JP2902479B2 - Smoke removal mold material - Google Patents

Smoke removal mold material

Info

Publication number
JP2902479B2
JP2902479B2 JP2338795A JP33879590A JP2902479B2 JP 2902479 B2 JP2902479 B2 JP 2902479B2 JP 2338795 A JP2338795 A JP 2338795A JP 33879590 A JP33879590 A JP 33879590A JP 2902479 B2 JP2902479 B2 JP 2902479B2
Authority
JP
Japan
Prior art keywords
mold
resin
sand
water
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2338795A
Other languages
Japanese (ja)
Other versions
JPH04220134A (en
Inventor
芳宏 大石
保夫 高田
淳 山本
春好 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Toyoda Jidoshokki Seisakusho KK filed Critical Toyota Central R&D Labs Inc
Priority to JP2338795A priority Critical patent/JP2902479B2/en
Publication of JPH04220134A publication Critical patent/JPH04220134A/en
Application granted granted Critical
Publication of JP2902479B2 publication Critical patent/JP2902479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳鋼、鋳鉄、アルミニウム等の金属の鋳造
に用いられる鋳造用鋳型の主型および中子を製造する際
に用いるシェル鋳型材料に関する。さらに詳しくは、鋳
型の製造時の加熱により発生する煙、および刺激臭、異
臭、有毒性のガス(以下、刺激性ガスという)の発生量
が少ない脱煙鋳型材に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a casting mold used for casting metals such as cast steel, cast iron and aluminum, and a shell mold material used for manufacturing a core. . More specifically, the present invention relates to a degassing mold material that generates a small amount of smoke generated by heating during the production of a mold and a small amount of irritating odor, unusual odor, and toxic gas (hereinafter, irritating gas).

〔従来の技術およびその問題点〕[Conventional technology and its problems]

従来より、鋳造用鋳型の主型および中子(以下、単に
鋳型とする)の製造方法として、フェノール樹脂等の合
成樹脂が熱によって硬化する性質を砂型の硬化に利用し
たシェルモールド法が多く採用されている。この方法に
より製造された鋳型を用いて鋳造することにより、極め
て寸法精度の高い美麗な鋳肌を持った鋳物が製造でき
る。このシェルモールド法に用いられる鋳型材料として
は、珪砂等の鋳型材基材にフェノール樹脂等の熱硬化性
樹脂、硬化材、潤滑材を順に被覆した樹脂被覆鋳物砂
(レジンコーテッドサンド:RCS)が一般的に使用に供さ
れ、必要に応じて硬化促進剤やその他の添加剤を前記樹
脂被覆鋳物砂の被覆層中に含有させ、または樹脂被覆鋳
物砂に添加・混合して使用されている。
2. Description of the Related Art Conventionally, as a method for manufacturing a main mold and a core (hereinafter simply referred to as a mold) of a casting mold, a shell mold method that uses a property of a synthetic resin such as a phenol resin to be cured by heat for curing a sand mold has been often used. Have been. By casting using a mold manufactured by this method, a casting having a beautiful casting surface with extremely high dimensional accuracy can be manufactured. As a mold material used in this shell mold method, resin-coated molding sand (resin coated sand: RCS) in which a thermosetting resin such as phenol resin, a hardening material, and a lubricant are coated on a mold material base such as silica sand in order. It is generally used, and if necessary, a curing accelerator and other additives are contained in the coating layer of the resin-coated molding sand, or are added to and mixed with the resin-coated molding sand.

しかし、この樹脂被覆鋳物砂を原料として鋳型を製造
する場合、加熱金型内にこの鋳型材料を封入し焼成・固
結するため、例えば成形工程等の加熱の際、加熱金型を
開放したときや鋳型を取り出し搬出する際に、煙やホル
ムアルデヒド、フェノール、アンモニア等の強い刺激性
ガスが発生し、作業環境を著しく悪化させている。ま
た、最近、鋳型の製造のおいて大量生産をする場合、空
気圧を利用してRCSを成形金型へ吹き込むブロー法が用
いられている。この方法では、成形金型への充填性を上
げるため潤滑剤として主にステアリン酸カルシウムが用
いられ、鋳型を作製するときに該ステアリン酸カルシウ
ムが分解し、煙を多量に発生するという問題があった。
However, when a mold is manufactured using this resin-coated molding sand as a raw material, the mold material is sealed in a heating mold and fired and consolidated, for example, when the heating mold is opened during heating in a molding process or the like. When the mold and the mold are taken out and carried out, strong irritating gases such as smoke, formaldehyde, phenol, and ammonia are generated, which significantly deteriorates the working environment. Recently, in the case of mass production in the manufacture of a mold, a blow method in which RCS is blown into a molding die using air pressure is used. In this method, calcium stearate is mainly used as a lubricant in order to improve the filling property into a molding die, and there is a problem that the calcium stearate is decomposed when producing a mold, and a large amount of smoke is generated.

このように、従来のシェル鋳型材料は、鋳型製造用機
械の周囲に発煙用ダクトを取付けにくい型の製造工程に
おいて発生する煙および刺激性ガスが鋳物工場内の作業
環境を悪化させる原因になっており、これらの低減のた
めには莫大な設備費用を必要とし、しかも必ずしも十分
な対策とはいえず、根本的な対策が強く切望されてい
た。
As described above, in the conventional shell mold material, smoke and irritating gas generated in a manufacturing process of a mold in which it is difficult to install a smoke duct around a mold manufacturing machine cause deterioration of a working environment in a foundry. Therefore, enormous equipment costs are required for these reductions, and they are not necessarily sufficient measures, and a fundamental measure has been strongly desired.

これらの不具合を解決する方法として、熱硬化性樹脂
を被覆した鋳物砂に活性炭や活性アルミナ等の細孔を多
数有しかつ比表面積が50m2/g以上の多孔性物質を混合し
た鋳型材料(特開昭63−60042号公報)が提案されてい
る。これより、該材料を用いて鋳造用鋳型を成形する場
合や、該鋳型を用いて鋳造を行った場合の加熱の際に発
生する刺激性ガスの発生量を吸着および触媒作用により
低減することができたとされている。
As a method of solving these problems, a molding material obtained by mixing a porous material having a large number of pores such as activated carbon or activated alumina and a specific surface area of 50 m 2 / g or more in a molding sand coated with a thermosetting resin ( JP-A-63-60042) has been proposed. From this, it is possible to reduce the amount of irritating gas generated during heating when molding a casting mold using the material or when performing casting using the mold by adsorption and catalysis. It is said that it was completed.

しかしながら、この鋳型材料では、煙および刺激性ガ
スを完全に除去するためには前記多孔性物質の混合量を
多くする必要があり、それに伴って鋳型の強度が大きく
低下し、鋳造工程において鋳型割れが発生するという問
題点を有している。さらに、前記の多孔性物質を多く混
合した鋳型材料を再利用した場合、再生処理工程を経た
後でも珪砂等の鋳型基材の中に活性炭等炭化物を除く前
記多孔性物質が残り、型として使用できない程に鋳型強
度が低下するという問題を有していた。
However, in this mold material, it is necessary to increase the mixing amount of the porous substance in order to completely remove the smoke and the irritant gas, and accordingly, the strength of the mold is greatly reduced, and the mold cracks in the casting process. Is generated. Further, when a mold material containing a large amount of the porous material is reused, the porous material excluding carbides such as activated carbon remains in a mold base material such as silica sand even after a regeneration treatment step, and is used as a mold. There was a problem that the mold strength was reduced to such an extent that it could not be performed.

そこで、本発明者等は、これら従来の問題点を解決す
べく鋭意研究し、各種の系統的実験を行った結果、本発
明を成すに至ったものである。
The present inventors have conducted intensive research to solve these conventional problems, and have conducted various systematic experiments. As a result, the present invention has been accomplished.

〔発明の目的〕[Object of the invention]

本発明の目的は、鋳造用鋳型の製造を行うときに煙お
よび刺激性ガスの発生量が少なく、かつ必要型強度が得
られる脱煙鋳型材を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a demolding mold material that produces a small amount of smoke and irritating gas when producing a casting mold and has a required mold strength.

すなわち、従来技術のシェルモールド法に用いられる
鋳型材料は、珪砂等の鋳型材基材に熱硬化性樹脂等を被
覆した樹脂被覆鋳物砂と、さらに必要に応じて該被覆層
中に含有または該樹脂被覆鋳物砂に添加・混合された硬
化促進剤やその他の添加剤とからなる。また、この樹脂
被覆鋳物砂に多孔性物質を混合した鋳型材料は、刺激性
ガスの低減効果はあるものの、該効果を高めるために多
孔性物質の混合量を増加させると、該材料により作製さ
れる型の強度が低下してしまい、鋳造中に型が崩壊して
しまうという問題があった。
That is, the mold material used in the shell molding method of the prior art is a resin-coated molding sand in which a thermosetting resin or the like is coated on a mold material base such as silica sand, and further contained or included in the coating layer as necessary. It consists of a hardening accelerator and other additives added to and mixed with the resin-coated molding sand. In addition, a mold material obtained by mixing a porous substance with the resin-coated molding sand has an effect of reducing the irritating gas, but when the mixing amount of the porous substance is increased in order to enhance the effect, the mold material is produced from the material. However, there is a problem that the strength of the mold is reduced and the mold collapses during casting.

本発明者らは、鋳型製造時における煙や他の刺激性ガ
スの発生メカニズムを解明すべく各種の系統的実験や研
究を行った。その結果、鋳型製造時に発生する煙には、
熱硬化性樹脂の硬化反応によって発生する煙と潤滑剤と
して使用しているステアリン酸カルシウムの分解により
発生する煙の二つがあり、両者が同時に発生すると煙の
発生量が極めて増大していることが分かった。
The present inventors have conducted various systematic experiments and studies in order to elucidate the generation mechanism of smoke and other irritating gases during mold production. As a result, the smoke generated during mold production
There are two types, smoke generated by the curing reaction of the thermosetting resin and smoke generated by the decomposition of calcium stearate used as a lubricant. It can be seen that the amount of generated smoke increases significantly when both occur simultaneously. Was.

そこで、熱硬化性樹脂の硬化反応によって発生する煙
は、該反応中に樹脂中成分量の減少および硬化剤に対す
る樹脂の割合の減少により硬化反応が促進され、未反応
ガスの発生が低減すること、およびステアリン酸カルシ
ウム等の潤滑剤に起因する煙は水あるいは水蒸気により
より小さな分子量のガスに分解されることに着眼した。
Therefore, the smoke generated by the curing reaction of the thermosetting resin accelerates the curing reaction due to a decrease in the amount of components in the resin and a decrease in the ratio of the resin to the curing agent during the reaction, and the generation of unreacted gas is reduced. And smoke from lubricants, such as calcium stearate, was noticed to be broken down into smaller molecular weight gases by water or water vapor.

