JPH04224043A - Shell mold - Google Patents

Shell mold

Info

Publication number
JPH04224043A
JPH04224043A JP2417618A JP41761890A JPH04224043A JP H04224043 A JPH04224043 A JP H04224043A JP 2417618 A JP2417618 A JP 2417618A JP 41761890 A JP41761890 A JP 41761890A JP H04224043 A JPH04224043 A JP H04224043A
Authority
JP
Japan
Prior art keywords
mold
resin
shell mold
hole
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2417618A
Other languages
Japanese (ja)
Inventor
Yuji Sakakibara
雄二 榊原
Yasuo Takada
保夫 高田
Hiroaki Hayashi
宏明 林
Masahiro Sugiura
杉浦 正洽
Yoshihide Saitake
斉竹 美秀
Tetsuo Haraga
原賀 哲男
Ryuichi Masuda
隆一 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2417618A priority Critical patent/JPH04224043A/en
Publication of JPH04224043A publication Critical patent/JPH04224043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a shell mold having difficult-to-develop heat decomposing material of resin, etc., and high mechanical strength. CONSTITUTION:Hole is arranged in the shell mold forming the resin as binder and powder or granules of porous material of seviolite, etc., is packed. Particularly, in the position producing much heat decomposition, the hole is arranged. The powder of porous material may be coated on surface of the mold. The producing material of resin, etc., is passed through the hole and absorbed and decomposed with the packed material. Further, in the case of arranging coating layer, this is absorbed and decomposed with the coating layer, too, producing quantity of the resin, etc., is restrained and gas defect is made to little. Lowering of strength in the mold is scarcely developed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は樹脂と鋳物砂により作製
したシェル鋳型に関し、鋳造時におけるヤニの発生量を
少なくすることができる鋳造用鋳型に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shell mold made of resin and foundry sand, and more particularly to a casting mold that can reduce the amount of resin generated during casting.

【0002】0002

【従来の技術】鋳造用鋳型の主型および中子(以下、単
に鋳型とする)の製造方法としては、従来よりフェノー
ル樹脂等の合成樹脂が熱によって硬化する性質を利用し
たシェルモールド法が多く採用されている。この方法に
よって製造された鋳型をシェル鋳型という。シェルモー
ルド法に用いられる鋳型材料としては、珪砂等の砂粒に
フェノール樹脂等の熱硬化性樹脂を被覆した鋳物砂(レ
ジンコーテッドサンド)が一般的に使用されている。ま
た、鋳型の製造方法にはコールドボックス等の常温硬化
性の樹脂を用いる方法もある。
[Prior Art] Shell molding, which takes advantage of the property of synthetic resins such as phenol resins being hardened by heat, has traditionally been the most popular method for manufacturing the main mold and core (hereinafter simply referred to as molds) of casting molds. It has been adopted. A mold manufactured by this method is called a shell mold. As a mold material used in the shell molding method, foundry sand (resin coated sand), which is made by coating sand grains such as silica sand with a thermosetting resin such as phenol resin, is generally used. Further, there is also a method of manufacturing a mold using a resin that hardens at room temperature, such as a cold box.

【0003】しかしながら、この常温硬化性樹脂あるい
は熱硬化性樹脂(以下、単に樹脂という)を被覆した鋳
物砂により作製したシェル鋳型を用いて、アルミニウム
、マグネシウムおよびこれらの合金のごとく比較的鋳造
温度の低い溶湯温度で鋳造を行うと、これら樹脂の分解
が不十分となりヤニが発生する。そして、これらヤニが
ガス抜き用ベント等に付着し目詰まりを起こし、さらに
は発生したガスがキャビティ側へ流れて鋳造欠陥となる
。これを防ぐためにはベントに付着したヤニの掃除を頻
繁に行わなければならず、保全に大きな負担がかかる。
However, using a shell mold made of molding sand coated with room-temperature curing resin or thermosetting resin (hereinafter simply referred to as resin), molds such as aluminum, magnesium, and their alloys, which have relatively low casting temperatures, are used. If casting is performed at a low molten metal temperature, the decomposition of these resins will be insufficient and tar will occur. Then, these resins adhere to gas vents and the like, causing clogging, and furthermore, the generated gas flows toward the cavity side, resulting in casting defects. In order to prevent this, the resin adhering to the vents must be cleaned frequently, which places a heavy burden on maintenance.

