JPH07325025A - Particle diameter and concentration measuring apparatus based on light damping method - Google Patents

Particle diameter and concentration measuring apparatus based on light damping method

Info

Publication number
JPH07325025A
JPH07325025A JP6142426A JP14242694A JPH07325025A JP H07325025 A JPH07325025 A JP H07325025A JP 6142426 A JP6142426 A JP 6142426A JP 14242694 A JP14242694 A JP 14242694A JP H07325025 A JPH07325025 A JP H07325025A
Authority
JP
Japan
Prior art keywords
light
optical fiber
light rays
sensing head
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6142426A
Other languages
Japanese (ja)
Inventor
Akihiko Otsuka
昭彦 大塚
Hiroyuki Chiba
浩之 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP6142426A priority Critical patent/JPH07325025A/en
Publication of JPH07325025A publication Critical patent/JPH07325025A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make a particle diameter and concentration measuring apparatus compact by fixing a light course by using an optical fiber and orienting only a sensing head with a compact size properly to a sample to be measured. CONSTITUTION:For example, light rays emitted out of a xenon lamp as a light source 11 are led to a sensing head 12 by a step-index-type optical fiber 15 with a 200mum core system. Coming-in light rays are radiated to a particle dispersed sample 17 through a projection side lens 16. The light rays transmitted through scattered particles are received by a photoreceiving probe 18 and transmitted to a spectroscope 13 after passing a fibers-bundled type optical fiber with a 180mum core system. There is no restriction regarding a light course as long as the projection side lens 16 and the photoreceiving probe 18 are fixed at proper positions in relation to the particle dispersed sample 17 by forming the light rays coming-in light course and the transmitted light rays light course by using optical fibers 15, 19. Moreover, the sensing head 12 itself can be made compact and thus the measuring apparatus can be easy to be handled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液相又は気相に分散し
ている粒子の粒径及び粒子濃度を簡単な光減衰法で同時
測定できる小型の測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small measuring device capable of simultaneously measuring the particle size and particle concentration of particles dispersed in a liquid phase or a gas phase by a simple optical attenuation method.

【0002】[0002]

【従来の技術】液相や気相に分散している粒子の質量濃
度,粒度分布等を測定するため、従来から種々の方法が
開発されている。質量濃度に関する代表的な測定法とし
ては、フィルター捕集法がある。フィルター捕集法は、
全ての粒子質量濃度測定の基本となるものであるが、一
般的にいって捕集に長時間を必要とし、また不安定粒子
に適用できない欠点がある。しかも、質量濃度をリアル
タイムで計測できない。リアルタイムで粒子の個数濃
度,粒度分布等を同時測定できる方法として、光散乱カ
ウンターのうちダストカウンターが広く採用されてい
る。しかし、ダストカウンターでは、高濃度の分散粒子
に対し希釈等の前処理が必要とされ、試料濃度の調製が
繁雑である。粒子を分散させたままの状態でリアルタイ
ム測定可能なものとして、浮遊測定法に属する光散乱法
が知られている。たとえば、光ファイバの使用により小
型化し、in−situ計測のためのセンサーに適用し
た例が「兵庫県光センサ応用研究成果報告書」(兵庫県
立工業技術センタ,平成3年10月)で報告されてい
る。しかし、このセンサを利用した測定では、測定可能
な粒径に限界がある。
2. Description of the Related Art Various methods have been conventionally developed for measuring the mass concentration, particle size distribution, etc. of particles dispersed in a liquid phase or a gas phase. A typical measurement method for mass concentration is a filter collection method. The filter collection method is
It is the basis of all particle mass concentration measurements, but generally has the drawback that it requires a long time for collection and cannot be applied to unstable particles. Moreover, the mass concentration cannot be measured in real time. Among the light scattering counters, a dust counter is widely adopted as a method for simultaneously measuring the number concentration, particle size distribution, etc. of particles in real time. However, in a dust counter, pretreatment such as dilution is required for high-concentration dispersed particles, and preparation of sample concentration is complicated. A light scattering method, which belongs to a flotation measuring method, is known as a method capable of performing real-time measurement in a state where particles are dispersed. For example, an example of using an optical fiber to downsize and applying it to a sensor for in-situ measurement was reported in the "Hyogo Prefecture Optical Sensor Application Research Results Report" (Hyogo Prefectural Industrial Technology Center, October 1991). ing. However, there is a limit to the measurable particle size in the measurement using this sensor.

