JPH04226088A - Josephson element and its manufacture - Google Patents

Josephson element and its manufacture

Info

Publication number
JPH04226088A
JPH04226088A JP3125632A JP12563291A JPH04226088A JP H04226088 A JPH04226088 A JP H04226088A JP 3125632 A JP3125632 A JP 3125632A JP 12563291 A JP12563291 A JP 12563291A JP H04226088 A JPH04226088 A JP H04226088A
Authority
JP
Japan
Prior art keywords
josephson
manufacturing
josephson element
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3125632A
Other languages
Japanese (ja)
Inventor
Seok-Yeol Yoon
尹 錫烈
Ju-Young Jeong
鄭 周栄
利憲 宋
Sang-Cheol Park
朴 商▲ちぇおる▼
Yunkyo Go
呉 ▲ユン▼京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansei Denki KK
Samsung Electro Mechanics Co Ltd
Original Assignee
Sansei Denki KK
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansei Denki KK, Samsung Electro Mechanics Co Ltd filed Critical Sansei Denki KK
Publication of JPH04226088A publication Critical patent/JPH04226088A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • H10N60/124Josephson-effect devices comprising high-Tc ceramic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To provide a Josephson element showing excellent reproducibility and superior characteristics and extremely wide in an application scope and useful, and provide a manufacturing method capable of manufacturing readily the Josephson element. CONSTITUTION: In a Josephson element being a Bi system high temperature super-conductor, the Josephson element is characterized that a second phase excluding a high temperature super-conductive phase of Bi2 Sr2 Ca2 Cu3 and a low temperature super-conductive phase of Bi2 Sr2 Ca1 Cu3 serves as an insulation layer, and in a method for manufacturing the Josephson element being a Bi system high temperature super-conductor, the manufacturing method is characterized that a Bi system high temperature super-conductor composition is calcined, pulverized, molded and sintered by a normal method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はジョセフソン素子および
その製造方法に係り、より詳細にはBi系高温超伝導体
を通常の方法で線材化して冷却圧延方法を使用したジョ
セフソン層およびこれを製造するジョセフソン素子およ
びその製造方法に関する。
[Field of Industrial Application] The present invention relates to a Josephson device and a method for manufacturing the same, and more particularly to a Josephson layer formed by forming a Bi-based high-temperature superconductor into a wire by a conventional method and using a cooling rolling method. The present invention relates to a Josephson device to be manufactured and a method for manufacturing the same.

【0002】0002

【従来の技術】ジョセフソン効果と2個の超伝導対間に
絶縁物を挿入する構造(superconductor
−insulator−superconductor
,SIS)においてみられるように、電流が0より一定
の電流値に至るまで電流の発生がなく、一定の条件下で
はその間に絶縁体が存在するにもかかわらず、一方の超
伝導物質より他方の超伝導物質に電流が流れる現象を言
い、ジョセフソン素子は特にスイッチ回路に利用して超
高速コンピュータ素子を製造することができるので、か
なり注目されている。
[Prior Art] Josephson effect and a structure in which an insulator is inserted between two superconducting pairs (superconductor
-insulator-superconductor
, SIS), no current is generated until the current reaches a certain current value from 0, and under certain conditions, one superconducting material is more sensitive to the other than the other, despite the presence of an insulator between them. Josephson devices are attracting considerable attention because they can be used in switch circuits to manufacture ultra-high-speed computer devices.

【0003】高温超伝導体と低温超伝導体の物性の相違
により、低温超伝導体の技術を高温超伝導技術に適用す
ることはできない。高温超伝導体は多孔性であり接着長
さが非常に短いので、厚さが数ナノメートルの絶縁層の
良好な製造は極めて困難である。
Due to the difference in physical properties between high temperature superconductors and low temperature superconductors, low temperature superconductor technology cannot be applied to high temperature superconductor technology. The porous nature of high temperature superconductors and the very short bond lengths make successful production of insulating layers several nanometers thick extremely difficult.