そして、適度な含水能力を有し鋳型製造の加熱時に適
量の保有水を放出して未反応ガス等の分解を促進すると
ともに、流動状態の樹脂成分を吸収可能な細孔を有する
無機保水材を、樹脂被覆鋳物砂に適量混合して鋳型材料
とすることにより、前記問題点を解決するに至った。
An inorganic water retention material having pores capable of absorbing a resin component in a fluidized state while having an appropriate water-containing capacity and releasing an appropriate amount of retained water at the time of heating in mold production to promote decomposition of unreacted gas and the like. The above problem has been solved by mixing an appropriate amount of resin-coated molding sand into a mold material.

〔第1発明の説明〕 発明の構成 本発明の脱煙鋳型材は、鋳型材基材に熱硬化性樹脂等
を被覆した鋳型材と、細孔構造を有し100〜250℃におい
ても水分の吸脱着能力を有するとともに含水能力が15重
量%以上の無機保水材とからなり、該無機保水材の混合
量が前記鋳型材基材の1.5〜4.5体積%であることを特徴
とする。
[Description of the First Invention] Structure of the Invention The de-smoke mold material of the present invention comprises a mold material in which a thermosetting resin or the like is coated on a mold base material, and has a pore structure and a water content at 100 to 250 ° C. It is characterized by comprising an inorganic water retaining material having an adsorption / desorption capacity and a water content of 15% by weight or more, and a mixing amount of the inorganic water retaining material is 1.5 to 4.5% by volume of the mold base material.

発明の作用および効果 本発明の脱煙鋳型材は、鋳造用鋳型を製造するときに
煙、および刺激臭、異臭、有毒性のガス等の刺激性ガス
の発生量が少なく、かつ必要型強度が得られる。
Effects and Effects of the Invention The demolding mold material of the present invention has a small amount of smoke and irritating gas such as pungent odor, off-flavor, toxic gas and the like when producing a casting mold, and has a required mold strength. can get.

本発明の脱煙鋳型材が、上述のごとき優れた効果を発
揮するメカニズムについては、未だ必ずしも十分に明ら
かではないが、以下のように考えられる。
The mechanism by which the smoke-removing mold material of the present invention exerts the above-described excellent effects is not yet sufficiently clear, but is considered as follows.

すなわち、本発明では、シェルモールド法に用いる鋳
型材料として、一般的に使用に供されている構成材料
に、さらに特殊な性質を有する無機保水材を混合してな
る。この無機保水材は、細孔構造を有し100〜250℃にお
いても水分の吸脱着能力を有するとともに含水能力が15
重量%以上の無機保水材である。これより、鋳型の製造
時等の加熱時に、ステアリン酸カルシウム等の潤滑剤に
起因する煙は、該無機保水材から放出される保有水によ
ってより小さな分子量のガスに分解され、煙やその他の
刺激性ガスの発生が低減するものと思われる。また、フ
ェノール樹脂等の樹脂の硬化反応において、水または水
蒸気により硬化剤であるヘキサメチレンテトラミン等の
分解が促進されるとともに、水を供給する保水材の細孔
の中に樹脂の主成分であるフェノールレジン等が吸収さ
れ、樹脂中成分量の変化および樹脂と硬化剤の割合の変
化により硬化反応が促進され、未反応ガスの発生が低減
するものと考えられる。
That is, in the present invention, as a mold material used in the shell mold method, an inorganic water retaining material having further special properties is mixed with a constituent material generally used. This inorganic water retention material has a pore structure, has a water absorbing and desorbing ability even at 100 to 250 ° C., and has a water containing capacity of 15 to 15.
It is an inorganic water retention material by weight or more. Thus, during heating, such as during the manufacture of a mold, smoke caused by a lubricant such as calcium stearate is decomposed into smaller molecular weight gas by retained water released from the inorganic water retention material, and smoke and other irritants are generated. It is believed that gas generation is reduced. In addition, in a curing reaction of a resin such as a phenol resin, decomposition of a curing agent such as hexamethylenetetramine is promoted by water or water vapor, and the main component of the resin is contained in pores of a water retention material that supplies water. It is considered that the phenolic resin or the like is absorbed, the curing reaction is promoted by the change in the amount of the components in the resin and the change in the ratio of the resin and the curing agent, and the generation of unreacted gas is reduced.

〔第2発明の説明〕 以下に、前記第1発明をさらに具体的にした第2発明
を説明する。
[Description of Second Invention] Hereinafter, a second invention which is a more specific version of the first invention will be described.

本発明において用いられる熱硬化性樹脂等を鋳型材基
材に被覆した鋳型材、すなわち樹脂被覆鋳物砂は、該材
料の鋳型材基材(鋳物砂)の表面に、粘結材としての熱
硬化性樹脂を被覆してなるもので、さらに必要に応じて
樹脂の硬化促進を目的としてヘキサメチレンテトラミン
等の硬化材や鋳型材料作製工程における鋳物砂の粒同士
の固結防止や流動性を良くして充填密度を大きくするこ
とを目的としてステアリン酸カルシウム等の潤滑剤等の
添加剤を添加してなる。
The mold material in which the thermosetting resin or the like used in the present invention is coated on a mold material base material, that is, resin-coated molding sand, is thermally cured as a binder on the surface of the mold material base material (molding sand). In order to accelerate the curing of the resin, it is necessary to prevent the solidification of the particles of the molding sand in the molding material production process and to improve the fluidity. In order to increase the packing density, additives such as a lubricant such as calcium stearate are added.

ここで、鋳型材基材は、シェル鋳型の基材をなす耐火
性の砂状物質であり、具体的には珪砂、ジルコン砂、ク
ロマイト砂、オリビン砂、海砂、川砂、岩石を破砕して
作った砂等があり、それら一種類または二種類以上の混
合物を用いる。この鋳物砂は、流動性、充填性、じん
性、熱膨張性、凝固速度等を考慮して適宜な形状、大き
さ、種類のものを選択する。この鋳物砂の粒形は、丸形
または多角形等の球形様のものであることが好ましい。
それは、この場合には、砂の流動性がよく、比較的少量
の樹脂で高い型強度が得られ易く、また、鋳型の通気性
を良好ならしめるからである。
Here, the mold material base material is a refractory sandy material that forms the base material of the shell mold, and specifically, crushes silica sand, zircon sand, chromite sand, olivine sand, sea sand, river sand, and rock. There is sand and the like, and one kind or a mixture of two or more kinds is used. This molding sand is appropriately selected in shape, size, and type in consideration of fluidity, filling property, toughness, thermal expansion property, solidification speed, and the like. The grain shape of the foundry sand is preferably spherical, such as round or polygonal.
This is because, in this case, the fluidity of the sand is good, high mold strength is easily obtained with a relatively small amount of resin, and the air permeability of the mold is improved.

また、熱硬化性樹脂は、シェル鋳型材料の基材として
の鋳物砂及び無機保水材を相互に結合し、所定の鋳型形
状に造形する機能を有する粘結材であり、具体的には、
フェノール・フォルムアルデヒド樹脂、フェノール・フ
ルフラール樹脂等のノボラック系フェノール樹脂、等を
用いる。
Further, the thermosetting resin is a binder having a function of forming a predetermined mold shape by mutually bonding a molding sand and an inorganic water retention material as a base material of the shell mold material, and specifically,
Novolac phenol resins such as phenol / formaldehyde resin and phenol / furfural resin are used.

鋳物砂への樹脂の被覆は、ホットコート法、ドライホ
ットコート法、セミホットコート法、コールドコート
法、粉末溶剤法等の常法により、必要に応じて適宜添加
剤を加え行う。
The resin is applied to the molding sand by a conventional method such as a hot coating method, a dry hot coating method, a semi-hot coating method, a cold coating method, a powdered solvent method, and the like, to which additives are appropriately added as necessary.

ここで、樹脂の配合量は、鋳型材基材に対し1〜10wt
%であることが好ましい。この配合量は、その目的、無
機保水材および他の添加剤の添加量、製造条件により異
なるが、大略、鋳物砂が珪砂である場合には1〜6wt
%、ジルコン砂を用いた場合には1〜4wt%がよい。ま
た、該鋳型材基材の粒径は、50μm〜1mmであることが
好ましい。
Here, the compounding amount of the resin is 1 to 10 wt.
%. The amount varies depending on the purpose, the amount of the inorganic water-retaining material and other additives, and the production conditions. However, when the molding sand is silica sand, it is generally 1 to 6 wt.
%, When zircon sand is used, 1-4 wt% is preferred. Further, the particle size of the mold base material is preferably 50 μm to 1 mm.

次に、無機保水材は、鋳型製造時等の加熱時に適量の
保有水を放出して未反応ガス等の分解を促進するととも
に流動状態の樹脂成分を吸収可能な細孔を有する無機保
水材であって、細孔構造を有し100〜250℃においても水
分の吸脱着能力を有するとともに含水能力が15重量%以
上、好ましくは20重量%以上の無機質の保水材である。
具体的には、鹿沼土、赤玉土、含水珪酸マグネシウム質
粘土鉱物、ヤシガラ炭、モミガラくん炭、ゼオライトが
挙げられ、これらの一種または二種以上である。また、
これ以外でも、上記吸脱着能力及び含水能力を有する物
質、すなわち天然の多孔性無機物質や、無機物質または
繊維を多く含む有機物質を熱処理した無機多孔質物質、
さらには、これらの微粉末を単独または粘土等の無機質
系粘結材との混合物を固結して用いてもよい。例えば、
ヤシガラ炭またはモミガラくん炭とベントナイトとの混
合物を用いてもよい。また、これらのものを仮焼したも
のを用いてもよい。
Next, the inorganic water retention material is an inorganic water retention material having pores capable of releasing an appropriate amount of retained water at the time of heating, such as at the time of mold production, to promote the decomposition of unreacted gas and the like and to absorb a resin component in a fluid state. The inorganic water retention material has a pore structure, has a water absorbing / desorbing ability even at 100 to 250 ° C., and has a water content of 15% by weight or more, preferably 20% by weight or more.
Specific examples include Kanuma soil, Akadama soil, hydrous magnesium silicate clay mineral, coconut charcoal, fir charcoal, zeolite, and one or more of these. Also,
Other than this, a substance having the adsorption / desorption ability and the water-containing ability, that is, a natural porous inorganic substance, or an inorganic porous substance obtained by heat-treating an inorganic substance or an organic substance containing a large amount of fibers,
Further, these fine powders may be used alone or in the form of a mixture with an inorganic binder such as clay. For example,
A mixture of coconut or charcoal charcoal and bentonite may be used. Further, those obtained by calcining these materials may be used.