【0003】粒径1〜2000nm及び複素屈折率m=
1.70−0.201iのアルミナ粒子について、光散
乱法による光散乱強度理論値を計算した。入射光波長を
400〜950nmの範囲で変化させ、400nmの光
散乱強度で各波長における光散乱強度を規格化した値の
変化を図1に示す。粒径は、図1からカーブフィッティ
ングすることにより求められる。しかし、粒径が100
nm以下になると、各波長に対する光散乱強度の変化が
ほぼ等しく、粒径が求められなくなる。また、光散乱法
では、粒子濃度の情報が同時に得られない。ところで、
粒径分布を求められないものの、多重散乱の影響が小さ
く、比較的高濃度の分散粒子まで計測できる方法とし
て、光減衰法が知られている。光減衰法の長所を活か
し、2波長以上の光源を用いた光減衰法により粒径及び
濃度を同時測定することを、後藤新一が「舶機構」第3
1回No.109(1982−5),第67頁で紹介して
いる。また、小粒径の粒子に光減衰法を適用することも
試みられている。
Particle size 1 to 2000 nm and complex refractive index m =
The theoretical value of light scattering intensity by the light scattering method was calculated for the alumina particles of 1.70-0.201i. FIG. 1 shows a change in the value obtained by changing the incident light wavelength in the range of 400 to 950 nm and standardizing the light scattering intensity at each wavelength with the light scattering intensity of 400 nm. The particle size is determined by curve fitting from FIG. However, the particle size is 100
When the thickness is less than or equal to nm, changes in the light scattering intensity with respect to each wavelength are almost equal, and the particle size cannot be obtained. Moreover, in the light scattering method, information on particle concentration cannot be obtained at the same time. by the way,
The optical attenuation method is known as a method that can measure even relatively high-concentration dispersed particles although the effect of multiple scattering is small, although the particle size distribution cannot be obtained. Taking advantage of the optical attenuation method, Shinichi Goto, "Ship Mechanism", No. 3 of the simultaneous measurement of particle size and concentration by the optical attenuation method using a light source with two or more wavelengths.
Introduced in No.109 (1982-5), page 67. Also, it has been attempted to apply the light attenuation method to particles having a small particle size.

【0004】[0004]

【発明が解決しようとする課題】従来の光減衰法では、
図2に示すように光源1,測定部2及び測光部3で構成
される装置を使用している。2波長の光源として、たと
えばアルゴンイオンレーザ4及びヘリウム・ネオンレー
ザ5を使用する。アルゴンイオンレーザ4から出射され
たレーザビームは、減光フィルタ6,ハーフミラー7及
びレンズ8を経て測定部2の試料に投射される。ヘリウ
ム・ネオンレーザ5から出射されたレーザビームも、同
様にミラー9,減光フィルタ10,ハーフミラー7及び
レンズ8を経て測定部2の試料に投射される。光源1,
測定部2及び測光部3は、何れも光路の制限から振動等
による妨害がないように完全に固定されている。しか
も、光源1及び測光部3は、機構的に大掛かりなもので
ある。この条件下で光路上に分散粒子の流れを作る必要
があることから、in−situ測定に適したものでは
なかった。本発明は、このような問題を解消すべく案出
されたものであり、センシングヘッドの構造を極めて簡
単且つ小型化することにより、粉末製造,粉末加工等の
現場で簡単に粉末の濃度及び粒径をin−situ測定
できるセンシングヘッドを備えた測定装置を提供するこ
とを目的とする。
In the conventional optical attenuation method,
As shown in FIG. 2, a device including a light source 1, a measuring unit 2 and a photometric unit 3 is used. For example, an argon ion laser 4 and a helium / neon laser 5 are used as the two-wavelength light source. The laser beam emitted from the argon ion laser 4 is projected onto the sample of the measuring unit 2 via the neutral density filter 6, the half mirror 7 and the lens 8. The laser beam emitted from the helium / neon laser 5 is similarly projected onto the sample of the measuring unit 2 via the mirror 9, the neutral density filter 10, the half mirror 7 and the lens 8. Light source 1,
Both the measuring unit 2 and the photometric unit 3 are completely fixed so that there is no interference due to vibration or the like due to the limitation of the optical path. Moreover, the light source 1 and the photometric unit 3 are mechanically large-scaled. Since it is necessary to create a flow of dispersed particles on the optical path under this condition, it was not suitable for in-situ measurement. The present invention has been devised to solve such a problem, and by making the structure of the sensing head extremely simple and downsized, the concentration and particle size of the powder can be easily obtained at the site of powder production, powder processing and the like. An object of the present invention is to provide a measuring device provided with a sensing head capable of measuring the diameter in-situ.