【0004】これらの問題を解決するために含水珪酸マ
グネシウム、活性炭、活性アルミナ等の多孔性物質をレ
ジンコーテッドサンドに添加する方法(特開昭62─4
5446号、特開昭63─60042号)および鋳型表
面に被覆する方法(特開平1─202336号)がある
。しかしながら、特開昭62─45446号、特開昭6
3─60042号に開示された技術は鋳物砂に多孔性物
質を混入させるので、できたシェル鋳型の強度を低下さ
せる恐れがあった。また、特開平1─202336号に
開示された技術は多孔性物質が鋳型の最表面にしか存在
しないためにガス欠陥が発生するような局所的にガス発
生の多い部分や鋳型の肉厚が大きくガス発生量の多いと
ころではヤニの発生を完全に抑制することができなかっ
た。
[0004] In order to solve these problems, a method of adding porous substances such as hydrous magnesium silicate, activated carbon, and activated alumina to resin-coated sand (Japanese Patent Laid-Open No. 62-4
5446, JP-A-63-60042) and a method of coating the mold surface (JP-A-1-202336). However, JP-A-62-45446, JP-A-6
Since the technique disclosed in No. 3-60042 mixes porous substances into the foundry sand, there is a risk that the strength of the resulting shell mold may be reduced. In addition, the technology disclosed in Japanese Patent Application Laid-open No. 1-202336 is applicable to areas where a large amount of gas is generated locally, where gas defects occur because the porous material exists only on the outermost surface of the mold, and where the mold wall thickness is large. It was not possible to completely suppress the generation of tar in areas where a large amount of gas was generated.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は鋳造時
におけるシェル鋳型からのヤニの発生量をより少なくす
るとともに、鋳型の機械的強度をも十分に確保できる鋳
造用シェル鋳型を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a shell mold for casting that can further reduce the amount of resin generated from the shell mold during casting and also ensure sufficient mechanical strength of the mold. It is in.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、前期従来技術の問題点を解決した新規な構造を有
するシェル鋳型を発明するに至った。
[Means for Solving the Problems] As a result of intensive research, the present inventors have come to invent a shell mold having a novel structure that solves the problems of the prior art.

【0007】本発明は樹脂を粘結剤として形成されるシ
ェル鋳型において前記樹脂の熱分解生成物に対する吸着
、吸収あるいは分解等の作用を有する多孔性物質を充填
するための孔を設けたことを特徴とするシェル鋳型に関
する。
[0007] The present invention provides a shell mold formed using a resin as a binder, in which holes are provided for filling with a porous substance that has an effect of adsorbing, absorbing, or decomposing the thermal decomposition products of the resin. Regarding the characteristic shell mold.

【0008】本発明の熱分解生成物とは鋳造時の熱によ
り樹脂が気化あるいは分解して生成した物質をいう。
[0008] The pyrolysis product of the present invention refers to a substance produced by vaporization or decomposition of resin due to heat during casting.

