the following equation. (O)+H 2 O → 2HO This hydroxyl radical acts as an oxidation reaction initiator, strongly oxidizing organic substances, that is, microorganisms, and sterilizing them. Thus, the bactericidal power of ozone in water is higher than in the gas phase due to its short half-life and the generation of hydroxyl radicals. [Problem that the invention aims to solve] However, since ozone is extremely poorly soluble in water, in order to continuously obtain ozonated water, a large amount of ozone must be released without being dissolved in water. Extremely inefficient. In addition, when using ozonated water, if the container has an upward concave part, air etc. will accumulate in the concave part, such as a downwardly sloping sensor opening, and the ozonated water will not be able to soak inside this part and sterilize this part. I couldn't do it. Therefore, an object of the present invention is to provide an ozone sterilization device that can effectively perform sterilization and sterilization using ozone in a short time. [Means for Solving the Problems] In order to achieve the above object, the present invention provides an ozone generator that supplies ozone to the part to be sterilized, and an ozone generator to the part to be sterilized to keep the part to be sterilized in a moist state. Equipped with a spray device or humidifier that supplies fine water droplets,
The method is characterized in that ozone supplied from the ozone generator to the part to be sterilized is brought into contact with the fine water droplets. [Effect] By keeping the area to be sterilized in a moist state, ozone becomes more easily dissolved in water droplets that have become finer and have a larger surface area, producing ozonated water. The generation produces a strong sterilizing power, and since ozonated water is in the form of a mist, it is evenly distributed within the area to be sterilized, and the interior of the area to be sterilized can be reliably sterilized and sterilized. [Example] Hereinafter, an example of the present invention will be described based on the drawings. First, FIGS. 1 and 2 show an example using a spraying device, with FIG. 1 showing the ozone generator portion and FIG. 2 showing the entire ozone sterilization device. The ozone generator 1 includes an ozone generator 2, a high-voltage power supply section 3 for causing the ozone generator 2 to generate electric discharge, and a spray device 4 as main parts. Raw material oxygen (or air) supplied from a supply source 5 such as an oxygen cylinder or a compressor passes through a filter 6, the flow rate is adjusted by a flow rate adjustment valve 7, and the flow rate and pressure are checked by a flow meter 8 and a pressure gauge 9. and introduced into the ozone generator 2. On the other hand, the voltage applied to the ozone generator 2 enters the voltage regulator 11 such as a slider from the circuit breaker 10, adjusts the primary voltage, and enters the high voltage power supply section 3 while checking the voltage with the voltmeter 12. This becomes a voltage and is applied to the ozone generator 2. In the ozone generator 2, raw material oxygen (or oxygen in the air) is changed into ozone by electric discharge, and the ozone is sent to the spray device 4 through the needle valve 13 with its pressure adjusted. Heat generated due to discharge is removed by letting cooling water flow in through the inlet 14 and out through the inlet 15. In addition, an overheat sensor 16 is installed at the outlet 15.
is provided, and detects overheating of the ozone generator 2 and activates the power supply circuit breaker 10. The spray device 4 includes a spray nozzle 17 and a sterile water tank 18, and the sterile water in the sterile water tank 18 is sprayed by the ozone delivery pressure and introduced into the part to be sterilized together with the ozone. The diameter of the water droplets at this time is preferably as small as possible in order to increase the specific surface area, but a range of 10 to 60 microns is preferable in view of the structure of the spray nozzle 17 and the specific surface area. The ozone and fine water droplets thus generated are introduced into the area to be sterilized. FIG. 2 shows an example in which the inside of the bioreactor 19 is sterilized as the part to be sterilized, and the mixture of ozone and fine water droplets in a wet state is such that ozone dissolves in the fine water droplets.