【0005】[0005]

【課題を解決するための手段】本発明の粒子径及び濃度
測定装置は、その目的を達成するため、粒子分散試料を
挟んで投射側レンズ及び受光プローブが配置されたセン
シングヘッドをもち、光源から投射側レンズまでの入射
光光路を光ファイバで、受光プローブから分光器までの
透過光光路を光ファイバでそれぞれ形成したことを特徴
とする。入射光光路及び透過光光路を光ファイバで形成
することにより、粒子分散試料に対して投射側レンズ及
び受光プローブの位置が正しく固定されている限り、光
路に起因した制約がなくる。そのため、センシングヘッ
ドに対する光源及び測光部の位置関係に要求される精度
が緩和される。しかも、センシングヘッド自体が小型化
されることから、取扱いの容易な測定装置となる。
In order to achieve the object, a particle diameter and concentration measuring device of the present invention has a sensing head in which a projection side lens and a light receiving probe are arranged with a particle dispersion sample in between, and The optical path of the incident light to the projection side lens is formed by an optical fiber, and the optical path of the transmitted light from the light receiving probe to the spectroscope is formed by an optical fiber. By forming the incident light optical path and the transmitted light optical path with optical fibers, there is no restriction due to the optical path as long as the positions of the projection side lens and the light receiving probe are correctly fixed with respect to the particle dispersion sample. Therefore, the accuracy required for the positional relationship between the light source and the photometric unit with respect to the sensing head is relaxed. Moreover, since the sensing head itself is downsized, the measuring device is easy to handle.

【0006】[0006]

【実施例】本実施例で使用した測定装置は、光源11,
センシングヘッド12,分光器13及び演算器14を備
えている。光源11には、たとえば75Wのキセノンラ
ンプが使用される。しかし、3波長以上である限り、レ
ーザ等の単一波長光源を使用することもできる。キセノ
ンランプから出射された光は、コア系200μmのステ
ップインデックス型光ファイバ15でセンシングヘッド
12に導かれる。入射光は、投射側レンズ16を通して
粒子分散試料17に照射される。投射側レンズ16に
は、0.25ピッチのロッドレンズを使用した。散乱粒
子を透過した光は、受光プローブ18で受光され、光フ
ァイバ19を経て分光器13に伝達される。受光プロー
ブ18には、集光範囲が直径約3mmの集光レンズと、
集光レンズ側が直径2mmでスペクトル測定器側が5×
0.5mmのファイバ端面をもつコア径180μmのバ
ンドルファイバで構成した。
EXAMPLE The measuring apparatus used in this example is a light source 11,
A sensing head 12, a spectroscope 13 and a calculator 14 are provided. For the light source 11, for example, a 75 W xenon lamp is used. However, a single wavelength light source such as a laser can be used as long as it has three or more wavelengths. The light emitted from the xenon lamp is guided to the sensing head 12 by the step index type optical fiber 15 having a core system of 200 μm. The incident light is applied to the particle dispersion sample 17 through the projection side lens 16. A 0.25 pitch rod lens was used for the projection side lens 16. The light transmitted through the scattering particles is received by the light receiving probe 18, and is transmitted to the spectroscope 13 via the optical fiber 19. The light receiving probe 18 has a condenser lens having a diameter of about 3 mm.
Diameter of condensing lens side is 2 mm and spectrum measuring instrument side is 5 ×
It was composed of a bundle fiber having a core diameter of 180 μm and a fiber end surface of 0.5 mm.

