JPH0422459B2 - - Google Patents
Info
- Publication number
- JPH0422459B2 JPH0422459B2 JP60047980A JP4798085A JPH0422459B2 JP H0422459 B2 JPH0422459 B2 JP H0422459B2 JP 60047980 A JP60047980 A JP 60047980A JP 4798085 A JP4798085 A JP 4798085A JP H0422459 B2 JPH0422459 B2 JP H0422459B2
- Authority
- JP
- Japan
- Prior art keywords
- smoke
- light
- smoke stream
- mirror
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000779 smoke Substances 0.000 claims description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/534—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/178—Methods for obtaining spatial resolution of the property being measured
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/5907—Densitometers
- G01N2021/5969—Scanning of a tube, a cuvette, a volume of sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
- G01N2201/06113—Coherent sources; lasers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/08—Optical fibres; light guides
- G01N2201/0833—Fibre array at detector, resolving
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/08—Optical fibres; light guides
- G01N2201/084—Fibres for remote transmission
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、熱機関から排出される吐煙流中のカ
ーボン微粒子の体積濃度及び重量濃度の絶対値を
測定する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the absolute values of the volume concentration and weight concentration of carbon fine particles in a smoke stream discharged from a heat engine.
[従来の技術]
従来、熱機関などからの吐煙の濃度を測定する
方法には、大別して2種類のものがある。例え
ば、デイーゼル機関に対する上記2種類の方法の
うちの一つは、ボツシユ式スモークメータによる
方法である。この方法は、吐煙中におけるカーボ
ン微粒子を濾紙上に吸引付着させ、その濾紙にお
ける光の反射率を測定することにより吐煙の濃度
を測定するものである。他の方法は、米国の試験
法に定められた方法であり、吐煙を自由噴流状態
としておき、その吐煙に対して横方向から白色光
を当て、その光のオパシテイー(不透過度)を測
定することにより吐煙の濃度を測定する方法であ
る。[Prior Art] Conventionally, there are roughly two types of methods for measuring the concentration of smoke emitted from a heat engine or the like. For example, one of the two methods mentioned above for diesel engines is the Bosch type smoke meter method. In this method, fine carbon particles in exhaled smoke are attracted onto a filter paper, and the concentration of exhaled smoke is measured by measuring the reflectance of light on the filter paper. Another method is the method specified in the American test method, in which smoke is left in a free jet state, and white light is applied to the smoke from the side to measure the opacity of the light. This method measures the concentration of smoke by measuring it.
しかしながら、上記各種を測定方法は、いわゆ
る個々の任意スケールによるものであり、予め定
められた測定のための規則に従つて測定すること
によりはじめて成り立つものである。そのため、
上記各種の測定方法により得られた測定値の意味
が異なり、各測定方法相互間の絶対的関係は求め
難いのが現状である。即ち、上記各種の方法によ
つては、熱機関の吐煙流中のカーボン微粒子の絶
対的な濃度を知得することはできない。 However, the above-mentioned methods for measuring each type are based on so-called individual arbitrary scales, and can only be achieved by measuring according to predetermined rules for measurement. Therefore,
The meanings of the measurement values obtained by the various measurement methods described above are different, and it is currently difficult to determine the absolute relationship between the measurement methods. That is, with the various methods described above, it is not possible to obtain the absolute concentration of carbon particles in the smoke stream of a heat engine.
[発明が解決しようとする問題点]
本発明の目的は、熱機関からの吐煙流中におけ
るカーボン微粒子の体積濃度及び重量濃度の絶対
値を測定するための簡単な方法を提供することに
ある。[Problems to be Solved by the Invention] An object of the present invention is to provide a simple method for measuring the absolute values of the volume concentration and weight concentration of carbon fine particles in a smoke stream from a heat engine. .
[問題点を解決するための手段]
上記目的を達成するため、本発明の測定方法
は、熱機関から排出される吐煙流を自由噴流状態
で流出させ、この吐煙流中のカーボン微粒子に対
してレーリー散乱となる比較的長い単一波長光を
上記吐煙流を横切る複数の方向に照射して、その
吐煙流中を透過した光の強度を受光器で検出し、
上記受光器の検出信号からの断層像の演算によ
り、吐煙流中のカーボン微粒子の体積濃度及び重
量濃度の絶対値を測定することを特徴とするもの
である。[Means for Solving the Problems] In order to achieve the above object, the measuring method of the present invention allows the smoke stream discharged from the heat engine to flow out in a free jet state, and the carbon particles in the smoke stream are On the other hand, a relatively long single wavelength light that causes Rayleigh scattering is irradiated in multiple directions across the smoke stream, and the intensity of the light transmitted through the smoke stream is detected by a receiver,
This method is characterized in that the absolute values of the volume concentration and weight concentration of carbon particles in the smoke stream are measured by calculating a tomographic image from the detection signal of the light receiver.