ここで、鹿沼土および赤玉土は、火山灰土が風化した
粘土鉱物である。鹿沼土は、主成分がアロフェンであ
り、該アロフェンが変化したハロイサイトが共存したも
のを用いてもよい。赤玉土は、特に関東地方の黒ボク土
壌の下層土である赤土で、粒子を揃え排水性をよくした
ものを用いることが好ましい。なお、この鹿沼土または
赤玉土は、含水能力が適度であるので、使用済の鋳型材
料を再生利用して本発明にかかる鋳型材を構成しても本
発明と同様の効果が得られ、鋳型の型強度の低下率を許
容範囲内とすることができ、好適な物質である。
Here, Kanuma soil and Akadama soil are clay minerals obtained by weathering volcanic ash soil. As the Kanuma soil, the main component may be allophane, and a mixture of halloysite in which the allophane is changed may be used. The Akadama soil is preferably a red soil which is a lower layer soil of the Ando soil in the Kanto region, and is preferably made of particles having improved drainage properties. In addition, since the Kanuma soil or the Akadama soil has a moderate water content, even if the used mold material is recycled to form the mold material according to the present invention, the same effect as that of the present invention is obtained. This is a suitable substance because the rate of decrease in mold strength can be within an allowable range.

含水珪酸マグネシウム質粘土鉱物は、含水珪酸マグネ
シウム質を主成分とし、直径が0.005〜0.6μm程度の繊
維からなり、該繊維に平行に約10〜6Å程度の長方形の
断面を持つ細孔(チャンネル)が存在し、表面に反応性
に富む水酸基を有する。なお、マグネシウム或いは珪素
の一部がアルミニウム、鉄、ニッケル、ナトリウム等に
置換されているものでもよい。また、これらのものを、
400〜800℃の温度範囲内で仮焼したものを用いてもよ
い。保水材として用いる場合は、細孔が残留する程度に
粉砕したものであれば何れの形で用いてもよいが、、そ
の大きさが鋳物砂と同程度の50μm〜1mmの範囲である
ことが好ましい。その中でも、鋳物砂の粒度分布のうち
最大量を示す粒度以上の大きさが好ましく、特に149〜5
00μmであることがより好ましい。これは、無機保水材
の温度上昇が樹脂被覆鋳物砂の温度上昇と同じにする必
要があるからである。また、粒度が小さいと得られる鋳
型の強度が低下し、また煙低減効果が小さくなる。これ
らの粉砕は、ジョークラッシャー、ハンマーミル、ロー
ラーミル、破砕造粒機、振動ミル、ピンミル、叩解機等
を用い、湿式粉砕または乾式粉砕により行う。
The hydrous magnesium silicate clay mineral is composed of fibers having a diameter of about 0.005 to 0.6 μm, and has pores (channels) having a rectangular cross section of about 10 to 6 mm in parallel with the fibers. And has a highly reactive hydroxyl group on the surface. Note that magnesium or silicon may be partially substituted with aluminum, iron, nickel, sodium, or the like. Also, these things
What was calcined in the temperature range of 400 to 800 ° C may be used. When used as a water retention material, it may be used in any form as long as it is pulverized to the extent that the pores remain, but its size is in the range of 50 μm to 1 mm, which is about the same as molding sand preferable. Among them, a size that is equal to or larger than the particle size indicating the maximum amount in the particle size distribution of the molding sand is preferable, and particularly 149 to 5
More preferably, it is 00 μm. This is because the temperature rise of the inorganic water retention material needs to be the same as the temperature rise of the resin-coated molding sand. Further, when the particle size is small, the strength of the obtained mold is reduced, and the effect of reducing smoke is reduced. The pulverization is performed by wet pulverization or dry pulverization using a jaw crusher, a hammer mill, a roller mill, a crushing granulator, a vibration mill, a pin mill, a beating machine, or the like.

ヤシガラ炭またはモミガラくん炭は、自己粘結性のな
い材料であるので、粘結性の強いベントナイトと混合し
た後、適当な粘度にしたものを乾燥して得られたものを
用い、強度低下が少なくなるようにする。これらの混合
物の場合は、含水能力が適度に調整できるので、使用済
の鋳型材料を再生利用しても本発明と同様の効果が得ら
れ、好適な物質である。
Since coconut husk charcoal or fir-charcoal charcoal is a material that does not have self-adhesiveness, it uses a material obtained by mixing with strong caustic bentonite and then drying it after obtaining an appropriate viscosity. Try to be less. In the case of these mixtures, the water-containing capacity can be adjusted appropriately, so that even if the used mold material is recycled, the same effect as in the present invention can be obtained, and it is a suitable substance.

無機保水材は、含水能力が20重量%〜35重量%のもの
を用いることが好ましい。これは、無機保水材へのフェ
ノールレジン等の樹脂成分の吸収量が一定量となり、無
煙化をよりよく達成でき、かつ鋳型強度低下を確実に許
容範囲内にすることができるためである。また、無機保
水材は、焼成時の煙の発生を低減するためには、焼成前
に所定の水を保有していることが好ましい。これは、水
または水蒸気がステアリン酸カルシウムの分解やヘキサ
メチレンテトラミンの分解促進に必要なためである。該
水の保有量は、無機保水材に対して5重量%〜含水能力
未満であることが好ましい。該保有量が5重量%未満の
場合はステアリン酸カルシウムやヘキサメチレンテトラ
ミンの混合量に対して水分量が不足し煙や刺激性ガスの
低減効果が十分みられず、含水能力を超えると保水材表
面に水が出て鋳型材料の混合時に樹脂被覆鋳物砂を固結
させ、鋳型の強度低下の原因となるので好ましくない。
It is preferable to use an inorganic water retention material having a water content of 20% by weight to 35% by weight. This is because the absorption amount of the resin component such as phenolic resin into the inorganic water retention material becomes a fixed amount, so that smokelessness can be better achieved, and the mold strength can be reliably reduced within an allowable range. In addition, in order to reduce the generation of smoke at the time of firing, it is preferable that the inorganic water retaining material has predetermined water before firing. This is because water or water vapor is required to promote the decomposition of calcium stearate and the decomposition of hexamethylenetetramine. The water holding amount is preferably 5% by weight to less than the water content of the inorganic water retaining material. When the amount is less than 5% by weight, the water content is insufficient with respect to the mixed amount of calcium stearate and hexamethylenetetramine, and the effect of reducing smoke and irritating gas is not sufficiently obtained. Water is generated, and the resin-coated molding sand is solidified when the mold material is mixed, which causes a decrease in the strength of the mold, which is not preferable.

なお、該無機保水材は、熱硬化性樹脂等を被覆する前
の鋳物砂の粒度分布のうち、最大量を示す粒度より小さ
い粒度を持つもの、特に145μm未満の大きさのものを1
0重量%以下にした粒度分布を持つ顆粒状物質であるこ
とが好ましい。すなわち、硬化反応において煙を無くす
るためには無機保水材が該樹脂を吸収することが必要で
あるが、この樹脂吸収のために鋳型強度が低下する。従
って、小さい粒度のものが多いと樹脂が吸収される点が
多く、かつ吸収される量が増加することとなり、鋳型の
強度低下が大きくなる。これより、小さい粒度のものを
少なくすることが好ましい。
In addition, the inorganic water-retaining material is one having a particle size smaller than the particle size showing the maximum amount, particularly one having a size smaller than 145 μm in the particle size distribution of the molding sand before coating with the thermosetting resin or the like.
It is preferably a granular substance having a particle size distribution of 0% by weight or less. That is, in order to eliminate smoke in the curing reaction, it is necessary that the inorganic water retaining material absorbs the resin, but the strength of the mold is reduced due to the absorption of the resin. Therefore, when there are many particles having a small particle size, the resin is absorbed in many points, and the amount of resin absorbed is increased, and the strength of the mold is greatly reduced. It is preferable to reduce the number of particles having a small particle size.

本発明の脱煙鋳型材は、前記鋳型材基材と前期無機保
水材とからなる。
The demolding mold material of the present invention comprises the above-mentioned mold material base material and the inorganic water retention material.

ここで、鋳型材基材に熱硬化性樹脂等を被覆した鋳型
材(樹脂被覆鋳物砂)と無機保水材との混合割合は、鋳
型材基材に対して該無機保水材が1.5〜4.5体積%であ
る。これは、該混合量が1.5体積%未満の場合には、脱
煙鋳型の製造を行う場合や鋳造時に発生する煙および刺
激性ガスの発生量を十分に低減せしめることが難しいか
らである。また、無機保水材の混合量が4.5体積%を越
える場合には、該材料を用いて製造された鋳型の強度が
低下し、型強度低下率が20%を超え、鋳造作業に必要な
型強度が得られないからである。なお、この混合量が、
4.0〜4.2体積%である場合には、本発明の効果をより一
層奏し得るのでより好ましい。
Here, the mixing ratio of the mold material (resin-coated molding sand) in which the mold material base material is coated with a thermosetting resin or the like and the inorganic water retention material is such that the inorganic water retention material is 1.5 to 4.5 vol. %. This is because if the mixing amount is less than 1.5% by volume, it is difficult to sufficiently reduce the amount of smoke and irritating gas generated during the production of a degassing mold or during casting. When the mixing amount of the inorganic water retention material exceeds 4.5% by volume, the strength of the mold manufactured using the material decreases, the mold strength reduction rate exceeds 20%, and the mold strength required for the casting operation is reduced. Is not obtained. In addition, this mixing amount,
When the content is 4.0 to 4.2% by volume, the effects of the present invention can be further exhibited, and thus it is more preferable.

また、本発明の脱煙鋳型材は、該材料の優れた性能を
損なわない程度に他の添加剤を適宜添加・混合すること
ができる。具体的には、鋳型製造工程における樹脂の硬
化促進または鋳込工程における樹脂の熱分解の促進を目
的として酸化亜鉛、酸化鉄、酸化マンガン、酸化チタン
等の金属酸化物等が、鋳造後の型の崩壊性を改良するも
のとして樹脂中にハロゲン系物質等が、鋳込時の型張り
を防ぐものとして鋼球、バラス、珪砂等の充填剤が、製
品鋳肌の確保のために石炭粉、ピッチ粉、コークス粉、
黒鉛粉末、ギルソナイト等の可燃性揮発物質が、珪砂等
鋳物砂の表面に均一に樹脂を被覆するためにケロシン等
の湿潤剤がある。これらの添加剤は、その目的に応じ、
樹脂中に含ませてもよいし、または鋳物砂に樹脂を被覆
する際に、更には脱煙鋳型材を混合調整する際等、適宜
の時期に混合する。
Further, in the demolding mold material of the present invention, other additives can be appropriately added and mixed to such an extent that the excellent performance of the material is not impaired. Specifically, metal oxides such as zinc oxide, iron oxide, manganese oxide, and titanium oxide are used to promote the curing of the resin in the mold manufacturing process or the thermal decomposition of the resin in the casting process. Fillers such as steel balls, ballast, silica sand, etc., to prevent mold tension during casting, coal powder to secure the product casting surface, Pitch powder, coke powder,
There is a wetting agent such as kerosene for the combustible volatile substances such as graphite powder and Gilsonite to uniformly coat the surface of the molding sand such as silica sand with resin. These additives, depending on their purpose,
It may be included in the resin, or may be mixed at an appropriate time, for example, when coating the resin on the molding sand, and when mixing and adjusting the degassing mold material.

本発明の脱煙鋳型材の代表的な調整方法を簡単に示す
と以下の様である。
The following is a brief description of a typical method for adjusting the demolding mold material of the present invention.