【0007】粒子分散試料17に対する照射光の放射角
度範囲及び粒子分散試料17からの透過光の受光角度範
囲を、何れも5度に設定した。光ファイバ19からの透
過光は、不等間隔曲線溝ホログラフィック・グレーティ
ング及び非対称クロス・チェルニ・ターナマウントを備
えた分光器13でスペクトル測定した。測定結果に基づ
き、測定スペクトルのアベレージング,波長感度補正,
照射光スペクトルの補正,粒子径の推定等を演算器14
で行った。この装置を使用して電子顕微鏡検定用標準ラ
テックス粒子の粒径を次のように測定し、粒径のリアル
タイム測定が可能であることを確認した。すなわち、直
径20nm,80nm,100nm,200nm,50
0nm及び19580nmの6種類のラテックス粒子を
純水に希釈して測定セルに入れ、マグネットスターラで
撹拌しながら透過光スペクトルを測定した。測定結果を
図4に示す。
The emission angle range of irradiation light to the particle-dispersed sample 17 and the reception angle range of transmitted light from the particle-dispersed sample 17 were both set to 5 degrees. The transmitted light from the optical fiber 19 was spectrally measured by a spectroscope 13 equipped with a non-equidistantly curved groove holographic grating and an asymmetric cross Cerni turner mount. Based on the measurement results, averaging of the measured spectrum, wavelength sensitivity correction,
Computation unit 14 for correction of irradiation light spectrum, estimation of particle size, etc.
I went there. Using this device, the particle size of standard latex particles for electron microscope assay was measured as follows, and it was confirmed that the particle size could be measured in real time. That is, diameters of 20 nm, 80 nm, 100 nm, 200 nm, 50
Six kinds of latex particles of 0 nm and 19580 nm were diluted with pure water, put into a measuring cell, and a transmitted light spectrum was measured while stirring with a magnetic stirrer. The measurement results are shown in FIG.

【0008】また、図5には、同じラテックス粒子につ
いての理論計算から求めた透過光スペクトルを示す。な
お、理論計算は、次のステップで行った。 (1)各粒径パラメータ(α=πD/λ;D:粒径,
λ:入射光波長)のラテックス粒子[相対屈折率m=
1.227(ラテックスの複素屈折率1.595を純水
の複素屈折率で補正した値]の粒子1個当りの光の減衰
断面積(extinction cross sect
ion)Qext を各入射光波長について算出する。 (2)各入射光波長のQext 計算結果を、入射光波長3
00nmのQext で規格化する。また、Qext の計算に
おいては、Mieの散乱理論解をLentz等のアルゴ
リズム[W.J.Lentz,Appl.Opt.15
(1976),668]で計算し、得られる測定粒子の
粒径に依存する係数an ,bn を使用した。図4及び図
5の対比から明らかなように、本発明に従った測定装置
で得られた測定結果は、高精度で理論計算結果に一致し
ていることが判る。このことから、粒径のin−sit
uモニタリングが可能であることが確認される。また、
直径20nm,100nm及び19580nmの3種類
のラテックス粒子について、波長300nm及び700
nmの入射光を使用して分散濃度及び光減衰率の関係を
調査した。調査結果を図6に示す。測定対象粒子のサイ
ズにも依存するが、たとえば粒径100nmのラテック
ス粒子で定量可能な領域は、上限1012〜1013個/c
c及び下限1010〜109 個/ccの範囲にあることが
判る。また、定量可能領域では、濃度に応じて検量線が
直線的に変化していることから、高精度の濃度測定が可
能であることが確認された。
Further, FIG. 5 shows a transmitted light spectrum obtained by theoretical calculation for the same latex particle. The theoretical calculation was performed in the next step. (1) Each particle size parameter (α = πD / λ; D: particle size,
λ: wavelength of incident light) latex particles [relative refractive index m =
Extinction cross sect of light per particle of 1.227 (value obtained by correcting complex index of refraction of latex 1.595 with complex index of refraction of pure water).
ion) Q ext is calculated for each incident light wavelength. (2) Calculate the Q ext calculation result of each incident light wavelength as the incident light wavelength 3
Normalize with Q ext of 00 nm. Further, in the calculation of Q ext , Mie's scattering theory solution is calculated according to the algorithm of Lentz et al. [W. J. Lentz, Appl. Opt. 15
(1976), 668] and used the coefficients a n and b n depending on the particle size of the obtained measurement particles. As is clear from the comparison between FIG. 4 and FIG. 5, it can be seen that the measurement results obtained by the measurement device according to the present invention agree with the theoretical calculation results with high accuracy. From this, the particle size in-sit
It is confirmed that u monitoring is possible. Also,
Wavelengths of 300 nm and 700 for three types of latex particles having diameters of 20 nm, 100 nm and 19580 nm.
The relationship between dispersion concentration and optical extinction ratio was investigated using incident light of nm. The survey results are shown in FIG. Although it depends on the size of the particles to be measured, the upper limit of the region that can be quantified with latex particles having a particle size of 100 nm is 10 12 to 10 13 particles / c.
c and the lower limit of 10 10 to 10 9 pieces / cc. Further, in the quantifiable region, since the calibration curve linearly changes depending on the concentration, it was confirmed that highly accurate concentration measurement is possible.