このような本発明の測定方法においては、吐煙
流に対して照射する単一波長光を、吐煙流中のカ
ーボン微粒子に対しレーリー散乱となる比較的長
い波長を有するものとしたので、カーボン微粒子
による単一波長光の吸収、散乱を、光の透過率が
カーボン微粒子の体積濃度に応じたものとして得
られることが理論的に明らかであり、且つ上記単
一波長光を吐煙流を横切る複数の方向から照射す
るようにしたので、吐煙流を透過した光の強度変
化を検出し、それらの検出値から電子計算機で噴
流の全断的に互る断層像が求められ、吐煙流中の
カーボン微粒子の体積濃度及び重量濃度の絶対値
が求められる。 In the measurement method of the present invention, the single wavelength light irradiated to the smoke stream has a relatively long wavelength that causes Rayleigh scattering to the carbon particles in the smoke stream. It is theoretically clear that the absorption and scattering of single wavelength light by fine particles can be obtained with the light transmittance depending on the volume concentration of carbon fine particles, and the single wavelength light can be passed across the smoke stream. Since the irradiation was made from multiple directions, changes in the intensity of the light that passed through the smoke stream were detected, and from those detected values, a computer was used to obtain a tomographic image of the jet that overlapped across the entire plane. The absolute values of the volume concentration and weight concentration of the carbon fine particles inside are determined.
以下に、本発明の方法をさらに詳細に説明す
る。 Below, the method of the present invention will be explained in more detail.
第1図は本発明の方法の実施に使用する装置の
一例を示し、1は熱機関から排出される吐煙流で
直径5cm程度の自由噴流状態で大気中に流出させ
ており、その下流には吐煙流1を受けるダクト2
が設けられている。 Figure 1 shows an example of the apparatus used to carry out the method of the present invention, in which 1 is a smoke stream discharged from a heat engine, which is discharged into the atmosphere in a free jet state of about 5 cm in diameter, and downstream. is the duct 2 that receives the smoke flow 1
is provided.
上記吐煙流1に対し、単一波長光をその吐煙流
を横切る複数の方向に照射して、透過した光の強
度から断層像の演算を行うが、そのための装置と
して、まず、上記吐煙流1の軸線Lと同軸上に、
例えばHe−Neガスレーザが光源3として配置さ
れる。上記光源3から射出されるレーザ光は、カ
ーボン微粒子によるレーザ光の吸収、散乱を、光
の透過率がカーボン微粒子の体積濃度又は重量濃
度に応じたものとして得られるレーリー散乱とし
て扱いを得るようにしたものである。 The smoke stream 1 is irradiated with single-wavelength light in multiple directions across the smoke stream, and a tomographic image is calculated from the intensity of the transmitted light. On the same axis as the axis L of smoke flow 1,
For example, a He-Ne gas laser is arranged as the light source 3. The laser light emitted from the light source 3 is treated as Rayleigh scattering in which the absorption and scattering of the laser light by the carbon particles is obtained by assuming that the light transmittance depends on the volume concentration or weight concentration of the carbon particles. This is what I did.
上記レーザ光源3の前方には、ハーフミラー4
を介してレーザ光を反射させる傾斜回転ミラー5
が設けられる。上記回転ミラー5は、上記軸線L
と同軸上に位置するモータ6の回転軸7に傾めに
固定されており、その回転軸7と共に回転して、
回転ミラー5で反射するレーザ光の反射方向を上
記軸線Lのまわりに回転させるように構成してい
る。 In front of the laser light source 3 is a half mirror 4.
An inclined rotating mirror 5 that reflects the laser beam through the
will be provided. The rotating mirror 5 has the axis L
It is obliquely fixed to the rotation shaft 7 of the motor 6 located coaxially with the motor 6, and rotates together with the rotation shaft 7.
It is configured such that the direction of reflection of the laser beam reflected by the rotating mirror 5 is rotated around the axis L mentioned above.