先ず、常法に従い鋳型材基材にフェノール・ホルムア
ルデヒド樹脂等の樹脂、ヘキサメチレンテトラミン等の
硬化剤、ステアリン酸カルシウム等の潤滑剤を順に被覆
して得られた樹脂被覆鋳物砂を用意する。
First, a resin-coated molding sand obtained by sequentially coating a mold material base material with a resin such as phenol / formaldehyde resin, a hardening agent such as hexamethylenetetramine, and a lubricant such as calcium stearate in accordance with a conventional method is prepared.

次に、細孔構造を有し100〜250℃においても水分の吸
脱着能力を有するとともに含水能力が15重量%以上の無
機保水材を用意し、所定の水分量となるように調整す
る。なお、該無機保水材の形状や大きさは、適宜の形状
・大きさのものとし、また、この粉砕工程の前または後
で400〜800℃に仮焼したものを用いてもよい。
Next, an inorganic water retaining material having a pore structure, having a water absorbing / desorbing ability even at 100 to 250 ° C., and having a water content of 15% by weight or more is prepared and adjusted to have a predetermined water content. In addition, the shape and size of the inorganic water retention material may be appropriate shapes and sizes, and may be calcined at 400 to 800 ° C. before or after the pulverizing step.

次に、所定の水分を保有する無機保水材を、混合量が
前記鋳物砂基材の1.5〜4.5体積%となるように添加し均
一に分散する様に混合し、さらに該混合物に必要に応じ
て樹脂および適宜添加剤を加え、モルタルミキサー、ス
ピードマラー、スピードミキサー等の混練機を用いて均
一に分散するように混練し、本発明にかかる脱煙鋳型材
を得る。なお、添加剤の添加時期は、保水材の添加前で
あってもよい。また、必要な添加剤を、樹脂被覆鋳物砂
を作製する際に、該樹脂に添加して被覆してもよい。
Next, an inorganic water retention material having a predetermined moisture content is added so that the mixing amount is 1.5 to 4.5% by volume of the foundry sand base material, and mixed so as to be uniformly dispersed. Then, the resin and additives are appropriately added, and the mixture is kneaded using a kneader such as a mortar mixer, a speed maller, and a speed mixer so as to be uniformly dispersed, thereby obtaining a demolding mold material according to the present invention. The timing of adding the additive may be before the addition of the water retention material. Further, a necessary additive may be added to the resin and coated when the resin-coated molding sand is produced.

この様にして得た本発明にかかる脱煙鋳型材は、概念
的に第1図に示す如く、樹脂1を被覆した鋳物砂2と、
無機保水材3とからなる。
The demolding mold material according to the present invention obtained in this way is conceptually shown in FIG.
And an inorganic water retention material 3.

本第2発明の脱煙鋳型材は、さらに鋳型の成形性がよ
く、アルミニウム鋳物やマグネシウム鋳物等の如く比較
的鋳造温度の低い場合でも鋳造後の鋳型崩壊性が十分で
ある。
The demolding mold material of the second aspect of the present invention has good moldability, and the mold disintegration after casting is sufficient even at a relatively low casting temperature such as an aluminum casting or a magnesium casting.

〔第3発明の説明〕 第1発明および第2発明の脱煙鋳型材を作製するのに
好適な第3発明の脱煙鋳型材の製造方法を、以下に説明
する。
[Description of Third Invention] A method of manufacturing the demolding mold material of the third invention suitable for producing the demolding mold materials of the first invention and the second invention will be described below.

本第3発明の脱煙鋳型材の製造方法は、鋳型材基材
(鋳物砂)に熱硬化性樹脂等を被覆して鋳型材料を製造
する方法において、細孔構造を有し100〜250℃において
も水分の吸脱着能力を有するとともに含水能力が15重量
%以上の無機保水材を用意し,該無機保水材の含水量を
所定量に調整する工程と、鋳型材料製造用容器に潤滑剤
等の添加剤の投入直後または該添加剤を投入し樹脂被覆
鋳物砂を冷却した後に前記含水量を調整した無機保水材
を投入し、一定温度以下で混合する工程とを有してなる
ことを特徴とする。
The method for producing a smoke-free mold material according to the third invention is a method for producing a mold material by coating a mold material base material (casting sand) with a thermosetting resin or the like. A step of preparing an inorganic water retention material having a water absorption / desorption capacity and a water content of 15% by weight or more, and adjusting the water content of the inorganic water retention material to a predetermined amount; Immediately after the addition of the additive or after cooling the resin-coated molding sand by adding the additive, charging the inorganic water retention material whose water content has been adjusted, and mixing at a certain temperature or lower. And

これより、前記第1発明および第2発明の脱煙鋳型材
を容易に製造することができる。
Thereby, the defoaming mold materials of the first and second inventions can be easily manufactured.

また、添加剤の分解や焼成時に必要な水分を適度に確
保することができるとともに、鋳物砂中に均一に分散す
ることができる。
In addition, it is possible to appropriately secure water required for decomposition and firing of the additive, and to uniformly disperse the water in the molding sand.

さらに、該無機保水材の添加を一定温度以下で行うの
で、樹脂被覆鋳物砂や添加剤等の固結を防止することが
できる。
Further, since the addition of the inorganic water retention material is performed at a certain temperature or lower, it is possible to prevent solidification of resin-coated molding sand, additives, and the like.

〔第4発明の説明〕 以下に、第3発明の脱煙鋳型材の製造方法をさらに具
体的にした第4発明を説明する。
[Description of Fourth Invention] Hereinafter, a fourth invention, which is a more specific example of the method for producing a demolding mold material of the third invention, will be described.

第1の方法は、鋳物砂に熱硬化性樹脂等を被覆して鋳
型材を製造する方法において、細孔構造を有し100〜250
℃においても水分の吸脱着能力を有するとともに含水能
力が15重量%以上の無機保水材を用意し,該保水材の含
水量を5重量%〜含水能力未満に調整する工程と、珪砂
等の鋳物砂にフェノール樹脂等の熱硬化性樹脂、ヘキサ
メチレンテトラミン等の硬化剤やステアリン酸カルシウ
ム等の潤滑剤などの他添加剤を混合して樹脂被覆鋳物砂
を調整する工程と、該調整された樹脂被覆鋳物砂を冷却
するとともに,含水量が5%〜含水能力未満に調整され
た前記無機保水材を添加し混合する工程と、を含んで成
る。
The first method is a method for producing a mold material by coating a molding sand with a thermosetting resin or the like.
A step of preparing an inorganic water retaining material having a water absorbing / desorbing ability even at a temperature of 15 ° C. and having a water content of 15% by weight or more, and adjusting the water content of the water retaining material to 5% by weight to less than the water content; A step of mixing the sand with a thermosetting resin such as a phenolic resin, and other additives such as a hardener such as hexamethylenetetramine and a lubricant such as calcium stearate to adjust the resin-coated molding sand; and Cooling the foundry sand, and adding and mixing the inorganic water retention material adjusted to have a water content of 5% to less than the water content.

これより、樹脂被覆鋳物砂と無機保水材の混合状態に
おいて、無機保水材はステアリン酸カルシウムやヘキサ
メチレンテトラミン等の分解に必要な水分が確保できる
とともに、鋳物砂中に均一に分散することができる。な
お、焼成時の作用については前述した通りである。
Thus, in the mixed state of the resin-coated molding sand and the inorganic water-retaining material, the inorganic water-retaining material can secure the water necessary for decomposition of calcium stearate, hexamethylenetetramine, and the like, and can be uniformly dispersed in the molding sand. The operation during firing is as described above.

この場合、無機保水材の添加は、前記冷却工程におい
て、樹脂被覆鋳物砂の温度が80℃以下の状態で行うこと
が望ましい。該温度が80℃を超えた状態で無機保水材を
添加すると、無機保水材中の保有水が多量放出され、樹
脂被覆鋳物砂が固結してしまう虞れがあるからである。
なお、この樹脂被覆鋳物砂が固結した鋳型材料を焼成す
ると、得られる鋳型の型強度が著しく低下し、樹脂被覆
鋳物砂に水を加えた状態と同様になってしまう。
In this case, the addition of the inorganic water retention material is desirably performed in the cooling step in a state where the temperature of the resin-coated molding sand is 80 ° C. or lower. If the inorganic water retaining material is added in a state where the temperature exceeds 80 ° C., a large amount of water retained in the inorganic water retaining material is released, and there is a possibility that the resin-coated molding sand is solidified.
Note that, when the mold material to which the resin-coated molding sand is consolidated is fired, the mold strength of the obtained mold is significantly reduced, which is similar to a state where water is added to the resin-coated molding sand.

第2の方法は、鋳物砂に熱硬化性樹脂等を被覆して鋳
型材料を製造する方法において、細孔構造を有し100〜2
50℃においても水分の吸脱着能力を有するとともに含水
能力が15重量%以上の無機保水材を用意し,該無機保水
材の含水量を10重量%以下に調整する工程と、珪砂等の
鋳物砂にフェノール樹脂等の熱硬化性樹脂、ヘキサメチ
レンヘキサミン等の硬化剤、ステアリン酸カルシウム等
の潤滑剤などの添加剤を混合して樹脂被覆鋳物砂を調整
する工程と、該ステアリン酸カルシウム等の添加剤を添
加直後に含水量が10重量%以下に調整された前記無機保
水材を添加し前記樹脂被覆鋳物砂と混合する工程と、を
含んで成る。
The second method is a method for producing a mold material by coating a molding sand with a thermosetting resin or the like.
A step of preparing an inorganic water retaining material having a water absorbing / desorbing ability even at 50 ° C. and having a water content of 15% by weight or more, and adjusting the water content of the inorganic water retaining material to 10% by weight or less; Thermosetting resin such as phenolic resin, a hardening agent such as hexamethylenehexamine, and additives such as a lubricant such as calcium stearate to adjust the resin-coated molding sand, and an additive such as the calcium stearate. Immediately after the addition, a step of adding the inorganic water retention material adjusted to a water content of 10% by weight or less and mixing with the resin-coated molding sand.

これより、樹脂被覆鋳物砂に混合した無機保水材は、
鋳物砂に熱硬化性樹脂と硬化剤を被覆して樹脂被覆鋳物
砂を調整する際に発生した水分を吸収し、焼成時に必要
な含水量5重量%〜含水能力未満を保ことができ、かつ
該水分を鋳物砂中に均等に分散することができる。
From this, the inorganic water retention material mixed with resin-coated molding sand,
The molding sand is coated with a thermosetting resin and a curing agent to absorb the water generated when the resin-coated molding sand is prepared, so that the water content required for firing can be kept from 5% by weight to less than the water content, and The water can be evenly dispersed in the foundry sand.

なお、該方法において、無機保水材の保水量が10重量
%を超えたものを用いると、温度が高いため無機保水材
中の水が放出され、冷却工程に入るところで樹脂被覆鋳
物砂が固結してしまうので好ましくない。
In this method, when the water retention amount of the inorganic water retention material exceeds 10% by weight, water in the inorganic water retention material is released due to high temperature, and the resin-coated molding sand is solidified in the cooling step. It is not preferable because it will do.

