JPS61207949A - Measuring method for discharged smoke density from heat engine - Google Patents

Measuring method for discharged smoke density from heat engine

Info

Publication number
JPS61207949A
JPS61207949A JP60047980A JP4798085A JPS61207949A JP S61207949 A JPS61207949 A JP S61207949A JP 60047980 A JP60047980 A JP 60047980A JP 4798085 A JP4798085 A JP 4798085A JP S61207949 A JPS61207949 A JP S61207949A
Authority
JP
Japan
Prior art keywords
mirror
light
laser beam
smoke
smoke flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60047980A
Other languages
Japanese (ja)
Other versions
JPH0422459B2 (en
Inventor
Kazuo Konya
紺谷 和夫
Shinichi Goto
後藤 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60047980A priority Critical patent/JPS61207949A/en
Priority to US06/838,585 priority patent/US4719360A/en
Publication of JPS61207949A publication Critical patent/JPS61207949A/en
Publication of JPH0422459B2 publication Critical patent/JPH0422459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N2021/5969Scanning of a tube, a cuvette, a volume of sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0833Fibre array at detector, resolving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/084Fibres for remote transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the absolute value of a volume density and a weight density by irradiating a single wavelength light to carbon fine particles in a discharged smoke flow. CONSTITUTION:A gaseous He-Ne laser is placed as a light source 3 on the same axis as the axis L of a smoke discharge machine 1, in front of which an inclined rotary mirror 5 for reflecting a laser beam through a half mirror 4 is provided. The rotary mirror 5 rotates a reflecting direction of the laser beam around the axis L. In order to turn a reflected light from the rotary mirror 5 to the direction for crossing a discharged smoke flow 1, a fixed plane mirror 9 is placed around a measuring area, and a fixed concave mirror 10 is provided on the opposite side. The laser beam reflected by the rotary mirror 5 is made incident on plane mirrors 8, 9, the discharged smoke flow 1, and the concave mirror 10, and thereafter, passes through an optical path in reverse and made incident on the rotary mirror again, and the laser beam passed through the discharged smoke flow 1 two times in its reciprocating motion, reflected and scattered at each passing time, and projected to a photodetector 11. By the arithmetic of an electronic computer 12 from a detected value, the absolute values of the volume density and the weight density of carbon fine particles in the discharged smoke flow are obtained, and displayed on a recording indicator 13.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、熱機関から排出される吐煙流中のカーボン微
粒子の体積濃度及び重量濃度の絶対値を測定する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a method for measuring the absolute values of the volume concentration and weight concentration of carbon fine particles in a smoke stream discharged from a heat engine.

【従来の技術l 従来、熱機関などからの吐煙の濃度を測定する方法には
、大別して2種類のものがある0例えば、ディーゼル機
関に対する上記2種類の方法のうちの一つは、ボッシュ
式スモークメータによる方法である。この方法は、吐煙
中におけるカーボン微粒子を濾紙上に吸引付着させ、そ
の濾紙における光の反射率を測定することにより吐煙の
濃度を測定するものである。他の方法は、米国の試験法
に定められた方法であり、吐煙を自由噴流状態としてお
き、その吐煙に対して横方向から白色光を当て、その光
のオパシティ−(不透過度)を測定することにより吐煙
の濃度を測定する方法である。
[Prior art l] Conventionally, there are two types of methods for measuring the concentration of smoke emitted from heat engines, etc.For example, one of the above two methods for diesel engines is the Bosch This method uses a type smoke meter. In this method, fine carbon particles in exhaled smoke are attracted onto a filter paper, and the concentration of exhaled smoke is measured by measuring the reflectance of light on the filter paper. Another method is the method specified in the American test method, in which smoke is left in a free jet state, white light is applied to the smoke from the side, and the opacity of the light is measured. This method measures the concentration of smoke by measuring the amount of smoke.