【0009】シェル鋳型の孔に充填する多孔性物質の形
状は、粉末状、顆粒状あるいはペレット状等、設けた孔
の大きさ、形状に適合した充填しやすいものがよい。さ
らには、ガス抜けがよく、ガスと充填材との接触面積が
大きくなる形状および充填方法が好適である。また、本
発明の孔の数は多いほど効果があるが、多すぎると鋳型
の強度が低下する。また、孔の大きさおよび形状も鋳型
の強度が低下しない程度にする必要がある。孔の方向は
どちらの方向でもよいが、鋳型から発生したガスが外部
に放出しやすい部位、鋳型の肉厚が大きい部位に設ける
のが望ましい。
[0009] The shape of the porous substance to be filled into the holes of the shell mold is preferably one that is easy to fill and matches the size and shape of the holes, such as powder, granules, or pellets. Furthermore, a shape and a filling method that allow good gas release and a large contact area between the gas and the filler are preferred. Furthermore, although the greater the number of holes in the present invention, the better the effect, if there are too many holes, the strength of the mold will decrease. Furthermore, the size and shape of the holes must be such that the strength of the mold is not reduced. The holes may be in either direction, but it is preferable to provide them in areas where gas generated from the mold is likely to be released to the outside, or in areas where the mold has a large wall thickness.

【0010】0010

【作用】シェル鋳型に用いられる鋳型材料としては、珪
砂等の砂粒にフェノール樹脂等の熱硬化性樹脂あるいは
コールドボックス等の常温硬化性の樹脂を被覆した鋳物
砂(レジンコーテッドサンド)が使用される。このよう
な鋳物砂からできた鋳型にアルミニウム、マグネシウム
等の比較的温度の低い溶湯を流し込むと、被覆した樹脂
が十分に分解しないいまま熱分解生成物となって蒸発す
る。この熱分解生成物は従来の鋳型においてはベント等
の低温部に触れ、たとえばヤニとなって付着していた。
[Function] The mold material used for shell molds is foundry sand (resin-coated sand), which is made by coating sand grains such as silica sand with thermosetting resin such as phenol resin or room temperature curing resin such as cold box. . When a relatively low-temperature molten metal such as aluminum or magnesium is poured into a mold made of such foundry sand, the coated resin becomes a thermal decomposition product and evaporates without being sufficiently decomposed. In conventional molds, these thermal decomposition products come into contact with low-temperature parts such as vents and adhere as tar, for example.

【0011】本発明の鋳型では鋳型各所に樹脂から発生
した熱分解生成物を吸着あるいは分解する多孔性物質を
充填した孔を設けている。この孔はガス抜き孔の作用も
有するので鋳型内で発生した熱分解生成物は溶湯内に拡
散することなくこの孔に集まる。孔に集められた熱分解
生成物は孔に充填された多孔性物質に接触する。この熱
分解生成物は鋳物砂に被覆した樹脂から発生するもので
あり、主として高分子である。これらは多孔性物質に一
部は吸着、吸収され、あるいは多孔性物質の触媒作用に
よって分解されて、H2 O,CO2 ,CH4 とい
った低分子に変化する。
[0011] In the mold of the present invention, holes filled with a porous material that adsorbs or decomposes thermal decomposition products generated from the resin are provided in various parts of the mold. Since this hole also functions as a gas vent hole, thermal decomposition products generated within the mold collect in this hole without diffusing into the molten metal. The pyrolysis products collected in the pores come into contact with the porous material filling the pores. This thermal decomposition product is generated from the resin coated on the foundry sand and is mainly a polymer. A portion of these is adsorbed or absorbed by the porous material, or decomposed by the catalytic action of the porous material, and converted into low molecules such as H2O, CO2, and CH4.

【0012】0012

【発明の効果】本発明の鋳型では上記作用に記したごと
く、孔に充填した多孔性物質により鋳造時に樹脂から発
生した熱分解生成物を吸着、吸収もしくは分解するため
、発生した熱分解生成物が直接ガス抜きベント等に接触
してヤニ等として付着し目詰まりを起こすことが少なく
なる。このためヤニの清掃等の保全に対する工数を大き
く低減できる。その他の熱分解生成物に起因する発生物
の放出を減少させるので環境保全に役立つ。
Effects of the Invention: As described in the above action, in the mold of the present invention, the porous material filled in the pores adsorbs, absorbs or decomposes the thermal decomposition products generated from the resin during casting. It is less likely that the gas will come into direct contact with the gas vent, etc. and adhere as tar and cause clogging. Therefore, the man-hours required for maintenance such as cleaning of resin can be greatly reduced. It helps protect the environment by reducing the release of products caused by other thermal decomposition products.