【0009】[0009]

【発明の効果】以上に説明したように、本発明において
は、粒子分散試料に投射される光を光ファイバで導くと
共に、散乱粒子を透過した光を光ファイバで分光器まで
導いている。光ファイバの使用により光路が確定される
ため、小型のセンシングヘッドのみを被測定試料に対し
て正しく指向させるだけでよい。そのため、従来の光減
衰法にみられた測定部に対する光源及び測光部の位置関
係を固定する必要がなく、小型化された装置構成で粒径
及び粒子濃度の同時測定が容易に行われる。
As described above, in the present invention, the light projected onto the particle-dispersed sample is guided by the optical fiber, and the light transmitted through the scattering particles is guided by the optical fiber to the spectroscope. Since the optical path is determined by using the optical fiber, only the small sensing head needs to be correctly oriented with respect to the sample to be measured. Therefore, it is not necessary to fix the positional relationship between the light source and the photometric unit with respect to the measuring unit, which is seen in the conventional optical attenuation method, and simultaneous measurement of the particle size and the particle concentration can be easily performed with a downsized device configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】 光散乱法によるアルミナ粒子の散乱角度30
度における光散乱強度の入射光波長と粒径との関係
FIG. 1 Scattering angle 30 of alumina particles by light scattering method
Between incident light wavelength and particle size of light scattering intensity in degrees

【図2】 従来の光減衰法で使用する測定装置FIG. 2 Measuring device used in a conventional optical attenuation method

【図3】 本発明実施例で使用した粒径及び濃度測定装
FIG. 3 is a particle size and concentration measuring device used in Examples of the present invention.

【図4】 粒径に応じたラテックス粒子の光減衰率の測
定結果
[Fig. 4] Measurement result of optical attenuation rate of latex particles according to particle size

【図5】 粒径に応じたラテックス粒子の光減衰率の理
論計算結果
FIG. 5: Theoretical calculation results of the optical attenuation rate of latex particles according to the particle size

【図6】 粒径に応じてラテックス粒子の濃度と光減衰
率測定結果との関係
FIG. 6 shows the relationship between the concentration of latex particles and the optical attenuation rate measurement result according to the particle size.

【符号の説明】[Explanation of symbols]

11:光源 12:センシングヘッド 13:分光
器 14:演算器 15:光ファイバ 16:投射側レンズ 17:粒
子分散試料 18:受光プローブ 19:光ファイ
11: light source 12: sensing head 13: spectroscope 14: calculator 15: optical fiber 16: projection side lens 17: particle dispersion sample 18: light receiving probe 19: optical fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒子分散試料を挟んで投射側レンズ及び
受光プローブが配置されたセンシングヘッドをもち、光
源から投射側レンズまでの入射光光路を光ファイバで、
受光プローブから分光器までの透過光光路を光ファイバ
でそれぞれ形成したことを特徴とする光減衰法による粒
子径及び濃度測定装置。
1. A sensing head having a projection-side lens and a light-receiving probe arranged with a particle-dispersed sample sandwiched between them, and an incident optical path from a light source to the projection-side lens is provided by an optical fiber.
An apparatus for measuring particle diameter and concentration by an optical attenuation method, characterized in that optical paths of transmitted light from a light receiving probe to a spectroscope are formed by optical fibers.
JP6142426A 1994-06-01 1994-06-01 Particle diameter and concentration measuring apparatus based on light damping method Withdrawn JPH07325025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6142426A JPH07325025A (en) 1994-06-01 1994-06-01 Particle diameter and concentration measuring apparatus based on light damping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6142426A JPH07325025A (en) 1994-06-01 1994-06-01 Particle diameter and concentration measuring apparatus based on light damping method