しかしながら、上記各種の測定方法は、いわゆる個々の
任意スケールによるものであり、予め定められた測定の
ための規則に従って測定することによりはじめて成り立
つものである。そのため、上記各種の測定方法により得
られた測定値の意味が異なり、各測定方法相互間の絶対
的関係は求め難いのが現状である。即ち、上記各種の方
法によっては、熱機関の吐煙流中のカーボン微粒子の絶
対的な濃度を知得することはできない。
However, the above-mentioned various measurement methods are based on so-called individual arbitrary scales, and are effective only when measurements are performed in accordance with predetermined rules for measurement. Therefore, the meanings of the measured values obtained by the various measurement methods described above are different, and it is currently difficult to determine the absolute relationship between the measurement methods. That is, the absolute concentration of carbon particles in the smoke stream of a heat engine cannot be determined by the various methods described above.

【発明が解決しようとする問題点J 本発明の目的は、熱機関からの吐煙流中におけるカーボ
ン微粒子の体積濃度及び重量濃度の絶対値を測定するた
めの簡単な方法を提供することにある。
[Problems to be Solved by the Invention J] An object of the present invention is to provide a simple method for measuring the absolute values of the volume concentration and weight concentration of carbon fine particles in a smoke stream from a heat engine. .

【問題点を解決するための手段1 上記目的を達成するため、本発明の測定方法は、熱機関
から排出される吐煙流を自由噴流状態で流出させ、この
吐煙流中のカーボン微粒子に対してレーリー散乱となる
比較的長い単一波長光を、上記吐煙流を横切る複数の方
向に照射して、その吐煙流中を透過した光の強度を受光
器で検出し、上記受光器の検出信号からの断層像の演算
により、吐煙流中のカーボン微粒子の体積濃度及び重量
濃度の絶対値を測定することを特徴とするものである。
[Means for Solving the Problems 1] In order to achieve the above object, the measurement method of the present invention allows the smoke stream discharged from a heat engine to flow out in a free jet state, and carbon particles in this smoke stream are On the other hand, relatively long single wavelength light that causes Rayleigh scattering is irradiated in multiple directions across the smoke stream, and the intensity of the light transmitted through the smoke stream is detected by a light receiver. The method is characterized in that the absolute values of the volume concentration and weight concentration of carbon particles in the smoke stream are measured by calculating a tomographic image from the detection signal.

このような本発明の測定方法においては、吐煙流に対し
て照射する中−波長光を、吐煙6流中のカーボン微粒子
に対しレーリー散乱となる比較的長い波長を有するもの
としたので、カーボン微粒子による単一波長光の吸収、
散乱を、光の透過率がカーボン微粒子の体積濃度に応じ
たものとして得られることが理論的に明らかであり、且
つ上記中−波長光を吐煙流を横切る複数の方向から照射
するようにしたので、吐煙流を透過した光の強度変化を
検出し、それらの検出値から電子計算機で噴流の全断面
に亙る断層像が求められ、吐煙流中のカーボン微粒子の
体積濃度及び重量濃度の絶対値が求められる。
In such a measurement method of the present invention, the medium-wavelength light irradiated to the smoke stream has a relatively long wavelength that causes Rayleigh scattering to the carbon particles in the smoke stream. Absorption of single wavelength light by carbon particles,
It is theoretically clear that scattering can be obtained by changing the light transmittance to the volume concentration of the carbon particles, and the medium-wavelength light is irradiated from multiple directions across the smoke flow. Therefore, changes in the intensity of light transmitted through the smoke stream are detected, and a tomographic image covering the entire cross section of the jet is obtained using a computer from these detected values, and the volume concentration and weight concentration of carbon particles in the smoke stream are calculated. Absolute value is required.

以下に、本発明の方法をさらに詳細に説明する。Below, the method of the present invention will be explained in more detail.

第1図は本発明の方法の実施に使用する装置の一例を示
し、1は熱機関から排出される吐煙流で、直径5cm程
度の自由噴流状態で大気中に流出させており、その下流
には吐煙流lを受けるダクト2が設けられている。
Figure 1 shows an example of the apparatus used to carry out the method of the present invention. 1 is a smoke stream discharged from a heat engine, which is discharged into the atmosphere in a free jet state with a diameter of about 5 cm, and is discharged downstream. A duct 2 is provided for receiving the smoke flow l.