【0004】従って、前記SIS構造の代わりにマイク
ロブリッジ、サーフェイスコンタクトおよび点接触(m
icro−bridge,surface  cont
actおよびpoint  contact)のごとき
構造を利用して高温超伝導体からジョセフソン効果を得
ようとしたが、これに関する成功が報告された例は殆ど
みられない。
Therefore, instead of the SIS structure, microbridges, surface contacts and point contacts (m
icro-bridge, surface cont.
Attempts have been made to obtain the Josephson effect from high-temperature superconductors using structures such as act and point contacts, but there have been few reports of success in this regard.

【0005】従前の技術に関し、より詳述すれば次の通
りである。
[0005] The conventional technology will be described in more detail as follows.

【0006】ジョセフソン素子の製作技術は低温超伝導
体を基本として開発され、その代表的方法はアイ・ビ・
エム,ジー・レス、ディベロップメント24(2)(1
980年3月)〔IBM  J.Res.Develo
p.,24(2)(March1980)〕の第195
−204頁においてジェー、エッチ、グレイナー(J.
H.Greiner)等が発表した「ジョセフソンIC
の製造方法」および同第188−194頁においてアイ
・エイムズ(I.Ames)が発表した「ジョセフソン
ICの製造に関する素材およびプロセスの再考」に記述
されている通りである。これを図4を参照して説明する
と、図4はジョセフソン接合素子の断面を示し、ここで
重要なことはM2,In2O3,M3層である。M2の
Pb−In−AuとM3のPb−Bi(M3)層は超伝
導体であり、M2上に成長させたPbO+In2O3酸
化物層(M4)は絶縁層であり、これらの接合がジョセ
フソン接合を形成する。M2層はAu,Pab,Inの
順にそれぞれ4.5nm,160nm,35nmの厚さ
で蒸着して形成する。これらは常温で相互拡散を起して
合金となる。絶縁層として作動するIn2O3は2.7
Pa,O2雰囲気の下で24℃および70℃の温度でそ
れぞれ30分ずつ熱処理を行うか、アール・エフ酸化(
rf  oxidation)させて形成する。M3層
は絶縁層の形成後、5×10−5Paの真空度でPb−
Bi(29重量%)の合金を原料として直接蒸着させる
[0006] Josephson device manufacturing technology was developed based on low-temperature superconductors, and a typical method is the I.B.
M, G Res, Development 24(2)(1
March 980) [IBM J. Res. Develo
p. , 24(2) (March 1980)] No. 195
- On page 204, J. H., Greiner (J.
H. Greiner) announced “Josephson IC”
188-194, published by I. Ames on pages 188-194 of the same. This will be explained with reference to FIG. 4. FIG. 4 shows a cross section of a Josephson junction element, and what is important here are the M2, In2O3, and M3 layers. The Pb-In-Au of M2 and the Pb-Bi (M3) layer of M3 are superconductors, and the PbO+In2O3 oxide layer (M4) grown on M2 is an insulating layer, and their junction is a Josephson junction. form. The M2 layer is formed by depositing Au, Pab, and In in this order to a thickness of 4.5 nm, 160 nm, and 35 nm, respectively. These materials undergo interdiffusion at room temperature to form an alloy. In2O3, which acts as an insulating layer, is 2.7
Heat treatment is performed at 24°C and 70°C for 30 minutes each under Pa, O2 atmosphere, or RF oxidation (
rf oxidation). After forming the insulating layer, the M3 layer is made of Pb-
An alloy of Bi (29% by weight) is directly deposited as a raw material.

【0007】このような方法を高温超伝導体に利用する
ことは、高温超伝導体が酸化物であり、その表面が非常
に多孔性であり、不純物が多いので、数十オングストロ
ームの薄い絶縁層の均一な形成が不可能であるので困難
である。
[0007] Application of such a method to high-temperature superconductors is difficult because high-temperature superconductors are oxides and their surfaces are extremely porous and contain many impurities. It is difficult because it is impossible to uniformly form the film.