また、該ステアリン酸カルシウム等の添加剤を添加す
る前に無機保水材を混合すると、フェノール樹脂等の樹
脂成分がまだ流動状態にあるため、該無機保水材がこの
樹脂成分を吸収してしまい、望ましくない。
Also, if the inorganic water retention material is mixed before adding the additive such as the calcium stearate, the resin component such as the phenol resin is still in a fluid state, so that the inorganic water retention material absorbs this resin component, which is desirable. Absent.

また、これら方法において、無機保水材を十分乾燥さ
せて用いてもよい。なお、この場合は、鋳物砂に熱硬化
性樹脂および硬化剤を被覆する際に放出される水分を吸
収すること、また保管時の雰囲気より水分を吸収するこ
とより、無機保水材として保有水を放出する必要がある
ときまでに必要量の水分を保有できればよい。
In these methods, the inorganic water retaining material may be sufficiently dried before use. In this case, by absorbing the moisture released when the molding sand is coated with the thermosetting resin and the curing agent, and by absorbing the moisture from the atmosphere at the time of storage, the water retained as an inorganic water retention material is used. It only needs to be able to hold the required amount of water by the time it needs to be released.

実験例1 先ず、珪砂と該珪砂に対し2重量%のフェノール樹脂
と、硬化剤として該フェノール樹脂に対し15重量%のヘ
キサメチレンテトラミンと、潤滑剤として前記珪砂に対
して0.1重量%のステアリン酸カルシムと、水分を5、1
1、21、33、42重量%含有した無機保水材を前記珪砂に
対して4体積%添加して鋳型材料を作製した。また、該
保水材を添加しない比較用鋳型材料を作製した。得られ
た鋳型材料および比較用鋳型材料の評価するため、焼成
時に発生するガス成分をGC−MSクロマトグラフにより分
析した。その結果、前者の保水材を添加した鋳型材料
は、添加しない比較用鋳型材料に比べてC6〜C18相当の
脂肪酸類、アルコール類、ケトン類、アルカン・アルケ
ン類、アミド類、アミン類が見られず、フェノール樹脂
の反応と思われる環化合物(含酸素、含窒素化合物)も
半分以下になっていた。特に、水分が21重量%のもの
は、最も少なく約1/3であった。
Experimental Example 1 First, silica sand, 2% by weight of phenolic resin based on the silica sand, 15% by weight of hexamethylenetetramine based on the phenolic resin as a curing agent, and 0.1% by weight of stearic acid based on the silica sand as a lubricant Calcium and 5-1 water
An inorganic water retention material containing 1, 21, 33, and 42% by weight was added to the silica sand at 4% by volume to prepare a mold material. Further, a comparative mold material to which the water retention material was not added was prepared. In order to evaluate the obtained mold material and the comparative mold material, gas components generated during firing were analyzed by GC-MS chromatography. As a result, the former mold material to which the water retention material was added contained fatty acids, alcohols, ketones, alkanes / alkenes, amides, and amines equivalent to C 6 to C 18 as compared with the comparative mold material without addition. Ring compounds (oxygen-containing compounds and nitrogen-containing compounds), which were not observed and were considered to be a reaction of the phenolic resin, were reduced to less than half. In particular, those with a water content of 21% by weight were the least, about 1/3.

これより、ステアリン酸カルシウム等の潤滑剤に起因
する煙は、水あるいは水蒸気により、より小さな分子量
のガスに分解されるものと考えられる。
From this, it is considered that smoke caused by a lubricant such as calcium stearate is decomposed into smaller molecular weight gas by water or steam.

一方、ガス検知管による定量分析によりCOやCO2、ア
ルデヒド類が大きく低下し、逆にヘキサメチレンテトラ
ミン等の硬化剤などの分解で発生すると言われるNH3
スと、縮重合反応で生じると言われる水蒸気が増加して
いることから、フェノール樹脂の硬化反応により発生す
る煙が消失するのは、水または水蒸気により硬化剤であ
るヘキサメチレンテトラミンの分解が促進されるととも
に、水が放出された無機保水材の細孔の中に樹脂の主成
分であるフェノールレジンが吸収され、樹脂中成分量の
変化および樹脂と硬化剤の割合の変化により硬化反応が
促進され、未反応ガスの発生が低減するものと考えられ
る。
On the other hand, quantitative analysis using gas detector tubes shows that CO, CO 2 , and aldehydes are greatly reduced, and conversely, NH 3 gas, which is said to be generated by the decomposition of hardeners such as hexamethylenetetramine, is said to be generated by condensation polymerization. As the amount of water vapor increases, the smoke generated by the curing reaction of the phenolic resin disappears because water or water vapor promotes the decomposition of the curing agent hexamethylenetetramine and releases the water Phenolic resin, which is the main component of the resin, is absorbed into the pores of the water retention material, and the curing reaction is accelerated by the change in the amount of components in the resin and the ratio of the resin to the curing agent, and the generation of unreacted gas is reduced. It is considered something.

また、結晶水を持っている水和物や園芸で用いるパー
ライトやバーミキュライト等の無機保水材を前記無機保
水材に代えて鋳型材料を作製した場合には、焼成した鋳
型の強度低下は少ないが、焼成時に発生する煙の量は低
減できない。これらは、水放出後に細孔がなかったり含
水能力が小さい(5.6〜12.8重量%)ことから、添加す
る無機保水材としては、フェノールレジン等の樹脂を所
定量吸収する性質を有するものでなければ、加熱時の煙
の発生を低減することができないことが分かる。
Further, when a mold material is prepared by replacing the inorganic water retention material such as pearlite or vermiculite used in horticulture or horticulture having water of crystallization with the inorganic water retention material, a decrease in strength of the fired mold is small, The amount of smoke generated during firing cannot be reduced. These do not have pores or have a low water content (5.6 to 12.8% by weight) after water release. Therefore, the inorganic water retaining material to be added must be one that does not have a property of absorbing a predetermined amount of resin such as phenolic resin. It can be seen that the generation of smoke during heating cannot be reduced.

また、本発明の無機保水材を用いた鋳型材料の性能評
価において、昇温条件を実際の使用条件に近い、昇温速
度99度/分で示差熱分析を行った。その結果、煙が発生
しない鋳型材料の無機保水材は、約90〜105℃で最大の
時間当り水分放出量を示し、約120〜135℃までに保有水
分の90%以上を放出する性質を有していた。なお、この
性質を有する無機保水材であっても、粒径が余り小さく
なると最大時間当り水分放出量を示す温度、および90%
以上の水分を放出する温度は、ともに低温側に移行す
る。これらのものは焼成時の煙の低減効果が見られず、
型強度も大きく低下することが分かった。
Further, in the performance evaluation of the mold material using the inorganic water retention material of the present invention, a differential thermal analysis was performed at a heating rate of 99 ° / min, which was close to actual use conditions. As a result, the inorganic water retention material of the mold material that does not generate smoke exhibits the maximum amount of water release per hour at about 90 to 105 ° C, and has the property of releasing 90% or more of the retained water by about 120 to 135 ° C. Was. In addition, even if the inorganic water retention material has this property, if the particle size becomes too small, the temperature at which the amount of water released per hour becomes maximum, and 90%
The temperatures at which the above moisture is released shift to the lower temperature side. These products do not show the effect of reducing smoke during firing,
It was found that the mold strength was also greatly reduced.

一方、水和物や吸湿剤であるシリカゲル等を本発明の
無機保水材に代えて作製した比較用鋳型材料は、前記無
機保水材と同様の含水量や保有水分放出傾向を示すもの
が一部あるものの、焼成時の煙の低減効果は全んどなか
った。
On the other hand, the comparative mold material produced by replacing the inorganic water retention material of the present invention with silica gel or the like which is a hydrate or a hygroscopic agent has some of the same water content and the same water release tendency as the inorganic water retention material. However, there was no smoke reduction effect during firing.

以上のことから、焼成過程において、本発明の無機保
水材は、約135℃までの温度域において保有する水分を
放出し該水分がステアリン酸カルシウム等の潤滑剤やヘ
キサメチレンテトラミン等の硬化剤の分解を促進すると
ともに、温度上昇とともに無機保水材は近くのフェノー
ルレジン等の樹脂成分を吸収して珪砂等の鋳物砂の近傍
にある樹脂の硬化を促進することにより、焼成時の煙の
発生を著しく低減することができるものと思われる。
From the above, in the firing process, the inorganic water retention material of the present invention releases water retained in a temperature range up to about 135 ° C., and the water decomposes a lubricant such as calcium stearate or a curing agent such as hexamethylenetetramine. As the temperature rises, the inorganic water retention material absorbs resin components such as phenolic resin nearby and promotes the hardening of the resin near the molding sand such as silica sand, thereby significantly generating smoke during firing. It seems that it can be reduced.

実験例2 乾燥した本発明の無機保水材とフェノール樹脂を共存
下で昇温した。その結果、該フェノール樹脂は、約110
℃で高粘性状態となり無機保水材の固まりを形成し、約
130℃で流動状態となり、約140℃〜150℃において無機
保水材に急激に吸収されることが分かった。
Experimental Example 2 The temperature was increased in the presence of a dried inorganic water retention material of the present invention and a phenol resin. As a result, the phenolic resin is about 110
It becomes highly viscous at ℃ and forms a lump of inorganic water retention material.
It turned out to be in a fluid state at 130 ° C and was rapidly absorbed by the inorganic water retention material at about 140 ° C to 150 ° C.

この結果より、樹脂被覆鋳物砂の焼成後の強度と無機
保水材を混合した鋳型材料の焼成後の強度については、
以下のように考えられる。すなわち、第2図(a)〜第
2図(c)を用いて説明すると、珪砂等の鋳物砂の上に
コーティングされたフェノール樹脂と硬化剤〔第2図
(a)に示す〕は、約140℃以上で流動性を増し、第2
図(b)に示すように、粒子同士の接点に樹脂が集ま
り、硬化した樹脂の厚さが厚くなり、焼成鋳型はより高
い強度が発現するものと思われる。従って、この場合は
フェノール樹脂の量を減らし、接点に集まる樹脂量が少
なくなると型強度が大きく低下するものと思われる。一
方、第2図(c)に示すように、多量の無機保水材を混
合した場合、約140℃以上になったときにフェノール樹
脂が無機保水材に吸収され、樹脂被覆鋳物砂と無機保水
材の接点にはフェノール樹脂の硬化体が無い欠陥状態が
形成され、型強度が低下するものと思われる。
From these results, regarding the strength after firing of the resin-coated molding sand and the strength after firing of the mold material mixed with the inorganic water retention material,
It is considered as follows. That is, with reference to FIGS. 2 (a) to 2 (c), the phenol resin and the curing agent [shown in FIG. 2 (a)] coated on the molding sand such as silica sand are approximately equivalent. Increases fluidity above 140 ° C,
As shown in FIG. 5B, it is considered that the resin gathers at the contact points between the particles, the thickness of the cured resin increases, and the fired mold exhibits higher strength. Therefore, in this case, it is considered that the mold strength is greatly reduced when the amount of the phenol resin is reduced and the amount of the resin collected at the contact is reduced. On the other hand, as shown in FIG. 2 (c), when a large amount of the inorganic water retaining material is mixed, the phenol resin is absorbed by the inorganic water retaining material when the temperature reaches about 140 ° C. or higher, and the resin-coated molding sand and the inorganic water retaining material are mixed. It is considered that a defective state without a phenolic resin cured body was formed at the contact of No. 3 and the mold strength was reduced.