The ozonated water is introduced into the bioreactor 19 while becoming a mist of ozonated water. The mist of ozonated water introduced from the lower inlet 20 of the bioreactor 19 fills the inside of the bioreactor 19, rises while sterilizing the inside, is led out from the upper outlet 21, and is removed from the ozone adsorption tower 22. Components are adsorbed and removed and discharged. At this time, the mist of ozone water evenly spreads to the recesses such as the sensor mounting part 23, and reliably sterilizes and sterilizes the entire interior of the bioreactor 19. Figure 3 shows an ozone generator 30 and an ultrasonic humidifier 3.
This shows an example of combining ozone generator 3 with
0 and its peripheral equipment are approximately the same as those shown in FIG. 1 above. Ozone generated by the ozone generator 30 is introduced from the outlet 32 into the culture tank 33 which is the part to be sterilized. In addition, from the separately provided ultrasonic humidifier 31,
Sterile water is released as fine water droplets and introduced into the culture tank 33 as humidified air. The ozone and fine water droplets were mixed in the culture tank 33, maintained in a moist state with a relative humidity of approximately 90 to 100%, and the ozone was dissolved in the fine water droplets to become ozonated water, which was suspended in the culture tank. The strip 34 coated with various bacteria is sterilized. The ozone or ozone water leaving the culture tank 33 is transferred to the ozone adsorption column 2.
2, ozone is adsorbed and removed and discharged. In addition, by suctioning with the water flow aspirator 35,
This assists the movement of moist ozone within the culture tank 33. Experimental Example 1 A strip coated with heat-resistant bacteria and Bacillus subtilis was placed in the reactor shown in Figure 2, and the concentration was increased to 18-19 gr/Nm 3 while maintaining the relative humidity at approximately 100-90%.
The test was conducted by introducing 1.5 ozone per minute and varying the sterilization time. The sterilization time was 15 minutes, 30 minutes, and 60 minutes, and after each time the strips were aseptically removed and placed in a test tube containing trypto soy broth medium. Cultured. The results are shown in Table 1. Comparative Example 1 A strip coated with heat-resistant bacteria and Bacillus subtilis was placed in a sealable container (capacity 10), and the ozone concentration was
18-19 gr/Nm 3 of ozone was flowed in at 8/min for 30 minutes, then it was sealed and left for 12 hours. On the other hand, a strip of bacteria was placed in the same way, ozone was poured in, and a sealed container (made of material that transmits ultraviolet rays) was irradiated with ultraviolet rays for 2 hours using an ultraviolet lamp to accelerate the decomposition of the ozone, and then left for 12 hours. . These strips were removed aseptically and heat-resistant bacteria were grown in trypto soy broth.
Bacillus subtilis was cultured at 55°C and 37°C, and the viability of the bacteria was examined. These results are shown in Table 2. As shown in Table 1, when sterilizing with this device, Bacillus subtilis is killed in 30 minutes and heat-resistant bacteria are killed in 60 minutes. However, as shown in Table 2, when sterilization was carried out by irradiating ozone with ultraviolet rays or by irradiating ozone with ultraviolet rays, the bacteria were not killed even though sterilization was carried out for a long time. It is clear that ozone in a humidified state is extremely effective for sterilization. Experimental Example 2 Table 3 shows the sterilization results for each bacterial species when ozone with a concentration of 8,000 to 10,000 ppm was sent to the culture tank shown in FIG. 3 at a rate of 1.5/min. As shown in Table 3, heat-resistant bacteria are sterilized within 60 minutes, Bacillus subtilis within 30 minutes, Escherichia coli within 5 minutes, yeast within 5 minutes, and filamentous bacteria within 15 minutes. The names of bacteria used in each of the above examples are shown below. Heat-resistant bacteria: Bacillus stearothermophilus Bacillus subtilis: Bacillus subtilis Escherichia coli Yeast: Saccharomyces Setevisiae Filamentous fungi: Aspergillus niger