上記吐煙流1に対し、単一波長光をその吐煙流を横切る
複数の方向に照射して、透過した光の強度から断層像の
演算を行うが、そのための装置として、まず、上記吐煙
流lの軸線りと同軸上に、例えばHe−Meガスレーザ
が光源3として配置される。上記光源3から射出される
レーザ光は、カーボン微粒子によるレーザ光の吸収、散
乱を、光の透過率がカーボン微粒子の体積濃度又は重量
濃度に応じたものとして得られるレーリー散乱として扱
い得るようにしたものである。
The smoke stream 1 is irradiated with single-wavelength light in multiple directions across the smoke stream, and a tomographic image is calculated from the intensity of the transmitted light. For example, a He-Me gas laser is arranged as a light source 3 coaxially with the axis of the smoke flow 1. The laser beam emitted from the light source 3 is configured such that absorption and scattering of the laser beam by the carbon particles can be treated as Rayleigh scattering in which the light transmittance is obtained as a function of the volume concentration or weight concentration of the carbon particles. It is something.

上記レーザ光源3の前方には、ハーフミラ−4を介して
レーザ光を反射させる傾斜回転ミラー5が設けられる。
In front of the laser light source 3, an inclined rotary mirror 5 is provided which reflects the laser light via a half mirror 4.

上記回転ミラー5は、上記軸線りと同軸上に位置するモ
ータ6の回転軸7に傾めに固定されており、その回転軸
7と共に回転して、回転ミラー5で反射するレーザ光の
反射方向を上記軸線りのまわりに回転させるように構成
している。
The rotating mirror 5 is obliquely fixed to a rotating shaft 7 of a motor 6 located coaxially with the axis, and rotates together with the rotating shaft 7 to reflect the laser beam reflected by the rotating mirror 5. is configured to rotate around the above-mentioned axis.

さらに、第1図及び第2図に示すように、上記回転ミラ
ー5からの反射光を、吐煙流lを横切る方向に向けるた
め、回転ミラー5の周囲に平面ミラー8を配置すると共
に、固定平面ミラー8が吐出流lにおける計測域のまわ
りに配置され、その固定平面ミラー9の吐煙流1を挟ん
だ反対側に固定凹面ミラー10が設けられる。上記固定
平面ミラー8.9及び固定凹面ミラー10は、第2図か
られかるように、それらによって反射する光が吐煙流l
の断面を全体にわたってスキャンしながら横切る−と共
に、同一の光路を通って再び回転ミラー5に入射するよ
うに配置されている。従って、凹面ミラー10の曲率の
中心0.は、回転ミラー5から平面ミラー8までの距離
を、第2図においてミラー8から凹面ミラー10の反対
方向へ延ばした点となる。
Furthermore, as shown in FIGS. 1 and 2, in order to direct the reflected light from the rotating mirror 5 in a direction across the smoke flow l, a flat mirror 8 is arranged around the rotating mirror 5, and a fixed A plane mirror 8 is arranged around a measurement area in the discharge flow 1, and a fixed concave mirror 10 is provided on the opposite side of the fixed plane mirror 9 across the discharge flow 1. The fixed plane mirror 8.9 and the fixed concave mirror 10, as shown in FIG.
The beam is arranged so as to scan the entire cross section of the beam and enter the rotating mirror 5 again through the same optical path. Therefore, the center of curvature of the concave mirror 10 is 0. is the point where the distance from the rotating mirror 5 to the plane mirror 8 is extended in the opposite direction from the mirror 8 to the concave mirror 10 in FIG.

これにより、上記回転ミラー5で反射したレーザ光は、
平面ミラー8.9で反射した後、吐煙流1を通過して凹
面ミラー10に入射し、その後、それまでの光路を逆に
通って再び回転ミラー5に入射し、従ってレーザ光は吐
煙流1を往復2回通過し、それぞれの通過時にレーリー
散乱状態での反射、散乱が行われる。
As a result, the laser beam reflected by the rotating mirror 5 is
After being reflected by the plane mirror 8.9, the laser beam passes through the smoke flow 1 and enters the concave mirror 10, and then passes through the previous optical path in the reverse direction and enters the rotating mirror 5 again. The light passes through the stream 1 twice in a round trip, and upon each pass, reflection and scattering occur in a Rayleigh scattering state.