【0008】その他高温超伝導体を利用したジョセフソ
ン接合素子の製造は現在実験段階にあり、図5(a)〜
(f)のような方法により弱い結合を作っている。更に
、分けて説明すると次の通りである。
The production of Josephson junction devices using other high-temperature superconductors is currently in the experimental stage, and is shown in Figures 5(a) to 5(a).
A weak bond is created by the method shown in (f). Further, the explanations are as follows.

【0009】図5(a)は点接触方法であり、Nb紹任
導体を鋭く形成し(直径0.1mm)、スプリングを利
用して高温超伝導体に機械的に押圧する方法であり、ジ
ョン、モレランド(John  Moreland)等
がAppl.phys.Lett.51(7)(198
7年)の第540−541頁に発表した「YBaCuO
接合体中の77度K以上におけるジョセフソン効果」に
おいてに記述されている。
FIG. 5(a) shows a point contact method in which a Nb introducing conductor is formed sharply (0.1 mm in diameter) and is mechanically pressed onto a high temperature superconductor using a spring. , John Moreland et al. in Appl. phys. Lett. 51(7)(198
7), pp. 540-541, “YBaCuO
Josephson effect above 77 degrees K in zygotes.

【0010】図5(b)はエッジコンタクト(Edge
−contact)であり、高温超伝導体を2つ割に切
断後、特殊な方法で切断面を押圧する方法であり、ジェ
ー、エス、トサイ(J.S.Tsai)等がJap.J
.Appl.Phys.、26(5)(1987年)の
第L701−703頁に発表した「90度K以上におい
て動作する全セラミックジョセフソン接合体」において
記述されている。
FIG. 5(b) shows an edge contact (Edge contact).
-contact) is a method in which a high-temperature superconductor is cut into two halves and then the cut surfaces are pressed using a special method, and J.S. Tsai et al. J
.. Appl. Phys. , 26(5) (1987), pp. L701-703, ``All-Ceramic Josephson Junction Operates Above 90 degrees K''.

【0011】図5(c)はサーフェイスコンタクトであ
り、2個の高温超伝導体をねじを利用して付着させる方
法であり、ワイ、ツアング(Y.Zhang)等がJa
p.J.Appl.Phys.、56(16)(16 
 April  1990年)の第1579−1581
頁の「101度K以上で動作するBiPbSrCaCu
Orf  SQUID  バルク」において記述されて
いる。
FIG. 5(c) shows a surface contact, which is a method of attaching two high-temperature superconductors using screws, as described by Y. Zhang et al.
p. J. Appl. Phys. , 56(16)(16
April 1990) No. 1579-1581
"BiPbSrCaCu operating above 101 degrees K" on page
Orf SQUID Bulk”.

【0012】図5(d)はインジウムコンタクト(In
dium−contact)であり、インジウムを高温
超伝導体に圧着させる方法であり、インジウムを軟かく
して酸化物超伝導体の内部に容易に浸透させるもので、
ジー、ブリセノ(G.Briceno)等がSolid
  State  Comm.,70(11)(198
9年)の第1055−1058頁の「Bi2Sr2Ca
Cu2O8中のトンネル分光学(エネルギギャップは異
方性を有するか)」において記述されている。
FIG. 5(d) shows an indium contact (In
dium-contact) is a method of pressing indium onto a high-temperature superconductor, which softens the indium and allows it to easily penetrate inside the oxide superconductor.
G. Briceno et al.
State Comm. , 70 (11) (198
9), pages 1055-1058, “Bi2Sr2Ca
"Tunnel spectroscopy in Cu2O8 (does the energy gap have anisotropy?)".