【表】【table】

【表】【table】

【表】 このようにオゾン発生器と噴霧装置あるいは加
湿装置を備えることによつて、オゾンを湿潤状態
とすることができ、水に難溶性のオゾンであつて
も、水が微細水滴となつているため、接触面積が
増加して水に溶解する割合が多くなり、発生期の
酸素(O)の酸化力とヒドロキシラジカル
(HO)の酸化反応の開始剤としての作用が加わ
り、強力に有機物を分解し、微生物を殺菌するこ
とができる。 また、これによりオゾンの水中での殺菌力の強
さ、即ち殺菌時間の短縮と、気相状態での扱い易
さ、即ち上向き凹部等への回り込みの良さの両方
を利用でき、複雑な形状の被処理物等でも短時間
で確実に殺菌を行うことが可能となる。 またオゾン殺菌装置の構造も、噴霧ノズル又は
超音波加湿器等の安価な装置の付加でよく、その
殺菌効果も良好であるため、コンパクトに装置を
まとめることができ、微生物培養器材の殺菌に用
いるのに効果的である。 尚、本装置に使用される酸素は、酸素ボンベ中
の酸素であつても、空気中の酸素であつてもよ
い。またオゾンを発生させるための放電は、オゾ
ンが発生する放電ならばどの形式でもよく、例え
ばアーク放電、コロナ放電、沿面放電、グロー放
電等が利用できる。さらに吸着筒は、オゾンを分
解する物質を充填したオゾン分解筒とすることも
できる。 〔考案の効果〕 以上説明したように、本考案のオゾン殺菌装置
は、オゾン発生器と噴霧装置あるいは加湿装置を
備え、前記オゾン発生器から被殺菌部に供給され
るオゾンを前記微細水滴に接触させることによつ
て、オゾンが供給される被殺菌部内を湿潤状態と
するから、水が微細水滴となり表面積の大きくな
るため、オゾンが溶解しやすくなつてオゾン水が
生成し、水中におけるオゾンの半減期が速いこと
と、ヒドロキシラジカルの生成により強力な殺菌
力が生じ、さらにオゾン水が霧状であるから、被
殺菌部内に満遍なくいきわたり、被殺菌部内を確
実に殺菌することができる。
[Table] By equipping an ozone generator and a spraying device or a humidifying device, ozone can be kept in a moist state, and even if ozone is poorly soluble in water, the water will turn into fine water droplets. As a result, the contact area increases and the ratio of dissolution in water increases, and the oxidizing power of oxygen (O) in the nascent stage and the action as an initiator of the oxidation reaction of hydroxyl radicals (HO) are added, which strongly removes organic substances. It can decompose and sterilize microorganisms. In addition, this makes it possible to take advantage of both ozone's strong sterilizing power in water, which shortens sterilization time, and its ease of handling in the gas phase, which allows it to easily wrap around upward concave areas, etc. Even objects to be treated can be sterilized reliably in a short time. In addition, the structure of the ozone sterilizer requires the addition of inexpensive equipment such as a spray nozzle or an ultrasonic humidifier, and its sterilization effect is good, so the device can be compactly assembled and used for sterilizing microbial culture equipment. It is effective. Note that the oxygen used in this device may be oxygen in an oxygen cylinder or oxygen in the air. Further, the discharge for generating ozone may be of any type as long as it generates ozone, such as arc discharge, corona discharge, creeping discharge, glow discharge, etc. Furthermore, the adsorption cylinder can also be an ozone decomposition cylinder filled with a substance that decomposes ozone. [Effects of the Invention] As explained above, the ozone sterilization device of the present invention includes an ozone generator and a spraying device or a humidifying device, and brings ozone supplied from the ozone generator to the part to be sterilized into contact with the fine water droplets. By doing so, the area to be sterilized to which ozone is supplied is kept in a moist state, so the water becomes fine water droplets and the surface area increases, making it easier for ozone to dissolve and producing ozonated water, which reduces the ozone in the water by half. A strong sterilizing effect is produced by the rapid sterilization time and the generation of hydroxyl radicals, and since the ozonated water is in the form of a mist, it is evenly distributed within the area to be sterilized, making it possible to reliably sterilize the inside of the area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は噴霧ノズルを使用したオゾン発生装置
の概略図、第2図は本装置をバイオリアクターに
適用した状態を示す系統図、第3図は超音波加湿
器との組合せによる培養槽殺菌の状態を示す概略
図である。 1……オゾン発生装置、2,30……オゾン発
生器、3……高圧電源部、4……噴霧装置、17
……噴霧ノズル、19……バイオリアクタ、31
……超音波加湿器、33……培養槽。
Fig. 1 is a schematic diagram of an ozone generator using a spray nozzle, Fig. 2 is a system diagram showing the application of this device to a bioreactor, and Fig. 3 is a diagram of a culture tank sterilization method in combination with an ultrasonic humidifier. It is a schematic diagram showing a state. 1... Ozone generator, 2, 30... Ozone generator, 3... High voltage power supply section, 4... Spraying device, 17
... Spray nozzle, 19 ... Bioreactor, 31
...Ultrasonic humidifier, 33...Culture tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被殺菌部にオゾンを供給するオゾン発生器と、
前記被殺菌部を湿潤状態とするために被殺菌部に
微細水滴を供給する噴霧装置あるいは加湿装置と
を備え、前記オゾン発生器から被殺菌部に供給さ
れるオゾンを前記微細水滴に接触せしめることを
特徴とするオゾン殺菌装置。
an ozone generator that supplies ozone to the area to be sterilized;
A spraying device or a humidifying device is provided for supplying fine water droplets to the sterilized portion in order to moisten the sterilized portion, and the ozone supplied from the ozone generator to the sterilized portion is brought into contact with the fine water droplets. An ozone sterilizer featuring:
JP1987107277U 1987-07-13 1987-07-13 Expired JPH0422747Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987107277U JPH0422747Y2 (en) 1987-07-13 1987-07-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987107277U JPH0422747Y2 (en) 1987-07-13 1987-07-13