また、上記平面ミラー8.8と凹面ミラー10は、第2
図かられかるように、その複数組を吐煙流lにおける計
測域のまわりに配設している。
Further, the plane mirror 8.8 and the concave mirror 10 are connected to a second
As can be seen from the figure, a plurality of sets are arranged around the measurement area in the smoke flow l.

上記各平面ミラー8,9及び凹面ミラー10を往復して
回転ミラー5に戻ったレーザ光は、再びその回転ミラー
5で反射してハーフミラ−4に入射し、そこで反射した
レーザ光は、その強度変化を検出するための受光器11
に投射される。これにより、回転ミラー5の回転位置に
おける平面ミラー8と凹面ミラー10からの反射光が、
順次受光器11に投射されることになる。
The laser beam that has returned to the rotating mirror 5 after reciprocating through the plane mirrors 8, 9 and the concave mirror 10 is reflected again by the rotating mirror 5 and enters the half mirror 4, and the laser beam reflected there is determined by its intensity. Light receiver 11 for detecting changes
is projected on. As a result, the reflected light from the plane mirror 8 and the concave mirror 10 at the rotational position of the rotating mirror 5 is
The light is sequentially projected onto the light receiver 11.

上記受光器11には、そこで得られる検出信号を処理す
るための電子計算R12、及びその処理結果を記録表示
する記録表示器!3が接続されている。
The light receiver 11 includes an electronic calculation R12 for processing the detection signal obtained there, and a recording display for recording and displaying the processing results! 3 is connected.

上記電子計算機12は、受光器11の検出信号からの断
層像の演算を行うものである。
The electronic computer 12 calculates a tomographic image from the detection signal of the light receiver 11.

上記構成の装置により吐煙流1中のカーボン微粒子の体
積濃度を測定するには、上述したところかられかるよう
に、自由噴流状態の吐煙流1に対し、回転ミラー5を回
転させなからレーザ光を投射し、それが平面ミラー8を
介して各平面ミラー8に入射する毎に、その平面ミラー
9と対向する固定凹面ミラー10との共働により、吐煙
流1の断面を全体にわたって横断通過させ、その透過光
を受光器11により受光して強度変化が検出される。
In order to measure the volume concentration of carbon particles in the smoke stream 1 with the device configured as described above, as can be seen from the above, the rotating mirror 5 must be rotated with respect to the smoke stream 1 in a free jet state. Each time a laser beam is projected and enters each plane mirror 8 via a plane mirror 8, the plane mirror 9 and the opposing fixed concave mirror 10 work together to spread the entire cross section of the smoke stream 1. The transmitted light is received by the light receiver 11 and changes in intensity are detected.

これは、回転ミラー5の回転に伴って、レーザ光が入射
する平面ミラー8.9が変る毎に繰返され。
This is repeated each time the plane mirror 8.9 on which the laser beam is incident changes as the rotary mirror 5 rotates.

その繰返しにより吐煙流1は放射方向からレーザ光によ
り照射され、各照射方向毎のレーザ光についての強度変
化が検出されることになる。従って、それらの検出値か
ら電子計算機によって断層像を演算し、吐煙流中のカー
ボン微粒子の体積濃度及び重量濃度の絶対値が得られ、
それが記録表示器に記録表示される。
By repeating this process, the smoke flow 1 is irradiated with laser light from the radial direction, and the intensity change of the laser light in each irradiation direction is detected. Therefore, a tomographic image is calculated by an electronic computer from these detected values, and the absolute values of the volume concentration and weight concentration of carbon particles in the smoke stream are obtained.
This is recorded and displayed on the record display.

また、本発明を実施するために、第3図及び第4図に示
すような装置を用いることもできる。
Furthermore, apparatuses such as those shown in FIGS. 3 and 4 can also be used to carry out the present invention.