Publications (1)

Publication Number Publication Date
JPH07325025A true JPH07325025A (en) 1995-12-12

Family

ID=15315054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6142426A Withdrawn JPH07325025A (en) 1994-06-01 1994-06-01 Particle diameter and concentration measuring apparatus based on light damping method

Country Status (1)

Country Link
JP (1) JPH07325025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059576A1 (en) * 2001-01-25 2002-08-01 Precision System Science Co., Ltd. Small object identififying device and its identifying method
JP2008083061A (en) * 2001-01-25 2008-04-10 Precision System Science Co Ltd Minute object identifying apparatus and identification method of the apparatus
JP2009210584A (en) * 2008-03-03 2009-09-17 Agilent Technol Inc Method and system for computing particle size distribution of small particles in process
EP3751252A1 (en) * 2019-04-26 2020-12-16 Aquantis SA Particle size and concentration measuring sensor for inline industrial process monitoring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059576A1 (en) * 2001-01-25 2002-08-01 Precision System Science Co., Ltd. Small object identififying device and its identifying method
US7283229B2 (en) 2001-01-25 2007-10-16 Precision System Science Co., Ltd. Small object identifying device and its identifying method
JP2008083061A (en) * 2001-01-25 2008-04-10 Precision System Science Co Ltd Minute object identifying apparatus and identification method of the apparatus
US7426027B2 (en) 2001-01-25 2008-09-16 Precision Systems Science Co., Ltd. Small object identifying device and its identifying method
US7724364B2 (en) 2001-01-25 2010-05-25 Precision System Science Co., Ltd. Small object identifying device and its identifying method
JP2009210584A (en) * 2008-03-03 2009-09-17 Agilent Technol Inc Method and system for computing particle size distribution of small particles in process
EP3751252A1 (en) * 2019-04-26 2020-12-16 Aquantis SA Particle size and concentration measuring sensor for inline industrial process monitoring

Similar Documents

Publication Publication Date Title
Volten et al. Laboratory measurements of angular distributions of light scattered by phytoplankton and silt
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
JP4594206B2 (en) Improved differential refractometer and measurement method for measuring refractive index differential
US4134679A (en) Determining the volume and the volume distribution of suspended small particles
JP4786906B2 (en) High sensitivity differential refractometer flow cell and design method thereof
JP5517000B2 (en) Particle size measuring device and particle size measuring method
US4737648A (en) Apparatus for detecting fibrous particle sizes by detecting scattered light at different angles
CN106872316A (en) Measure the particle diameter distribution of super low concentration flue dust and the device and method of mass concentration
KR20210013017A (en) Instantaneous ellipsometer or scatterometer and related measurement methods
JPS6381226A (en) Spectrum analyzing method and device
CN101819140A (en) Continuous monitoring device and method of gaseous elemental mercury concentration
FI78355C (en) METHOD FOER MAETNING AV GLANS OCH APPARATUR FOER TILLAEMPNING AV METODEN.
WO2009067043A1 (en) Method for measuring particle size in a liquid and device for carrying out said method
CN109342348A (en) A kind of binary channels infrared gas sensor
JPH07325025A (en) Particle diameter and concentration measuring apparatus based on light damping method
CN103698153A (en) Aerosol particle sampling and detecting method and device based on energy trap method
JPH08178825A (en) Apparatus for measuring distribution of particle sizes
CN108759690B (en) Coating thickness gauge based on double-light-path infrared reflection method with good working effect
CN202928837U (en) Aerosol particle sampling and detecting device based on energy trap method
CN206399566U (en) Glass surface stress detection device and the detection prism for it
JP2004069401A (en) Internal reflection type two-dimensional imaging ellipsometer
CN209182234U (en) A kind of binary channels infrared gas sensor
US3630621A (en) Measurement of visibility through a fluid using polarized light
JPH0136571B2 (en)
RU206033U1 (en) DEVICE FOR DETERMINING THE NUMBER OF PARTICLES AND DISTRIBUTING THEM AT VELOCITY IN LIQUID BIOLOGICAL MEDIA

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904