Publications (2)

Publication Number Publication Date
JPS6412533U JPS6412533U (en) 1989-01-23
JPH0422747Y2 true JPH0422747Y2 (en) 1992-05-26

Family

ID=31341542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987107277U Expired JPH0422747Y2 (en) 1987-07-13 1987-07-13

Country Status (1)

Country Link
JP (1) JPH0422747Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295784A (en) * 1997-05-02 1998-11-10 Masamichi Kikuchi Sterilizing device and sterilizing method
JP2015202225A (en) * 2014-04-15 2015-11-16 ハイアールアジア株式会社 Ozonation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009661B2 (en) * 2007-03-27 2012-08-22 川崎重工業株式会社 Automatic cell culture device with drug spray gun

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119274A (en) * 1984-07-05 1986-01-28 Nec Corp Call tone transmission system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179592U (en) * 1983-05-19 1984-11-30 日本産業機械株式会社 Sterilization cleaning equipment
JPS60126578U (en) * 1984-02-06 1985-08-26 茂呂 勝治 Local cleaning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119274A (en) * 1984-07-05 1986-01-28 Nec Corp Call tone transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295784A (en) * 1997-05-02 1998-11-10 Masamichi Kikuchi Sterilizing device and sterilizing method
JP2015202225A (en) * 2014-04-15 2015-11-16 ハイアールアジア株式会社 Ozonation device

Also Published As

Publication number Publication date
JPS6412533U (en) 1989-01-23

Similar Documents

Publication Publication Date Title
JP5305274B2 (en) Method and apparatus for supplying ions to liquid and sterilization method and apparatus
JP4408957B2 (en) Sterilization method and apparatus
JP2002538896A (en) Sterilization process and device by plasma
EP1080734B1 (en) Sterilization
JP6704448B2 (en) Sterilizer
KR20040070354A (en) Method and apparatus for ozone steriliza tion
JP2003527211A (en) Control method of gas sterilization
CA2270512C (en) Method and apparatus for ozone sterilization
JPH0960931A (en) Ultrasonic wave humidifying and sterilizing device
CN106178028A (en) A kind of method utilizing plasma-activated aqueous solution to carry out equipment disinfection sterilization
AU2004276380A1 (en) Apparatus and method for humidifying a sterilization chamber
JPH0422747Y2 (en)
CN101254151B (en) Multifunctional composite medical therapeutic equipment
CN215961296U (en) Disinfection and sterilization device
JPH04189728A (en) Dry sterilization and sterile air supply method
JP6857005B2 (en) Sterilization method
WO2023127825A1 (en) Sterilization method and sterilization device
KR960000650B1 (en) Air cleaner using hydroxyl-ion gas
CN85105856A (en) Disinfector
JP2005337589A (en) Moisture retaining, sterilizing and atomizing device
JP6820713B2 (en) Sterilizer
CN214159137U (en) Ultrasonic atomization ozone water deodorization system
CN213373971U (en) Novel remains disinfection cabin
JPS63270057A (en) Sterilizing apparatus using corona discharge
WO2017065233A1 (en) Sterilization method