従って、無機保水材を混合する場合は、混合量が多過
ぎると型強度を低下させ、また、該無機保水材の粒径が
余り細かくても欠陥部分の数が多くなり型強度を低下さ
せるものと考えられる。
Therefore, when mixing the inorganic water-retaining material, if the mixing amount is too large, the mold strength is reduced, and also, if the particle size of the inorganic water-retaining material is too small, the number of defective portions increases and the mold strength is reduced. it is conceivable that.

以上の実験1、2の結果より、焼成時の煙を無くし、
鋳型の強度の低下を許容範囲内にするためには、無機保
水材が、必要な水分を有していること、所定量の水
およびフェノールレジンを吸収する細孔を有しているこ
と、鋳物砂の径に対して所定の大きさの径を有すると
ともに樹脂被覆鋳物砂と同程度に温度上昇すること、が
必要であることが分かる。
From the results of Experiments 1 and 2 above, smoke during firing was eliminated,
In order to make the strength of the mold fall within an acceptable range, the inorganic water retention material must have the necessary water, have a predetermined amount of water and fine pores to absorb phenolic resin, It is understood that it is necessary to have a diameter of a predetermined size with respect to the diameter of the sand and to raise the temperature to the same degree as that of the resin-coated molding sand.

実験例3 樹脂被覆鋳物砂と水を共存させた結果、該樹脂被覆鋳
物砂は玉状に固結した。これより、焼成時に必要な水分
は、単に共存させるのではなく、無機保水材の細孔の中
に適量含有させ、樹脂被覆鋳物砂に混合するときには表
面に水を出さないようにすることが必要であると考えら
れる。さらに、一般に、悪臭ガス吸着に必要な吸着剤の
孔の大きさは、オングストローム(Å)単位の微小なも
のであることが必要とされている。これに対して、本発
明の無機保水材は、毛細管現象により水を吸い込むこと
ができる大きさの孔であればよく、μ単位以上であれば
よいと考えられる。
Experimental Example 3 As a result of coexistence of resin-coated molding sand and water, the resin-coated molding sand was solidified in a ball shape. From this, it is necessary to make the water necessary for sintering not only coexist, but also to contain an appropriate amount in the pores of the inorganic water retention material so that water does not come out on the surface when mixed with resin-coated molding sand. It is considered to be. Further, in general, the pore size of the adsorbent required for adsorbing the offensive odor gas is required to be very small in angstrom (Å) units. On the other hand, the inorganic water retention material of the present invention only needs to be a hole having a size capable of sucking water by capillary action, and it is considered that it is sufficient if the hole has a unit of μ or more.

〔実施例〕〔Example〕

以下に、本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described.

第1実施例 鋳物砂ノボラック系フェノール樹脂と無機保水材とを
用いて鋳型材料を製造した後、該材料を用いて鋳型を成
形し、鋳込みによる性能評価試験を行った。
First Example After a mold material was manufactured using a casting sand novolak-based phenol resin and an inorganic water retaining material, a mold was molded using the material, and a performance evaluation test was performed by casting.

先ず、無機保水材として、粒径が149〜297μmの鹿沼
土、赤玉土、セピオライト、及びヤシガラ活性炭または
モミガラくん炭とベントナイトの混合物、ヤシガラ活性
炭、ゼオライト、モミガラくん炭を用意し、水分を調整
して第1表に示す無機保水材を得た(試料番号1〜1
8)。
First, as an inorganic water-retaining material, a particle size of 149-297 μm Kanuma soil, Akadama soil, sepiolite, and a mixture of coconut shell activated carbon or coconut charcoal and bentonite, coconut shell activated carbon, zeolite, coconut charcoal, and adjust the water content. To obtain the inorganic water retention materials shown in Table 1 (Sample Nos. 1 to 1).
8).

次に、市販の珪砂(三河珪石(株):粒度6号)と、
該珪砂に対し2重量%のノボラック系フェノール樹脂、
該樹脂に対して15重量%のヘキサメチレンテトラミン、
珪砂に対して0.1重量%のステアリン酸カルシウムをス
ピードマーラーにより順次混合して樹脂被覆鋳物砂を得
た。次いで、該樹脂被覆鋳物砂を小型モルタルミキサー
に入れ、第1表に示す無機保水材を、試料番号1は2.0
体積%、試料番号2〜18は4.0体積%、第1表に示す条
件で添加し、混合して本実施例の脱煙鋳型材を得た。こ
の保水材の含有率を第1表に合わせて示す。
Next, commercially available quartz sand (Mikawa Silica Co., Ltd .: particle size No. 6)
2% by weight of novolak phenolic resin with respect to the silica sand,
15% by weight of hexamethylenetetramine based on the resin,
0.1% by weight of calcium stearate with respect to the silica sand was sequentially mixed by a speed muller to obtain a resin-coated molding sand. Then, the resin-coated molding sand was placed in a small mortar mixer, and the inorganic water-retaining material shown in Table 1 was mixed with a sample No. 1 by 2.0%.
By volume, Sample Nos. 2 to 18 were added at 4.0% by volume under the conditions shown in Table 1 and mixed to obtain a demolding mold material of this example. Table 1 shows the content of the water retention material.

次に、この脱煙鋳型材を、予め250℃に加熱された外
径80mm×内径60mm×高さ135mm×底厚さ15mm、抜き勾配
が2度のカップ状製品用の鉄製の金型に入れ、該型をシ
リコニット炉で400℃に2分間加熱・保持した後、炉か
ら取り出し金型をはずして鋳型を得た。
Next, the demolding mold material is placed in an iron mold for a cup-shaped product having an outer diameter of 80 mm, an inner diameter of 60 mm, a height of 135 mm, a bottom thickness of 15 mm and a draft angle of 2 degrees, which has been previously heated to 250 ° C. After the mold was heated and held at 400 ° C. for 2 minutes in a siliconit furnace, it was taken out of the furnace and the mold was removed to obtain a mold.

これら鋳型の成形性は、試料番号1〜4、6〜12、14
〜18は良好であった。しかし、試料番号5、13について
は、一部樹脂被覆鋳物砂が固結してしまった。また、鋳
型の製造の加熱の際の発煙量の観察および発生臭の官能
試験により行った。その結果を、第2表に示す。尚、表
中、発煙状況は「◎」は「発煙は認められない」、
「△」は「発煙微かに認められる」、「×」は「少量の
発煙あり」、「××」は「多量の発煙あり」を示す。
The moldability of these molds was determined by sample numbers 1-4, 6-12, 14
~ 18 were good. However, for sample numbers 5 and 13, the resin-coated molding sand was partially solidified. In addition, the measurement was carried out by observing the amount of smoke generated during heating in the production of the mold and conducting a sensory test of the generated odor. Table 2 shows the results. In the table, the smoke emission status "◎" indicates "no smoke emission",
“△” indicates “smoke is slightly observed”, “×” indicates “a small amount of smoke”, and “XX” indicates “a large amount of smoke”.

また、表中、刺激臭は「◎」は「刺激臭は認められな
い」、「△」は「刺激臭微かに感じられる」、「×」は
「刺激臭あり」、「××」は「刺激臭が非常に強い」を
示す。第2表より明らかの如く、本実施例にかかるもの
は、水の含有量が少ない試料番号12を除いて何れも発煙
が全くみられず、また刺激臭・異臭の発生も認められな
かった。
In the table, the irritating odor "◎" indicates "no irritating odor", "△" indicates "irritating odor slightly", "x" indicates "irritating odor", and "xx" indicates "irritating odor". The pungent odor is very strong. " As is evident from Table 2, none of the samples according to this example except for Sample No. 12, which had a low water content, showed no smoke and no irritating odor or off-flavor was observed.

次に、型の強度試験を行った。その結果を、第2表に
示す。試料番号5および13のように、無機保水材の混合
する温度が高かったり、または水の含有量が多いと得ら
れる鋳型の強度が許容範囲を大きくはずれた。また、試
料番号16〜18の無機保水材としてヤシガラ活性炭、ゼオ
ライト、モミガラくん炭を用いたものは、得られる鋳型
の強度が許容範囲を少し超えた。
Next, a mold strength test was performed. Table 2 shows the results. As in Sample Nos. 5 and 13, when the mixing temperature of the inorganic water-retaining material was high, or when the content of water was large, the strength of the resulting mold deviated greatly from the allowable range. In addition, in the case of using the coconut shell activated carbon, zeolite, and shrimp charcoal as the inorganic water retention material of Sample Nos. 16 to 18, the strength of the obtained mold slightly exceeded the allowable range.

比較のために、上述の樹脂被覆鋳物砂のみを用いたも
の(試料番号C1)、保水材としてパーライトを用いたも
の(試料番号C2)、ベントナイトを用いたもの(試料番
号C3)、バーミキュライトを用いたもの(試料番号C
4)、添加量が発明の範囲外のセピオライトを用いたも
の(試料番号C5、C6)を比較用鋳型材料とし、第3表お
よび第4表以外の条件は前記と同様として作製し、これ
を用いて比較用鋳型を作製し、同様の性能評価試験を行
った。その結果を、第5表に示す。第5表より明らかの
如く、試料番号C1の比較例の場合は、鋳型製造時、鋳込
み後の発煙量がかなり多く、また、刺激臭の発生の程度
もかなり強いことが分る。一方、試料番号C2ないしC4の
場合は、鋳型製造時、鋳込み後の発煙量や刺激臭の発生
の程度は試料番号C1ほどではないが本実施例よりも多
い。また、試料番号C5では、鋳型製造時、鋳込み後の発
煙量、および刺激臭の低減効果が十分ではなく、試料番
号C6では、型強度が大きく低下していることが分かる。
For comparison, those using only the resin-coated molding sand described above (Sample No. C1), those using perlite as a water retention material (Sample No. C2), those using bentonite (Sample No. C3), and those using vermiculite (Sample No. C
4) A sample using sepiolite whose addition amount is out of the range of the invention (Sample Nos. C5 and C6) was used as a comparison mold material, and conditions other than those in Tables 3 and 4 were prepared as described above. A comparative mold was produced using the same, and a similar performance evaluation test was performed. Table 5 shows the results. As is clear from Table 5, in the case of the comparative example of sample No. C1, the amount of smoke generated after casting was considerably large during the production of the mold, and the generation of pungent odor was also quite strong. On the other hand, in the case of sample numbers C2 to C4, during the production of the mold, the amount of smoke generated after casting and the degree of generation of irritating odor are not as large as those of sample number C1, but are larger than in this example. Sample No. C5 does not have a sufficient effect of reducing the amount of smoke produced after casting and the amount of pungent odor during casting, and Sample No. C6 shows that the mold strength is significantly reduced.