さらに、第1図及び第2図に示すように、上記
回転ミラー5からの反射光を、吐煙流1を横切る
方向に向けるため、回転ミラー5の周囲に平面ミ
ラー8を配置すると共に、固定平面ミラー9が吐
出流1における計測域のまわりに配置され、その
固定平面ミラー9の吐煙流1を挟んだ反対側に固
定凹面ミラー10が設けられる。上記固定平面ミ
ラー8,9及び固定凹面ミラー10は、第2図か
らわかるように、それらによつて反射する光が吐
煙流1の断面を全体にわたつてスキヤンしながら
横切ると共に、同一の光路を通つて再び回転ミラ
ー5に入射するように配置されている。従つて、
凹面ミラー10の曲率の中心O2は、回転ミラー
5から平面ミラー9までの距離を、第2図におい
てミラー8から凹面ミラー10の反対方向へ延ば
した点となる。 Furthermore, as shown in FIGS. 1 and 2, in order to direct the reflected light from the rotating mirror 5 in a direction across the smoke stream 1, a flat mirror 8 is arranged around the rotating mirror 5, and a fixed A plane mirror 9 is arranged around a measurement area in the discharge stream 1, and a fixed concave mirror 10 is provided on the opposite side of the fixed plane mirror 9 across the smoke stream 1. As can be seen from FIG. 2, the fixed plane mirrors 8 and 9 and the fixed concave mirror 10 allow the light reflected by them to scan across the entire cross section of the smoke stream 1, and to pass through the same optical path. The beam is arranged so that it passes through the beam and enters the rotating mirror 5 again. Therefore,
The center of curvature O 2 of the concave mirror 10 is the point where the distance from the rotating mirror 5 to the plane mirror 9 is extended in the opposite direction from the mirror 8 to the concave mirror 10 in FIG.
これにより、上記回転ミラー5で反射したレー
ザ光は、平面ミラー8,9で反射した後、吐煙流
1を通過して凹面ミラー10に入射し、その後、
それまでの光路を逆に通つて再び回転ミラー5に
入射し、従つてレーザ光は吐煙流1を往復2回通
過し、それぞれの通過時にレーリー散乱状態での
反射、散乱が行われる。 As a result, the laser beam reflected by the rotating mirror 5 is reflected by the plane mirrors 8 and 9, passes through the smoke stream 1, and enters the concave mirror 10, and then,
The laser beam passes through the previous optical path in the reverse direction and enters the rotating mirror 5 again, and therefore passes through the smoke flow 1 twice in a round trip, and is reflected and scattered in a Rayleigh scattering state during each pass.
また、上記平面ミラー8,9と凹面ミラー10
は、第2図からわかるように、その複数組を吐煙
流1における計測域のまわりに配設している。 In addition, the plane mirrors 8 and 9 and the concave mirror 10
As can be seen from FIG. 2, a plurality of sets are arranged around the measurement area in the smoke flow 1.
上記各平面ミラー8,9及び凹面ミラー10を
往復して回転ミラー5に戻つたレーザ光は、再び
その回転ミラー5で反射してハーフミラー4に入
射し、そこで反射したレーザ光は、その強度変化
を検出するための受光器11に投射される。これ
により、回転ミラー5の回転位置における平面ミ
ラー9と凹面ミラー10からの反射光が、順次受
光器11に投射されることになる。 The laser beam that has returned to the rotating mirror 5 after reciprocating through the plane mirrors 8, 9 and the concave mirror 10 is reflected again by the rotating mirror 5 and enters the half mirror 4, and the laser beam reflected there is determined by its intensity. The light is projected onto a light receiver 11 for detecting changes. Thereby, the reflected light from the plane mirror 9 and the concave mirror 10 at the rotational position of the rotating mirror 5 is sequentially projected onto the light receiver 11.
上記受光器11には、そこで得られる検出信号
を処理するための電子計算機12、及びその処理
結果を記録表示する記録表示器13が接続されて
いる。上記電子計算機12は、受光器11の検出
信号からの断層像の演算を行うものである。 Connected to the light receiver 11 are an electronic computer 12 for processing the detection signal obtained there, and a recording display 13 for recording and displaying the processing results. The electronic computer 12 calculates a tomographic image from the detection signal of the light receiver 11.