この装置は、第1図及び第2図に示す装置において凹面
鏡10を配設した位置に、その凹面鏡10に代えて、多
数のグラスファイバー15の受光端16を配列設置した
もので、これらの各グラスファイバー15はその他端が
図示しない単一の受光器に接続される。さらに、その受
光器が電子計算機及び記録表示器に接続され、第1図及
び第2図の装置とほぼ同様にして断層像の演算を行い、
吐煙流中のカーボン微粒子の体積濃度及び重量濃度が測
定される。
In this device, in place of the concave mirror 10 in the device shown in FIGS. 1 and 2, a large number of light receiving ends 16 of glass fibers 15 are arranged and arranged. The other end of the glass fiber 15 is connected to a single light receiver (not shown). Furthermore, the light receiver is connected to an electronic computer and a recording display, and a tomographic image is calculated in substantially the same manner as the apparatus shown in FIGS. 1 and 2.
The volume concentration and weight concentration of carbon particles in the smoke stream are measured.

即ち、上記装置においては、レーザ光が吐煙流1内を往
復することなく、それを1回だけしか透過しないが、そ
の透過光がグラスファイバー15を通じて受光器で受光
され、そして受光器においては各グラスファイバーの受
光強度が逐次変動し、それによってどのグラスファイバ
ーの受光端で透過光の検出が行われているかを知ること
ができると同時に、受光器による測定値と測定域に吐煙
流がない場合の校正値とを比較することにより、吐煙流
による減光の程度を検出することができ、従ってその測
定結果に基づいて断層像の演算を行うと同時に、吐煙流
中のカーボン微粒子の体積濃度及び重量濃度を測定する
ことができる。
That is, in the above device, the laser beam does not go back and forth within the smoke flow 1 and passes through it only once, but the transmitted light is received by the light receiver through the glass fiber 15, and the light is transmitted through the light receiver through the glass fiber 15. The received light intensity of each glass fiber fluctuates sequentially, which makes it possible to know which glass fiber's receiving end is detecting transmitted light. The degree of light attenuation due to the smoke flow can be detected by comparing with the calibration value when there is no smoke flow, and the tomographic image can be calculated based on the measurement results. The volumetric and gravimetric concentrations of can be measured.

なお、その他の構成及び作用は第1図反び第2図の場合
と変らないので、同一または相当部分に同一の符号を付
してその説明を省略する。
Note that the other configurations and operations are the same as those in FIG. 1 and FIG. 2, so the same or corresponding parts will be given the same reference numerals and their explanation will be omitted.

また、本発明の方法は、上述した2例の装置に限ること
なく、レーザ光源及び受光器の複数組を吐煙流1のまわ
りに配設し、それらのレーザ光源からの複数のレーザ光
で吐煙流を同時に照射して、吐煙流を通過した各レーザ
光をそれぞれ受光器で受光するように構成することもで
き、これにより上記カーボン微粒子の体積濃度及び重量
濃度の測定を高速の応答性をもって行うことができる。
Furthermore, the method of the present invention is not limited to the above-mentioned two examples of devices, but can also include a plurality of sets of laser light sources and light receivers arranged around the smoke flow 1, and a plurality of laser lights from these laser light sources. It is also possible to construct a structure in which the smoke stream is irradiated at the same time, and each laser beam that has passed through the smoke stream is received by a light receiver, thereby enabling the measurement of the volume concentration and weight concentration of the carbon particles with a high-speed response. It can be done with gender.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用する装置の全体構成を示す
概略的正面図、第2図はそのA−A断面の概略説明図、
第3図は上記装置の他の構成例を示す概略的正面図、第
4図は第2図と同様な位置での概略説明図である。 第1図 り 第2図 O
FIG. 1 is a schematic front view showing the overall configuration of the device used for carrying out the present invention, FIG. 2 is a schematic explanatory view of the A-A cross section thereof,
FIG. 3 is a schematic front view showing another configuration example of the above device, and FIG. 4 is a schematic explanatory view at the same position as FIG. 2. 1st diagram 2nd diagram O