【0013】さらには、発生した熱分解生成物は鋳型に
設けた多孔性物質を充填した孔に流れ込むためキャビテ
ィ側に流入することがなく、鋳造欠陥の発生が減少する
。さらに、本発明の鋳型にはその機械的強度に影響しな
い程度に孔を設けている。そのために鋳物砂に多孔性物
質の異物を混入させたものに比べて鋳型自身の機械的強
度の低下は少ない。
Furthermore, since the generated thermal decomposition products flow into the holes filled with porous material provided in the mold, they do not flow into the cavity side, thereby reducing the occurrence of casting defects. Furthermore, the mold of the present invention is provided with holes to the extent that its mechanical strength is not affected. Therefore, the mechanical strength of the mold itself is less reduced than when porous foreign matter is mixed into the molding sand.

【0014】(その他の発明)本発明の熱分解生成物と
しては鋳造時に発生するヤニ、煙および悪臭等があげら
れる。
(Other inventions) The thermal decomposition products of the present invention include tar, smoke, and bad odor generated during casting.

【0015】本発明において、粉状の多孔性物質として
は、含水珪酸マグネシウム粘土鉱物、活性炭、活性アル
ミナ等があり、これらの1種類または2種類以上の混合
物を用いる。このうち、含水珪酸マグネシウム粘土鉱物
は含水珪酸マグネシウムが主成分であり、比表面積が1
00〜400m2 /gと大きい。該含水珪酸マグネシ
ウム粘土鉱物は具体的にはセピオライト(Sepiol
ite) 、このものは通称、マウンテンコルク(Mo
untain cork) 、マウンテンウッド(Mo
untain wood) 、マウンテンレザー(Mo
untain leather)、海泡石(Meers
−chaum) 等と呼ばれる鉱物である。また、含水
アルミニウムシリケートを主成分とするパリゴルスカイ
ト(Palygorskite)等があり、このものは
アタパルジャイト(Attapulgite) とも呼
ばれる鉱物である。
In the present invention, powdery porous substances include hydrous magnesium silicate clay minerals, activated carbon, activated alumina, etc., and one type or a mixture of two or more of these is used. Among these, hydrated magnesium silicate clay minerals are mainly composed of hydrated magnesium silicate and have a specific surface area of 1
It is large at 00-400m2/g. Specifically, the hydrated magnesium silicate clay mineral is sepiolite.
ite), this thing is commonly known as mountain cork (Mo
untain cork), mountain wood (Mo
untain wood), mountain leather (Mo
untain leather), meerschaum (Meers)
-chaum) etc. There is also palygorskite, which is a mineral whose main component is hydrated aluminum silicate, and is also called attapulgite.

【0016】また、活性炭は比表面積が400〜200
0m2 /gと大きく、ヤシ殻炭、素灰等の植物質のも
の、石炭系や石油系原料から製造される鉱物質のものと
がある。また、活性アルミナは水和アルミナを高温に加
熱して得られたものであり、α─アルミナになる途中の
段階の中間アルミナで比表面積が50〜400m2 /
gある。この中間アルミナは無水アルミナともいい、こ
の中にはρ、χ、η、γ、δ、θ、κのアルミナやベー
マイト等が含まれる。
[0016] Furthermore, activated carbon has a specific surface area of 400 to 200
It is as large as 0m2/g, and includes vegetable materials such as coconut shell charcoal and raw ash, and mineral materials manufactured from coal-based and petroleum-based raw materials. Activated alumina is obtained by heating hydrated alumina to a high temperature, and is an intermediate alumina in the process of becoming α-alumina, with a specific surface area of 50 to 400 m2/
There is g. This intermediate alumina is also called anhydrous alumina, and includes ρ, χ, η, γ, δ, θ, κ alumina, boehmite, and the like.