【0013】図5(e)はクラックコンタクト(Cra
ck−contact)であり、バルク(bulk)の
高温超伝導体を2つ割に切断後、接触面積を小さくして
機械的に付着させる方法であり、エイ、ゼット、リン(
A.Z.Lin)等がJap.J.Appl.Phys
.、27(7)(July  1988年)の第L12
04−1205頁の「77度KにおけるY−Ba−Cu
−O厚膜フィルムのジョセフソン接合体および直流SQ
UID」において記述されている。
FIG. 5(e) shows a crack contact (Cra
ck-contact) is a method in which a bulk high-temperature superconductor is cut in half and then mechanically attached by reducing the contact area.
A. Z. Lin) et al. Jap. J. Appl. Phys.
.. , 27(7) (July 1988) No. L12
"Y-Ba-Cu at 77 degrees K" on page 04-1205
-O Josephson junction of thick film and DC SQ
UID”.

【0014】図5(f)はブリッジコンタクトであり、
パターンニング法でブリッジをつくり、弱い結合を形成
させる方法で、現在最も広範に試されているものである
が、これはティー、エンドー(T.Endo)等がEl
ectrotech.Lab.<51(9)(5  A
ugust  1987年)の第671−679頁の「
YBaCuOセラミック超伝導体の弱いリンクにおける
交流ジョセフソン効果の観察」において記述されている
FIG. 5(f) shows a bridge contact,
This method uses patterning to create bridges and form weak bonds, and is currently the most widely tested method.
electrotech. Lab. <51 (9) (5 A
August 1987), pp. 671-679, “
"Observations of AC Josephson Effects in Weak Links of YBaCuO Ceramic Superconductors".

【0015】[0015]

【発明が解決しようとする課題】しかし、前記方法等は
前述の通り未だに試験段階であり、またこれらの大部分
の方法によっては4.2度Kで特性率が得られ、再現性
の確保が困難であるので均一な特性を有する接合率を得
ることが困難な実情である。
[Problem to be solved by the invention] However, as mentioned above, the above methods are still in the testing stage, and most of these methods can obtain characteristic rates at 4.2 degrees K, making it difficult to ensure reproducibility. The actual situation is that it is difficult to obtain a bonding rate with uniform characteristics.

【0016】本発明は前述の問題点を解決できるジョセ
フソン素子の提供を目的とするものであり、他の目的は
前記ジョセフソン素子の製造方法を提供することにある
An object of the present invention is to provide a Josephson device that can solve the above-mentioned problems, and another object of the present invention is to provide a method for manufacturing the Josephson device.

【0017】[0017]

【課題を解決するための手段】本発明ではセラミック高
温超伝導体が、一般に多数の粒界面(grain  b
oundary)を有する多結晶である点を利用して、
物理的な圧力を加えると、粒子と粒子との間の粒界面が
粒子よりも大きくなるに伴って、前記粒界面がジョセフ
ソン接合作用をする事実に着眼してなされたものである
SUMMARY OF THE INVENTION In the present invention, ceramic high temperature superconductors generally have a large number of grain interfaces (grain b
Taking advantage of the fact that it is a polycrystal with a
This was done based on the fact that when physical pressure is applied, the grain interface between particles becomes larger than the grain, and the grain interface acts as a Josephson junction.

【0018】また、本発明によるジョセフソン素子はセ
ラミックを利用するものであるから、圧力を受けるとこ
われ易いので、前記圧力を加える前に通常の線材化方法
、例えばAg管を利用して延伸し、こわれを防止して軟
性を与えるようにしている。更に説明すると、請求項1
に記載の本発明のジョセフソン素子は、Bi系高温超伝
導体となるジョセフソン素子において、Bi2Sr2C
a2Cu3の高温超伝導相とBi2Sr2Ca1Cu3
の低温超伝導相を除外した第2相が絶縁層の役割をする
ことを特徴とする。
Furthermore, since the Josephson element according to the present invention uses ceramic, it is easily broken when subjected to pressure. Therefore, before applying the pressure, it is necessary to stretch it using a conventional wire forming method, for example, using an Ag tube. , to prevent breakage and provide flexibility. To explain further, claim 1
The Josephson device of the present invention described in
High temperature superconducting phase of a2Cu3 and Bi2Sr2Ca1Cu3
The second phase excluding the low-temperature superconducting phase serves as an insulating layer.