さらに、上記試料番号1〜4、6〜8、10〜12につい
て、鋳造後の型材を回収し、再生砂としての評価を実施
した。すなわち、前記樹脂被覆鋳物砂作製工程におい
て、珪砂の40%をこの再生砂に置き換え、それ以外は前
記と同様にして脱煙鋳型材を作製し、これを用いて鋳型
を作製し、同様に評価試験を行った。その結果、試料番
号1〜4および6〜8では、鋳型の製造時および鋳込み
時の何れにおいても、煙の発生状況、刺激臭の程度は再
生砂を用いないものと全んど変わらず良好で、型強度の
低下の程度も略同じ値を示した。これに対し、試料番号
10〜12の場合は、型強度の低下が50%以上と著しかっ
た。
Further, for the sample numbers 1 to 4, 6 to 8, and 10 to 12, the cast materials were collected and evaluated as recycled sand. That is, in the resin-coated molding sand making step, 40% of the silica sand was replaced with this reclaimed sand, and otherwise, a smoke-free mold material was manufactured in the same manner as described above, and a mold was manufactured using the same. The test was performed. As a result, in Sample Nos. 1 to 4 and 6 to 8, both during the production of the mold and during the casting, the smoke generation state and the degree of the irritating odor were almost the same as those without using the regenerated sand, and were good. The degree of decrease in mold strength also showed substantially the same value. On the other hand, the sample number
In the case of 10 to 12, the decrease in mold strength was remarkable at 50% or more.

第2実施例 鋳物砂と無機保水材とノボラック系フェノール樹脂を
用い、第1実施例とは無機保水材の投入時期を代えて鋳
型材料を製造した。
Second Example A molding material was produced using casting sand, an inorganic water retaining material and a novolak-based phenolic resin, while changing the charging time of the inorganic water retaining material from the first example.

先ず、無機保水材として、粒径が149〜500μmの鹿沼
土、赤玉土、セピオライトを用意し、100℃で乾燥させ
た後、水分調整して第6表に示す無機保水材を得た(試
料番号19〜28)。
First, as an inorganic water retention material, Kanuma soil, Akadama soil, and sepiolite having a particle size of 149 to 500 μm were prepared, dried at 100 ° C., and adjusted for moisture to obtain an inorganic water retention material shown in Table 6. Numbers 19-28).

次に、市販の珪砂(三河珪石(株):粒度6号)と、
該珪砂に対し2.5重量%のノボラック系フェノール樹
脂、該樹脂に対して15重量%のヘキサメチレンテトラミ
ンをそれぞれミックスマーラに入れて混合し、次いで、
該混合物に珪砂に対して0.1重量%のステアリン酸カル
シウムを入れ、さらにこの投入直後に第6表に示す無機
保水材を、4.2体積%添加し、混合して本実施例の脱煙
鋳型材を得た。なお、含水量が10重量%を越える試料番
号22、26、28は、鋳型材料の冷却時に固結し、これらを
砕いて鋳型材とした。
Next, commercially available quartz sand (Mikawa Silica Co., Ltd .: particle size No. 6)
2.5% by weight of the novolak phenolic resin based on the silica sand and 15% by weight of hexamethylenetetramine based on the resin were mixed in a mixing mara, and then mixed.
0.1% by weight of calcium stearate based on silica sand was added to the mixture, and immediately after the addition, 4.2% by volume of an inorganic water retention material shown in Table 6 was added and mixed to obtain a demolding mold material of this example. Was. Sample Nos. 22, 26 and 28 having a water content exceeding 10% by weight were solidified when the mold material was cooled, and crushed to form a mold material.

次に、この脱煙鋳型材を用いて、第1実施例と同様に
して鋳型を得た。
Next, a mold was obtained using this smoke-free mold material in the same manner as in the first embodiment.

尚、これら鋳型の成形性は良好であり、また、鋳型の
製造の加熱の際の発煙量の観察および発生臭の官能試験
により行った。その結果を、第7表に示す。なお、表中
の記号は、前記第2表と同様である。第7表より明らか
の如く、本実施例にかかるものは、何れも発煙が全くみ
られず、また刺激臭・異臭の発生も認められなかった。
In addition, the moldability of these molds was good, and the evaluation was carried out by observing the amount of smoke generated during heating in the production of the molds and performing a sensory test of the generated odor. Table 7 shows the results. The symbols in the table are the same as those in Table 2. As is evident from Table 7, none of the samples according to the present example produced smoke and no irritating odor or off-flavor was observed.

次に、型の強度試験を行った。その結果を、第7表に
併せて示す。第7表より明らかのごとく、何れの保水材
においても、添加時の含水量10重量%以下のものは、型
強度も許容範囲内であった。
Next, a mold strength test was performed. The results are also shown in Table 7. As is evident from Table 7, the mold strength of any water retention material having a water content of 10% by weight or less at the time of addition was within the allowable range.

さらに、上記試料番号19〜21、23〜25について、鋳造
後の型材を回収し、珪砂の40%をこの再生砂に置き換
え、それ以外は前記と同様にして脱煙鋳型材を作製し、
これを用いて鋳型を作製し、同様に評価試験を行った。
その結果、鋳型の製造時および鋳込み時の何れにおいて
も、煙の発生状況、刺激臭の程度は再生砂を用いないも
のと全んど変わらず良好で、型強度の低下の程度も略同
じ値を示した。
Further, for the sample numbers 19 to 21 and 23 to 25, the cast material was recovered after casting, and 40% of the silica sand was replaced with this recycled sand.
Using this, a mold was prepared, and an evaluation test was performed in the same manner.
As a result, both during the production of the mold and during the casting, the generation of smoke and the degree of irritating odor were almost the same as those without the use of recycled sand, and were almost the same. showed that.

第3実施例 鋳物砂とノボラック系フェノール樹脂と無機保水材を
用い、第2実施例と同様に鋳型材料を製造した後、該材
料を用いて鋳型を成形し、鋳込みによる性能評価試験を
行った。
Third Example Using a molding sand, a novolak-based phenol resin, and an inorganic water-retaining material, a mold material was manufactured in the same manner as in the second example, and then a mold was formed using the material, and a performance evaluation test was performed by casting. .

先ず、無機保水材として、粒径が149〜500μmの鹿沼
土、赤玉土、セピオライトを用意し、含水量を5重量%
に調整して第8表に示す無機保水材得た(試料番号29〜
42)。
First, Kanuma soil, Akadama soil, and sepiolite having a particle size of 149 to 500 μm are prepared as inorganic water retention materials, and the water content is 5% by weight.
To obtain the inorganic water retention materials shown in Table 8 (Sample Nos. 29 to
42).

次に、市販の珪砂(三河珪石(株):粒度6号)と、
該珪砂に対し第8表に示す量のノボラック系フェノール
樹脂、該樹脂に対して15重量%のヘキサメチレンテトラ
ミンをそれぞれミックスマーラに入れて混合し、次い
で、該混合物に珪砂に対して0.1重量%のステアリン酸
カルシウムを入れ、さらにこの投入直後に第8表に示す
無機保水材を、同表に示す条件で添加し、10〜15秒攪拌
・混合して本実施例の脱煙鋳型材を得た。
Next, commercially available quartz sand (Mikawa Silica Co., Ltd .: particle size No. 6)
The novolak phenol resin in the amount shown in Table 8 and 15% by weight of hexamethylenetetramine based on the resin were mixed into the mix mara and mixed with the silica sand, and then 0.1% by weight based on the silica sand was added to the mixture. Was added, and immediately after the addition, the inorganic water retaining material shown in Table 8 was added under the conditions shown in the same table, and the mixture was stirred and mixed for 10 to 15 seconds to obtain a demolding mold material of this example. .

得られた鋳型の性能評価試験を、実施例1と同様に行
ったところ、本実施例にかかるものは鋳型の製造の加熱
の際、発煙が全くみられず、また刺激臭・異臭の発生の
程度も極めて弱かった。また、型の強度試験により行っ
た。その結果を、第9表に併せて示す。本実施例にかか
るものは、型強度の低下も少なかった。
When the performance evaluation test of the obtained mold was performed in the same manner as in Example 1, the mold according to this example did not emit any smoke at the time of heating for the production of the mold, and produced no irritating odor or off-flavor. The degree was extremely weak. The test was performed by a mold strength test. The results are also shown in Table 9. In the case of this example, the decrease in mold strength was small.

また、上記試料番号29〜42について、鋳造後の型材を
回収して再生砂とし、珪砂の40%をこの再生砂に置き換
え、それ以外は前記と同様にして脱煙鋳型材を作製し、
これを用いて鋳型を作製し、同様に評価試験を行った。
その結果、鋳型の製造時および鋳込み時の何れにおいて
も、煙の発生状況、刺激臭の程度は再生砂を用いないも
のと全んど変わらず良好で、型強度の低下の程度も略同
じ値を示した。
For the sample numbers 29 to 42, the cast material after casting was collected and used as recycled sand, and 40% of the silica sand was replaced with this recycled sand.
Using this, a mold was prepared, and an evaluation test was performed in the same manner.
As a result, both during the production of the mold and during the casting, the generation of smoke and the degree of irritating odor were almost the same as those without the use of recycled sand, and were almost the same. showed that.

次に、試料番号31および39の脱煙鋳型材を350kg、製
作用のスピードマーラにより大量に作製し、予め250℃
に加熱された自動車用エンジンブロック製造用鋳型を作
製する自動焼成機械(フロントカバー中子1.94kg、リヤ
カバー3.08kg、スラブ中子1.72kgを一度に焼成できるも
の)に空気ブロー法により入れ、該型を250℃に1分間
加熱・保持した後、自動的に成形型を開いて鋳型を取り
出した。
Next, 350 kg of the demolding mold materials of Sample Nos. 31 and 39 were prepared in large quantities by a speed marula for production, and 250 ° C.
An automatic baking machine (one that can bake 1.94 kg of front cover core, 3.08 kg of rear cover, and 1.72 kg of slab core at one time) is manufactured by the air blow method. After heating and holding at 250 ° C. for 1 minute, the mold was automatically opened and the mold was taken out.