【0017】本発明の構成の鋳型はヤニ発生の防止効果
をさらに向上させるために、鋳型表面を多孔性物質で被
覆してもよい。これらの多孔性物質は鋳型の砂粒間の窪
みおよび表面に被覆させるために粉状で用いた方がよく
、200μm以下の粒径であることが望ましい。また、
被覆材としての多孔性物質を鋳型の窪みおよび表面に被
覆する方法としては水、アルコール等を溶媒としてスプ
レーあるいは刷毛塗りをした後に乾燥する方法や流動層
を用いる方法等がある。
[0017] In the mold having the structure of the present invention, the surface of the mold may be coated with a porous material in order to further improve the effect of preventing tar formation. These porous substances are preferably used in powder form in order to coat the cavities between the sand grains and the surface of the mold, and preferably have a particle size of 200 μm or less. Also,
Methods for coating the cavity and surface of the mold with a porous substance as a coating material include a method of spraying or brushing with water, alcohol, etc. as a solvent, followed by drying, and a method of using a fluidized bed.

【0018】[0018]

【実施例】(実施例1)以下、本発明を実施例を用いて
より具体的に説明する。本実施例は含水珪酸マグネシウ
ム粘土鉱物であるセピオライト粉末を充填した孔を持っ
た中子(図1)と、珪砂からできたCO2 型の主型を
用いてアルミ合金AC2Bを鋳込んだ例を示す。主型は
珪砂に珪酸ソーダを被覆し、CO2 を吹きつけて硬化
させて作製するCO2 型であり、その外寸は縦120
mm 、横120mm 、高さ150mm で上面から
直径75mm、深さ135mm のキャビティを持ち、
キャビティの中心には直径30mmの図1の中子1が入
っている。中子1はノボラック型フェノール樹脂を1.
4 重量部被覆した珪砂から作られたものである。中子
の中心には直径4mm の孔2を設け、平均粒径100
 μmのセピオライト粒3を充填した。この鋳型に75
0 ℃のアルミ合金AC2Bを注湯し発生ガスを1 l
/min で10分間吸引し、途中、水で配管を冷却し
、配管の壁面に付着したヤニをクロロホルムで溶解して
回収した。回収したクロロホルム溶液の透過率を分光光
度計で測定することによって、付着ヤニ量を後述の比較
例と比較した。
EXAMPLES (Example 1) Hereinafter, the present invention will be explained in more detail using examples. This example shows an example in which aluminum alloy AC2B was cast using a core with holes filled with sepiolite powder, which is a hydrous magnesium silicate clay mineral (Fig. 1), and a CO2-type main mold made of silica sand. . The main mold is a CO2 mold, which is made by coating silica sand with sodium silicate and hardening it by spraying CO2.
mm, width 120mm, height 150mm, and a cavity with a diameter of 75mm and a depth of 135mm from the top surface.
The core 1 shown in FIG. 1 with a diameter of 30 mm is placed in the center of the cavity. Core 1 is made of novolac type phenol resin.
Made from 4 parts by weight coated silica sand. A hole 2 with a diameter of 4 mm is provided in the center of the core, and the average particle size is 100.
It was filled with sepiolite grains 3 having a diameter of .mu.m. 75 in this mold
Pour aluminum alloy AC2B at 0℃ and generate 1 liter of gas.
/min for 10 minutes, during which time the piping was cooled with water, and the resin adhering to the walls of the piping was dissolved with chloroform and collected. By measuring the transmittance of the collected chloroform solution with a spectrophotometer, the amount of tar attached was compared with a comparative example described below.