【0019】請求項2に記載のジョセフソン素子は、前
記第2相が粒界面であり、裏面が絶縁層の役割をするこ
とを特徴とする。
The Josephson element according to the second aspect is characterized in that the second phase is a grain boundary, and the back surface serves as an insulating layer.

【0020】請求項3に記載のジョセフソン素子の製造
方法は、Bi系高温超伝導体となるジョセフソン素子の
製造方法において、Bi系高温超伝導体組成物を通常の
方法でか焼(Calcination)、粉砕、成形お
よび焼結させることを特徴とする。
The method for manufacturing a Josephson device according to claim 3 is a method for manufacturing a Josephson device that becomes a Bi-based high-temperature superconductor, in which a Bi-based high-temperature superconductor composition is calcined by a conventional method. ), characterized by being crushed, shaped and sintered.

【0021】請求項4に記載のジョセフソン素子の製造
方法は、Ag管を利用した線材化方法によって請求項2
に記載のジョセフソン素子を製造することを特徴とする
[0021] The method of manufacturing a Josephson element according to claim 4 is a method of manufacturing a Josephson element according to claim 2, by a method of producing a wire rod using an Ag tube.
The present invention is characterized by manufacturing the Josephson device described in .

【0022】請求項5に記載のジョセフソン素子の製造
方法は、Bi系超伝導組成物がBi1.6Pb0.4S
r2Ca2Cu3Oyであることを特徴とする。
[0022] In the method for manufacturing a Josephson device according to claim 5, the Bi-based superconducting composition is Bi1.6Pb0.4S.
It is characterized by being r2Ca2Cu3Oy.

【0023】[0023]

【作用】請求項1および2に記載の本発明のジョセフソ
ン素子は、再現性よく、しかも、優れた特性を示すもの
であり、応用範囲が極めて広く有用なものであり、また
請求項3から5に記載の本発明の製造方法は容易に高性
能なジョセフソン素子を製造可能とさせて、極めて有効
なものとである。
[Function] The Josephson element of the present invention as set forth in claims 1 and 2 has good reproducibility and exhibits excellent characteristics, and is useful in an extremely wide range of applications. The manufacturing method of the present invention described in No. 5 makes it possible to easily manufacture a high-performance Josephson element and is extremely effective.

【0024】[0024]

【実施例】以下、本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0025】先ず、例えば、出発物質としてBi2O3
、PbO、SrCO3、CaCO3、CuOをBi1.
6Pb0.4Ca2Cu3Oyとなるように秤量して混
合し、800℃で20時間2回反復してか焼後、粉砕し
、空気中で焼結した後、焼結した材料を1μm以下に再
粉砕して、外径8mm、肉厚2mm、長さ300mm、
のAg管に入れ、外径4mmとなるように延伸した後、
この延伸した線を845℃で80時間焼結し、肉厚が0
.1から0.2mmとなるように冷間圧延(常温下で)
した後、この冷間圧延した試片を845℃で50時間焼
結して本発明のジョセフソン接合素子を製造する。
First, for example, Bi2O3 is used as a starting material.
, PbO, SrCO3, CaCO3, CuO in Bi1.
6Pb0.4Ca2Cu3Oy was weighed and mixed, calcined twice for 20 hours at 800°C, crushed, sintered in air, and the sintered material was re-pulverized to 1 μm or less. , outer diameter 8mm, wall thickness 2mm, length 300mm,
After putting it into a Ag tube and stretching it to an outer diameter of 4 mm,
This stretched wire was sintered at 845°C for 80 hours to reduce the wall thickness to 0.
.. Cold rolled to a thickness of 1 to 0.2 mm (at room temperature)
Thereafter, the cold-rolled specimen was sintered at 845° C. for 50 hours to produce the Josephson junction element of the present invention.