尚、これら鋳型の成形性は良好であり、また、鋳型の
製造の加熱の際の発煙量の観察および発生臭の官能試験
により行った。その結果、第9表と同様に発煙が全くみ
られず、また刺激臭・異臭の発生の程度も極めて弱かっ
た。各製作ロット毎に強度試験用試料片を製作し型強度
評価試験をした結果、強度低下率は20%以下であった。
また、製造工程においても、型の破壊などの問題は発生
しなかった。なお、鋳型の強度低下を補うために、樹脂
添加量を3.2重量%にしても、同じ無機保水材の添加量
で鋳型作製時に発煙は全く見られず、また刺激臭や異臭
も極めて弱かった。
In addition, the moldability of these molds was good, and the evaluation was carried out by observing the amount of smoke generated during heating in the production of the molds and performing a sensory test of the generated odor. As a result, as in Table 9, no fuming was observed at all, and the degree of generation of irritating odor and off-flavor was extremely weak. As a result of producing a strength test specimen for each production lot and performing a die strength evaluation test, the strength reduction rate was 20% or less.
In the manufacturing process, no problem such as destruction of the mold occurred. In order to compensate for the decrease in strength of the mold, even when the amount of the resin added was 3.2% by weight, no smoke was observed at the time of the production of the mold with the same amount of the inorganic water retention material, and the irritating odor and the off-flavor were extremely weak.

第4実施例 珪砂と該珪砂に対し2重量%のフェノール樹脂と、硬
化剤として該フェノール樹脂に対し15重量%のヘキサメ
チレンテトラミンと、潤滑剤として前記珪砂に対して0.
1重量%のステアリン酸カルシムと、無機保水材として
含水珪酸マグネシウム質粘土鉱物を前記珪砂に対して4
体積%添加して鋳型材料を作製した。なお、無機保水材
の含水量は、3、5、11、21、33、42、47重量%とし
た。これより得られた鋳型材料を用いて、鋳型を作製
し、得られた鋳型の型強度を測定し、型強度低下率を調
べた。その結果を、第3図に示す。その結果、無機保水
材の保有水量が5〜42重量%の場合は、何れも煙の発生
はなく型強度低下率は20%以下であった。それに対し
て、3重量%の場合は、煙が少量発生し型強度低下率も
27%と高かった。また、47重量%の場合は、煙の発生は
なかったものの、型強度低下率が40%と極めて高かっ
た。
Fourth Embodiment Silica sand, 2% by weight of phenol resin with respect to the silica sand, 15% by weight of hexamethylenetetramine with respect to the phenol resin as a hardening agent, and 0.1% with respect to the silica sand as a lubricant.
1% by weight of calcium stearate and a hydrous magnesium silicate clay mineral as an inorganic water-retaining material were added to the silica sand in an amount of 4%.
A mold material was prepared by adding volume%. The water content of the inorganic water retention material was 3, 5, 11, 21, 33, 42, and 47% by weight. Using the resulting mold material, a mold was prepared, the mold strength of the obtained mold was measured, and the mold strength reduction rate was examined. The result is shown in FIG. As a result, when the water content of the inorganic water retaining material was 5 to 42% by weight, no smoke was generated and the mold strength reduction rate was 20% or less. On the other hand, in the case of 3% by weight, a small amount of smoke is generated and the mold strength reduction rate is also low.
It was as high as 27%. In the case of 47% by weight, although no smoke was generated, the mold strength reduction rate was extremely high at 40%.

第5実施例 珪砂と該珪砂に対し2.5重量%のフェノール樹脂と、
硬化剤として該フェノール樹脂に対し15重量%のヘキサ
メチレンテトラミンと、潤滑剤として前記珪砂に対して
0.1重量%のステアリン酸カルシムと、水分を5重量%
含有した無機保水材を前記珪砂に対して4体積%添加し
て鋳型材料を作製した。この際、保水材の添加時期を、
珪砂内に混合(I)、フェノール樹脂投入後(II)、ヘ
キサメチレンテトラミン投入後(III)、ステアリン酸
カルシム投入後(IV)、冷却工程で投入(V)として、
それぞれ鋳型材料を得た。得られた鋳型材料を用いて、
鋳型を作製し、得られた鋳型の型強度を測定し、型強度
低下率を調べた。その結果を、第4図に示す。その結
果、保水材の投入時期がI〜III、すなわちステアリン
酸カルシム投入前においては、何れも型強度が34%以上
低下した。これに対して、保水材の投入時期がIVのステ
アリン酸カルシム投入後、およびVの冷却工程で投入し
た場合には、何れも型強度の低下率が20%以下であっ
た。
Fifth Embodiment Silica sand and 2.5% by weight of phenol resin with respect to the silica sand,
15% by weight of hexamethylenetetramine with respect to the phenol resin as a hardener, and the silica sand as a lubricant
0.1% by weight of calcium stearate and 5% by weight of water
4% by volume of the contained inorganic water retention material was added to the silica sand to prepare a mold material. At this time, the addition time of the water retention material,
After mixing in silica sand (I), charging phenolic resin (II), charging hexamethylenetetramine (III), charging calcium stearate (IV), and charging in the cooling step (V),
Each mold material was obtained. Using the obtained mold material,
A mold was prepared, the mold strength of the obtained mold was measured, and the mold strength reduction rate was examined. The result is shown in FIG. As a result, the mold strength was reduced by 34% or more in all cases when the water retention material was charged at the timings I to III, that is, before calcium stearate was charged. On the other hand, when the water retention material was charged after the addition of IV calcium stearate and during the V cooling step, the mold strength reduction rate was 20% or less.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる脱煙鋳型材の概念図、第2図は
樹脂被覆鋳物砂およびその焼成後の断面構造を模式的に
示す概念図で、第2図(a)は樹脂被覆鋳物砂の構造を
模式的に示す断面図、第2図(b)は樹脂被覆鋳物砂を
焼成したものの構造を模式的に示す断面図、第2図
(c)は樹脂被覆鋳物砂に無機保水材を混合した脱煙鋳
型材を焼成したものの構造を模式的に示す断面図、第3
図は第4実施例で得られた脱煙鋳型材の無機保水材含水
量と型強度低下率の関係を示す線図、第4図は第5実施
例で得られた脱煙鋳型材の保水材添加時期と型強度低下
率の関係を示す線図である。 1……熱硬化性樹脂 2……鋳物砂基材 3……保水材
FIG. 1 is a conceptual diagram of a demolding mold material according to the present invention, FIG. 2 is a conceptual diagram schematically showing a resin-coated molding sand and a cross-sectional structure thereof after firing, and FIG. 2 (a) is a resin-coated molding. FIG. 2 (b) is a cross-sectional view schematically showing the structure of the resin-coated molding sand obtained by firing the resin-coated molding sand. FIG. 2 (c) is a cross-sectional view schematically showing the structure of the resin-coated molding sand. Sectional view schematically showing the structure of a fired smoke removal mold material mixed with
The figure is a diagram showing the relationship between the water content of the inorganic water retention material and the mold strength reduction rate of the demolding mold material obtained in the fourth embodiment, and FIG. 4 is the water retention of the demolding mold material obtained in the fifth embodiment. FIG. 3 is a diagram showing a relationship between a material addition time and a mold strength reduction rate. 1. Thermosetting resin 2. Casting sand base material 3. Water retention material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 春好 愛知県刈谷市豊田町2丁目1番地 株式 会社豊田自動織機製作所内 審査官 岡田 和加子 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Haruyoshi Hirano 2-1-1 Toyota-cho, Kariya-shi, Aichi Examiner, Toyoda Automatic Loom Works Ltd. Wakako Okada

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋳型材基材に熱硬化性樹脂等を被覆した鋳
型材と、細孔構造を有し100〜250℃においても水分の吸
脱着能力を有するとともに含水能力が15重量%以上の無
機保水材とからなり、該無機保水材の混合量が前記鋳型
材基材の1.5〜4.5体積%であることを特徴とする脱煙鋳
型材。
1. A mold material in which a thermosetting resin or the like is coated on a mold base material, having a pore structure, having a water absorbing / desorbing ability even at 100 to 250 ° C., and having a water content of 15% by weight or more. A smoke removing mold material comprising an inorganic water retaining material, wherein the mixing amount of the inorganic water retaining material is 1.5 to 4.5% by volume of the mold material base material.
JP2338795A 1990-11-30 1990-11-30 Smoke removal mold material Expired - Lifetime JP2902479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2338795A JP2902479B2 (en) 1990-11-30 1990-11-30 Smoke removal mold material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2338795A JP2902479B2 (en) 1990-11-30 1990-11-30 Smoke removal mold material

Publications (2)

Publication Number Publication Date
JPH04220134A JPH04220134A (en) 1992-08-11
JP2902479B2 true JP2902479B2 (en) 1999-06-07

Family

ID=18321544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2338795A Expired - Lifetime JP2902479B2 (en) 1990-11-30 1990-11-30 Smoke removal mold material

Country Status (1)

Country Link
JP (1) JP2902479B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003289258A1 (en) 2002-12-09 2004-06-30 Kao Corporation Spherical casting sand
JP6191076B2 (en) * 2014-03-12 2017-09-06 三菱重工業株式会社 MANUFACTURING METHOD FOR CORE, AND TURBINE MEMBER MANUFACTURING METHOD FOR OBTAINING CORE WITH MANUFACTURING METHOD
EP3195953A4 (en) * 2014-08-29 2018-03-28 Hitachi Metals, Ltd. Green sand mold for casting and method for manufacturing cast articles using same

Also Published As

Publication number Publication date
JPH04220134A (en) 1992-08-11

Similar Documents

Publication Publication Date Title
JP4223830B2 (en) Water-soluble casting mold and manufacturing method thereof
CN101652204B (en) Composition for making feeders
JP6868026B2 (en) Manufacturing method of refractory composite particles and feeder members for the casting industry, equivalent feeder members and use
CN104903023A (en) Coated sand, manufacturing method for same, and manufacturing method for mold
JP2003251434A (en) Sand for mold and production method thereof
WO2018147419A1 (en) Mold material composition and method for producing mold using same
RU2006143647A (en) REGENERATION OF FORMING MIXTURES CONTAINING A BINDING PHENOL RESIN, CURED BY A COMPLEX ETHER
WO2011093020A1 (en) Composition for refractory brick, refractory brick, and method for producing refractory brick
Ünlü et al. Development and evaluation of a new eco-friendly sodium silicate-based binder system
JP4448945B2 (en) Mold sand and its manufacturing method
EP0219645B1 (en) Molding material and mold
JP2902479B2 (en) Smoke removal mold material
JP5075902B2 (en) Mold sand and its manufacturing method
JP2011021093A (en) Modified phenol resin, method for manufacturing the same, phenol resin composition, refractory composition, resin coated sand for use in mold, molding material, nonwoven fabric, cured product, carbonized product, and activated carbon
JP7252897B2 (en) Mold material and method for manufacturing the same, mold and method for manufacturing the same, and method for regenerating foundry sand
JP2902478B2 (en) Smoke removal mold material
JP2881875B2 (en) High strength molded activated carbon
JPH0435251B2 (en)
JPH0647141B2 (en) Mold material
JPH0435252B2 (en)
JP2019177402A (en) Aggregate for a mold and method of producing same
WO2020203752A1 (en) Mold material composition and method for manufacturing mold using same
JPH08192244A (en) Sprue and riser type products for casting
JP3151202B2 (en) Refractory materials
Beňo et al. Moulding mixtures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081013

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101013

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121013

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250