【0019】また、比較例としてセピオライトを充填し
た孔もセピオライトの被覆層も持たないシェル鋳型の中
子を作製し、上記と同様の方法によりアルミ合金を鋳込
むとともに、配管壁面に付着したヤニの透過率を測定し
た。結果を図2に示す。図より明らかなようにセピオラ
イトを充填した孔を設けたものの透過率は比較例より優
れており、多孔性物質を充填した孔を有する鋳型構造と
することによってヤニ発生量が相当程度抑制できた。ま
た、本実施例の鋳型は孔を有しているものの実用上充分
な強度を有していた。
In addition, as a comparative example, a core of a shell mold without sepiolite-filled holes or a sepiolite coating layer was prepared, and an aluminum alloy was cast in the same method as above, and the resin attached to the pipe wall was removed. Transmittance was measured. The results are shown in Figure 2. As is clear from the figure, the transmittance of the mold with pores filled with sepiolite was superior to that of the comparative example, and the amount of tar generated could be suppressed to a considerable extent by using a mold structure with pores filled with a porous substance. Further, although the mold of this example had holes, it had sufficient strength for practical use.

【0020】(実施例2)本実施例は含水珪酸マグネシ
ウム粘土鉱物であるセピオライト粉末を充填した孔を有
するとともに、その表面をセピオライトで被覆した中子
(図3)と、珪砂からできたCO2 型の主型を用いて
アルミ合金AC2Bを鋳込んだ例を示す。主型は珪砂に
珪酸ソーダを被覆し、CO2を吹きつけて硬化させて作
製するCO2 型であり、その外寸は縦120mm 、
横120mm 、高さ150mm で上面から直径75
mm、深さ135mm のキャビティを持ち、キャビテ
ィの中心には直径30mmの図3の中子1を有する。中
子1はノボラック型フェノール樹脂を1.4 重量部被
覆した珪砂から作られたものである。中子の中心には直
径4mm の孔2を設け、平均粒径100 μmのセピ
オライト粒3を充填した。さらに、その表面には粒径5
0μm以下のセピオライト粉末4を流動層により被覆し
た。
(Example 2) This example has a core having holes filled with sepiolite powder, which is a hydrous magnesium silicate clay mineral, and whose surface is coated with sepiolite (Fig. 3), and a CO2 mold made of silica sand. An example of casting aluminum alloy AC2B using the main mold is shown below. The main mold is a CO2 mold, which is made by coating silica sand with sodium silicate and hardening it by spraying CO2, and its external dimensions are 120 mm in height.
Width 120mm, height 150mm, diameter 75mm from the top
It has a cavity with a diameter of 30 mm and a depth of 135 mm, and a core 1 shown in FIG. 3 with a diameter of 30 mm in the center of the cavity. Core 1 was made from silica sand coated with 1.4 parts by weight of novolak type phenolic resin. A hole 2 with a diameter of 4 mm was provided in the center of the core, and the hole 2 was filled with sepiolite grains 3 with an average grain size of 100 μm. Furthermore, the surface has a particle size of 5
Sepiolite powder 4 of 0 μm or less was coated with a fluidized bed.

【0021】この鋳型に750 ℃のアルミ合金AC2
Bを注湯し発生ガスを1 l/min で10分間吸引
し、途中、水で配管を冷却し、配管の壁面に付着したヤ
ニをクロロホルムで溶解して回収した。回収したクロロ
ホルム溶液の透過率を分光光度計で測定することによっ
て、付着ヤニ量を実施例1、および比較例と比較した。 結果を図2に示した。図より明らかなようにセピオライ
トを被覆し、さらに、セピオライトを充填した孔を設け
た鋳型の透過率は実施例1よりさらに高く、鋳型に多孔
性物質を充填した孔を設けることによってヤニ発生量を
さらに抑制することができた。また、本実施例の鋳型は
孔を有しているものの実用上充分な強度を有していた。
[0021] Aluminum alloy AC2 at 750°C was placed in this mold.
B was poured and the generated gas was sucked in at 1 l/min for 10 minutes, during which time the piping was cooled with water, and the resin adhering to the walls of the piping was dissolved with chloroform and recovered. By measuring the transmittance of the collected chloroform solution with a spectrophotometer, the amount of tar attached was compared with Example 1 and Comparative Example. The results are shown in Figure 2. As is clear from the figure, the transmittance of the mold coated with sepiolite and provided with pores filled with sepiolite was even higher than in Example 1, and by providing the pores filled with a porous material in the mold, the amount of tar generated was reduced. We were able to suppress it further. Further, although the mold of this example had holes, it had sufficient strength for practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1で用いた中子の断面図である。FIG. 1 is a sectional view of a core used in Example 1.