Claims (1)

【特許請求の範囲】[Claims] 1、熱機関から排出される吐煙流を自由噴流状態で流出
させ、この吐煙流中のカーボン微粒子に対しレーリー散
乱となる比較的長い単一波長光を、上記吐煙流を横切る
複数の方向に照射して、その吐煙流中を透過した光の強
度を受光器で検出し、上記受光器の検出信号からの断層
像の演算により、吐煙流中のカーボン微粒子の体積濃度
及び重量濃度の絶対値を測定することを特徴とする熱機
関の吐煙濃度測定方法。
1. The smoke stream discharged from the heat engine is made to flow out in a free jet state, and a relatively long single wavelength light that causes Rayleigh scattering is transmitted to the carbon particles in the smoke stream at multiple points across the smoke stream. The intensity of the light transmitted through the smoke stream is detected by a light receiver, and the volume concentration and weight of the carbon particles in the smoke stream are calculated by calculating a tomographic image from the detection signal of the light receiver. A method for measuring smoke concentration from a heat engine, characterized by measuring the absolute value of concentration.
JP60047980A 1985-03-11 1985-03-11 Measuring method for discharged smoke density from heat engine Granted JPS61207949A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60047980A JPS61207949A (en) 1985-03-11 1985-03-11 Measuring method for discharged smoke density from heat engine
US06/838,585 US4719360A (en) 1985-03-11 1986-03-11 Method for determination of concentration of smoke emanating from combustion engine and apparatus for working said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047980A JPS61207949A (en) 1985-03-11 1985-03-11 Measuring method for discharged smoke density from heat engine

Publications (2)

Publication Number Publication Date
JPS61207949A true JPS61207949A (en) 1986-09-16
JPH0422459B2 JPH0422459B2 (en) 1992-04-17

Family

ID=12790457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047980A Granted JPS61207949A (en) 1985-03-11 1985-03-11 Measuring method for discharged smoke density from heat engine

Country Status (1)

Country Link
JP (1) JPS61207949A (en)

Also Published As

Publication number Publication date
JPH0422459B2 (en) 1992-04-17

Similar Documents

Publication Publication Date Title
US3861809A (en) Confocal cavity optical gas sensor
US4081215A (en) Stable two-channel, single-filter spectrometer
US4540283A (en) Apparatus and method for determining the size and velocity of particles, droplets, bubbles or the like using laser light scattering
CN101216409B (en) Multi-source chromatography laser measurement method and device for flue gas, particle concentration and temperature distribution
US4254337A (en) Infrared interference type film thickness measuring method and instrument therefor
US4249244A (en) Electro-optical system and method and apparatus for providing automatically-compensating, traceable calibration and zeroing for light scattering devices
US4737648A (en) Apparatus for detecting fibrous particle sizes by detecting scattered light at different angles
JPH0231820B2 (en)
US5748311A (en) Apparatus and method of particle geometry measurement by speckle pattern analysis
US5908789A (en) Analysis of gas mixtures with an infrared method
JP2001033384A (en) Method and device for evaluating particle using multiple-scanning beam reflection factor
JP2008039539A (en) Light scattering detector
JPH0643030A (en) Portable spectrophotometer
JPH07501397A (en) Measuring method and device
US4719360A (en) Method for determination of concentration of smoke emanating from combustion engine and apparatus for working said method
JPS5847657B2 (en) Ryu Taibun Sekiki
JPH02266247A (en) Web inspection method and apparatus
Horvath Comparison of measurements of aerosol optical absorption by filter collection and a transmissometric method
JPH0321072B2 (en)
US4477187A (en) Apparatus and method for sizing particles
US3947127A (en) Optical component functional tester
JPS61207949A (en) Measuring method for discharged smoke density from heat engine
CN114008442A (en) Compact gas sensor
JPH1164217A (en) Component quantity detecting device for spectral analyzer
CN214472576U (en) Probing type receiving and transmitting integrated optical fiber dust concentration measuring device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term