【0026】以上のように、ジョセフソン接合素子には
多数の粒界面が接合作用を行い、試片全体の特性はその
接合中に最も小さい臨界電流密度を有する接合により決
定されるのである。
As described above, in the Josephson junction element, a large number of grain boundaries perform a bonding action, and the characteristics of the entire specimen are determined by the bond having the smallest critical current density during the bond.

【0027】前述のようにして製造されたジョセフソン
素子の特性を図1および図2に示したが、図1は製造さ
れたジョセフソン素子の温度の変化に伴なう抵抗の変化
を示し、87度Kで抵抗は0となり、図2は接合のDC
ジョセフソン効果を測定したもので、前述の図面に示さ
れたように、本発明による接合は、確実にジョセフソン
効果を示していることが認められる。また、図3は本発
明のジョセフソン接合素子の走査電子顕微鏡写真であり
、黒い線で示されたものは前記第2相を表わしている。
The characteristics of the Josephson element manufactured as described above are shown in FIGS. 1 and 2, and FIG. 1 shows the change in resistance of the manufactured Josephson element as the temperature changes. At 87 degrees K, the resistance becomes 0, and Figure 2 shows the DC of the junction.
The Josephson effect was measured, and as shown in the above-mentioned drawings, it was found that the bond according to the present invention definitely exhibits the Josephson effect. Further, FIG. 3 is a scanning electron micrograph of the Josephson junction element of the present invention, and the black line represents the second phase.

【0028】本発明の製造方法は工程が複雑でなく、既
存の方法よりずっと大きくすることができるので、その
応用分野も相当に広いものである。
The manufacturing method of the present invention is not complicated and can be made much larger than existing methods, so its application field is quite wide.

【0029】なお、本発明は前記実施例に限定されるも
のではなく、必要に応じて変更することができる。
It should be noted that the present invention is not limited to the above embodiments, and can be modified as necessary.

【0030】[0030]

【発明の効果】このように本発明のジョセフソン素子は
、再現性よく、しかも、優れた特性を示すものであり、
応用範囲が極めて広く有用なものであり、また本発明の
製造方法は容易に高性能なジョセフソン素子を製造可能
とさせて、極めて有効なものとなる等の効果を奏する。
[Effects of the Invention] As described above, the Josephson element of the present invention has good reproducibility and exhibits excellent characteristics.
The present invention has an extremely wide range of applications and is useful, and the manufacturing method of the present invention has effects such as being able to easily manufacture high-performance Josephson elements and being extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のジョセフソン素子の一実施例の温度−
抵抗特性図
FIG. 1: Temperature of one embodiment of the Josephson element of the present invention.
Resistance characteristic diagram

【図2】本発明のジョセフソン素子の一実施例の電圧−
電流特性図
[Fig. 2] Voltage of one embodiment of the Josephson element of the present invention -
Current characteristic diagram

【図3】本発明のジョセフソン素子の金属組織の走査電
子顕微鏡によるX線写真(×20,000)
[Fig. 3] X-ray photograph (×20,000) of the metal structure of the Josephson element of the present invention taken by a scanning electron microscope.

【図4】従
前の低温超伝導体を利用したジョセフソン素子の断面図
[Figure 4] Cross-sectional view of a Josephson device using a conventional low-temperature superconductor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  Bi系高温超伝導体となるジョセフソ
ン素子において、Bi2Sr2Ca2Cu3の高温超伝
導相とBi2Sr2Ca1Cu3の低温超伝導相を除外
した第2相が絶縁層の役割をすることを特徴とするジョ
セフソン素子。
1. A Josephson element that is a Bi-based high-temperature superconductor, in which a second phase excluding the high-temperature superconducting phase of Bi2Sr2Ca2Cu3 and the low-temperature superconducting phase of Bi2Sr2Ca1Cu3 serves as an insulating layer. Song Motoko.
【請求項2】  前記第2相が粒界面であり、裏面が絶
縁層の役割をすることを特徴とする請求項1に記載のジ
ョセフソン素子。
2. The Josephson device according to claim 1, wherein the second phase is a grain boundary, and the back surface serves as an insulating layer.
【請求項3】  Bi系高温超伝導体となるジョセフソ
ン素子の製造方法において、Bi系高温超伝導体組成物
を通常の方法でか焼、粉砕、成形および燃結させること
を特徴とするジョセフソン素子の製造方法。
3. A method for manufacturing a Josephson element that is a Bi-based high-temperature superconductor, comprising: calcination, pulverization, molding, and sintering of a Bi-based high-temperature superconductor composition in a conventional manner. Method of manufacturing a son element.
【請求項4】  Ag管を利用した線材化方法によって
請求項2に記載のジョセフソン素子を製造することを特
徴とするジョセフソン素子の製造方法。
4. A method for manufacturing a Josephson device, comprising manufacturing the Josephson device according to claim 2 by a wire forming method using an Ag tube.
【請求項5】  Bi系超伝導紹成物がBi1.6Pb
0.4Sr2Ca2Cu3Oyであることを特徴とする
請求項2に記載のジョセフソン素子の製造方法。
[Claim 5] The Bi-based superconducting introduction product is Bi1.6Pb.
3. The method of manufacturing a Josephson device according to claim 2, wherein the material is 0.4Sr2Ca2Cu3Oy.
JP3125632A 1990-04-07 1991-03-07 Josephson element and its manufacture Pending JPH04226088A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1990P4770 1990-04-07
KR1019900004770A KR910019273A (en) 1990-04-07 1990-04-07 Josephson device and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH04226088A true JPH04226088A (en) 1992-08-14

Family

ID=19297765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125632A Pending JPH04226088A (en) 1990-04-07 1991-03-07 Josephson element and its manufacture

Country Status (4)

Country Link
JP (1) JPH04226088A (en)
KR (1) KR910019273A (en)
DE (1) DE4022309A1 (en)
FR (1) FR2660800A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68923325T2 (en) * 1988-05-11 1995-11-23 Canon Kk Josephson facility.
JP2790494B2 (en) * 1989-10-13 1998-08-27 松下電器産業株式会社 Superconducting element

Also Published As

Publication number Publication date
FR2660800A1 (en) 1991-10-11
KR910019273A (en) 1991-11-30
DE4022309A1 (en) 1991-10-10

Similar Documents

Publication Publication Date Title
KR910007901B1 (en) Super conductor device
JPH03153089A (en) Tunnel junction element wherein compound oxide superconductive material is used
JPH04226088A (en) Josephson element and its manufacture
JPH02207420A (en) Manufacture of superconducting wire rod
JPH02391A (en) Superconductive field-effect transistor
JPH0272685A (en) Method for forming weakly coupled superconductor part
EP0494830A2 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JP2773503B2 (en) Superconducting field effect element and method for producing the same
JP2647251B2 (en) Superconducting element and fabrication method
JP2763075B2 (en) Oxide superconductor
JPH01137682A (en) Superconducting switching element
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JP3313907B2 (en) Bi-based superconducting material, Bi-based superconducting wire having the same, and method of manufacturing the superconducting wire
JP3313908B2 (en) Bi-based superconducting material, Bi-based superconducting wire having the same, and method of manufacturing the superconducting wire
Torsoni et al. IV characteristic behavior of BSCCO-2223 superconductor under low intensity DC magnetic fields a Home-Made Experiment
JP2862706B2 (en) Superconducting element
JPH04224114A (en) Production of thick film of oxide superconductor
JP4092393B2 (en) High temperature superconducting Josephson junction forming method and high temperature superconducting Josephson device comprising Josephson junction formed thereby
JPH04368185A (en) Tunnel junction element
JPH02264486A (en) Superconductive film weakly coupled element
JPH02186681A (en) Superconductive junction device
JPH01137683A (en) Superconducting switching element
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH04288885A (en) Tunnel-type josephson element
JPH03295282A (en) Superconducting element