【図2】実施例のヤニを溶出した溶液の透過率を示す線
図である。
FIG. 2 is a diagram showing the transmittance of a solution in which tar was eluted in an example.

【図3】実施例2で用いた中子の断面図である。FIG. 3 is a cross-sectional view of the core used in Example 2.

【符号の説明】[Explanation of symbols]

1  中子 2  孔 3  孔に充填されたセピオライト粒 1 Core 2 holes 3 Sepiolite grains filled in the pores

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  樹脂を粘結剤として形成されるシェル
鋳型において前記樹脂の熱分解生成物に対する吸着、吸
収あるいは分解等の作用を有する多孔性物質を充填する
ための孔を設けたことを特徴とするシェル鋳型。
1. A shell mold formed using a resin as a binder is provided with pores for filling with a porous substance that has an effect of adsorbing, absorbing, or decomposing the thermal decomposition products of the resin. shell mold.
JP2417618A 1990-12-26 1990-12-26 Shell mold Pending JPH04224043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417618A JPH04224043A (en) 1990-12-26 1990-12-26 Shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417618A JPH04224043A (en) 1990-12-26 1990-12-26 Shell mold

Publications (1)

Publication Number Publication Date
JPH04224043A true JPH04224043A (en) 1992-08-13

Family

ID=18525701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417618A Pending JPH04224043A (en) 1990-12-26 1990-12-26 Shell mold

Country Status (1)

Country Link
JP (1) JPH04224043A (en)

Similar Documents

Publication Publication Date Title
CN104903023B (en) The manufacture method of precoated sand and its manufacture method and casting mold
US8215373B2 (en) Coating composition which adsorbs adourous and harmful substances and is intended for the box casting of metals
JP3557430B2 (en) Metal casting mold, metal casting method, and molded article of refractory composition used therefor
ES2886151T3 (en) Use of expanded perlite closed-pore microspheres as fillers for the production of mold bodies for the foundry industry
CN102892529A (en) Foundry coating composition
US3314116A (en) Gasifiable casting pattern
JP2011521785A5 (en)
JP6868026B2 (en) Manufacturing method of refractory composite particles and feeder members for the casting industry, equivalent feeder members and use
US4767801A (en) Molding material and mold
DE19725210C1 (en) Method for producing metal sponge
CN107457345A (en) A kind of clay green-sand without coal dust
JPH04224043A (en) Shell mold
US4248974A (en) Binder composition for foundry sand containing zinc carbonate dispersed in resin
JP4607731B2 (en) Metal foam filled composite member
JP7202238B2 (en) Coated sand and mold manufacturing method using the same
JPH0246294B2 (en)
US2847741A (en) Method of making washed shell mold
JP2639977B2 (en) Surface treatment method of casting mold and casting mold
US4934440A (en) Mold surface treatment process and mold
JP2902479B2 (en) Smoke removal mold material
US5372179A (en) Mold surface treatment process and mold
JPS6245446A (en) Casting mold material and casting mold
JPH084872B2 (en) Mold coating
JPH0647141B2 (en) Mold material
JP2902478B2 (en) Smoke removal mold material