上記構成の装置により吐煙流1中のカーボン微
粒子の体積濃度を測定するには、上述したところ
からわかるように、自由噴流状態の吐煙流1に対
し、回転ミラー5を回転させながらレーザ光を投
射し、それが平面ミラー8を介して各平面ミラー
9に入射する毎に、その平面ミラー9と対向する
固定凹面ミラー10との共働により、吐煙流1の
断面を全体にわたつて横断通過させ、その透過光
を受光器11により受光して強度変化が検出され
る。これは、回転ミラー5の回転に伴つて、レー
ザ光が入射する平面ミラー8,9が変る毎に繰返
され、その繰返しにより吐煙流1は放射方向から
レーザ光により照射され、各照射方法毎のレーザ
光についての強度変化が検出されることになる。
従つて、それらの検出値から電子計算機によつて
断層像を演算し、吐煙流中のカーボン微粒子の体
積濃度及び重量濃度の絶対値が得られ、それが記
録表示器に記録表示される。 In order to measure the volume concentration of carbon fine particles in the smoke stream 1 with the device configured as described above, as can be seen from the above, the laser beam is applied to the smoke stream 1 in a free jet state while rotating the rotary mirror 5. Each time it is projected onto each plane mirror 9 via the plane mirror 8, the plane mirror 9 and the opposing fixed concave mirror 10 work together to spread the entire cross section of the smoke stream 1. The transmitted light is received by the light receiver 11 and changes in intensity are detected. This is repeated each time the plane mirrors 8 and 9 on which the laser beam enters change as the rotary mirror 5 rotates, and by repeating this, the smoke stream 1 is irradiated with the laser beam from the radial direction, and for each irradiation method. The change in intensity of the laser beam will be detected.
Therefore, a tomographic image is calculated by an electronic computer from these detected values, and the absolute values of the volume concentration and weight concentration of the carbon particulates in the smoke stream are obtained, and these are recorded and displayed on the recording display.
また、本発明を実施するために、第3図及び第
4図に示すような装置を用いることもできる。 Furthermore, apparatuses such as those shown in FIGS. 3 and 4 can also be used to carry out the present invention.
この装置は、第1図及び第2図に示す装置にお
いて凹面鏡10を配設した位置に、その凹面鏡1
0に代えて、多数のグラスフアイバー15の受光
器16を配列設置したもので、これらの各グラス
フアイバー15はその他端が図示しない単一を受
光器に接続される。さらに、その受光器が電子計
算機及び記録表示器に接続され、第1図及び第2
図の装置とほぼ同様にして断層像の演算を行い、
吐煙流中のカーボン微粒子の体積濃度及び重量濃
度が測定される。 This device has a concave mirror 10 placed in the device shown in FIGS.
0, a large number of glass fibers 15 are arranged in an array, and the other end of each of these glass fibers 15 is connected to a single, not shown, light receiver. Furthermore, the light receiver is connected to an electronic computer and a recording display, and
The tomographic image is calculated in almost the same way as the device shown in the figure.
The volume concentration and weight concentration of carbon particles in the smoke stream are measured.
即ち、上記装置においては、レーザ光が吐煙流
1内を往復することなく、それを1回だけしか透
過しないが、その透過光がグラスフアイバー15
を通じて受光器で受光され、そして受光器におい
ては各グラスフアイバーの受光強度が逐次変動
し、それによつてどのグラスフアイバーの受光端
で透過光の検出が行われているかを知ることがで
きると同時に、受光器により測定値と測定域に吐
煙流がない場合の校正値とを比較することによ
り、吐煙流による減光の程度を検出することがで
き、従つてその測定結果に基づいて断層像の演算
を行うと同時に、吐煙流中のカーボン微粒子の体
積濃度及び重量濃度を測定することができる。 That is, in the above device, the laser light does not reciprocate within the smoke stream 1 and passes through it only once, but the transmitted light passes through the glass fiber 15.
The received light intensity of each glass fiber changes sequentially in the light receiver, thereby making it possible to know which glass fiber's light-receiving end is detecting the transmitted light. By comparing the measured value by the photodetector with the calibration value when there is no smoke flow in the measurement area, the degree of light attenuation due to the smoke flow can be detected, and the tomographic image can be determined based on the measurement results. At the same time, the volume concentration and weight concentration of carbon particles in the smoke stream can be measured.
なお、その他の構成及び作用は第1図及び第2
図の場合と変らないので、同一または相当部分に
同一の符号を付してその説明を省略する。 Other configurations and functions are shown in Figures 1 and 2.
Since it is the same as in the figure, the same or corresponding parts are given the same reference numerals and the explanation thereof will be omitted.
また、本発明の方法は、上述した2例の装置に
限ることなく、レーザ光源及び受光器の複数組を
吐煙流1のまわりに配設し、それらのレーザ光源
からの複数のレーザ光で吐煙流を同時に照射し
て、吐煙流を通過した各レーザ光をそれぞれ受光
器で受光するように構成することもでき、これに
より上記カーボン微粒子の体積濃度及び重量濃度
の測定を高速の応答性をもつて行うことができ
る。 Furthermore, the method of the present invention is not limited to the above-mentioned two examples of devices, but can also include a plurality of sets of laser light sources and light receivers arranged around the smoke flow 1, and a plurality of laser lights from these laser light sources. It is also possible to construct a structure in which the smoke stream is irradiated at the same time, and each laser beam that has passed through the smoke stream is received by a light receiver, thereby enabling the measurement of the volume concentration and weight concentration of the carbon particles with a high-speed response. It can be done sexually.
第1図は本発明の実施に使用する装置の全体構
成を示す概略的正面図、第2図はそのA−A断面
の概略説明図、第3図は上記装置の他の構成例を
示す概略的正面図、第4図は第2図と同様な位置
での概略説明図である。
1……吐煙流、11……受光器。
FIG. 1 is a schematic front view showing the overall configuration of the device used to carry out the present invention, FIG. 2 is a schematic explanatory view of the A-A cross section, and FIG. 3 is a schematic diagram showing another example of the configuration of the above device. The front view of FIG. 4 is a schematic explanatory view at the same position as FIG. 2. 1...Smoke flow, 11...Light receiver.
Claims (1)
で流出させ、この吐煙流中のカーボン微粒子に対
しレーリー散乱となる比較的長い単一波長光を、
上記吐煙流を横切る複数の方向に照射して、その
吐煙流中を透過した光の強度を受光器で検出し、
上記受光器の検出信号からの断層像の演算によ
り、吐煙流中のカーボン微粒子の体積濃度及び重
量濃度の絶対値を測定することを特徴とする熱機
関の吐煙濃度測定方法。1 The smoke stream discharged from the heat engine is made to flow out in a free jet state, and a relatively long single wavelength light that causes Rayleigh scattering is transmitted to the carbon particles in the smoke stream.
irradiating in multiple directions across the smoke stream and detecting the intensity of the light transmitted through the smoke stream with a receiver;
A method for measuring smoke concentration in a heat engine, characterized in that the absolute values of the volume concentration and weight concentration of carbon particles in the smoke flow are measured by calculating a tomographic image from the detection signal of the light receiver.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60047980A JPS61207949A (en) | 1985-03-11 | 1985-03-11 | Measuring method for discharged smoke density from heat engine |
US06/838,585 US4719360A (en) | 1985-03-11 | 1986-03-11 | Method for determination of concentration of smoke emanating from combustion engine and apparatus for working said method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60047980A JPS61207949A (en) | 1985-03-11 | 1985-03-11 | Measuring method for discharged smoke density from heat engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61207949A JPS61207949A (en) | 1986-09-16 |
JPH0422459B2 true JPH0422459B2 (en) | 1992-04-17 |
Family
ID=12790457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60047980A Granted JPS61207949A (en) | 1985-03-11 | 1985-03-11 | Measuring method for discharged smoke density from heat engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61207949A (en) |
-
1985
- 1985-03-11 JP JP60047980A patent/JPS61207949A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61207949A (en) | 1986-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4540283A (en) | Apparatus and method for determining the size and velocity of particles, droplets, bubbles or the like using laser light scattering | |
US3861809A (en) | Confocal cavity optical gas sensor | |
US4254337A (en) | Infrared interference type film thickness measuring method and instrument therefor | |
JP3406640B2 (en) | Portable spectrophotometer | |
US4719360A (en) | Method for determination of concentration of smoke emanating from combustion engine and apparatus for working said method | |
JP2001033384A (en) | Method and device for evaluating particle using multiple-scanning beam reflection factor | |
JPH07501397A (en) | Measuring method and device | |
US4737648A (en) | Apparatus for detecting fibrous particle sizes by detecting scattered light at different angles | |
CA1080505A (en) | Spherical cavity method and apparatus for measuring sheet material properties | |
JPH02266247A (en) | Web inspection method and apparatus | |
JPS5847657B2 (en) | Ryu Taibun Sekiki | |
JPS63118635A (en) | Optical device | |
US4477187A (en) | Apparatus and method for sizing particles | |
JPH0422459B2 (en) | ||
US5717210A (en) | Measuring device | |
JP2664042B2 (en) | Method and apparatus for measuring the concentration and particle size spatial distribution of suspended particles | |
JPS5972012A (en) | Method and device for detecting gap and angle | |
JPH0570098B2 (en) | ||
JP2590616Y2 (en) | Turbidimeter | |
Naining et al. | A study of the accuracy of optical Fraunhofer diffraction size analyzer | |
JPH0626843Y2 (en) | Gas concentration measuring device | |
JPH07325025A (en) | Particle diameter and concentration measuring apparatus based on light damping method | |
JPH0843305A (en) | Smoke density measuring device | |
Faxvog | New laser particle sizing instrument | |
JP3325690B2 (en) | Gas concentration measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |