JPH0422399B2 - - Google Patents
Info
- Publication number
- JPH0422399B2 JPH0422399B2 JP18592284A JP18592284A JPH0422399B2 JP H0422399 B2 JPH0422399 B2 JP H0422399B2 JP 18592284 A JP18592284 A JP 18592284A JP 18592284 A JP18592284 A JP 18592284A JP H0422399 B2 JPH0422399 B2 JP H0422399B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- plate
- speaker
- dome
- bimorph
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 3
- 239000002243 precursor Substances 0.000 claims description 3
- SYMYWDHCQHTNJC-UHFFFAOYSA-J 3-oxobutanoate;zirconium(4+) Chemical compound [Zr+4].CC(=O)CC([O-])=O.CC(=O)CC([O-])=O.CC(=O)CC([O-])=O.CC(=O)CC([O-])=O SYMYWDHCQHTNJC-UHFFFAOYSA-J 0.000 claims description 2
- 229910000464 lead oxide Inorganic materials 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 125000002524 organometallic group Chemical group 0.000 claims description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 11
- 150000002902 organometallic compounds Chemical class 0.000 description 5
- 238000005452 bending Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910020684 PbZr Inorganic materials 0.000 description 1
- NMUTVZGCFBKTRR-UHFFFAOYSA-N acetyl acetate;zirconium Chemical compound [Zr].CC(=O)OC(C)=O NMUTVZGCFBKTRR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Description
【発明の詳細な説明】
(発明の産業上の利用分野)
本発明は電話器等に用いられる圧電スピーカに
関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field of the Invention) The present invention relates to a piezoelectric speaker used in telephones and the like.
(従来技術)
従来、圧電スピーカは第7図に示すように、真
鍮、ステンレススチール等の平面金属板11の上
に圧電磁器板12を貼り合わせた形のバイモルフ
円形平板振動子が専ら用いられており、前記バイ
モルフ円板を直接発音体としたもの、或いは中
島、佐藤、跡地が日本音響学会講演論文集(昭和
58年10月)289〜290頁「圧電型スピーカ」に記載
されているように前記バイモルフ円板を駆動素子
として利用したものがあり、高音用スピーカ、ブ
ザー等一般に1KHz以上の比較的高い可聴周波数
領域で用いられている。(Prior Art) Conventionally, as shown in FIG. 7, piezoelectric speakers have exclusively used a bimorph circular flat plate vibrator in which a piezoelectric ceramic plate 12 is bonded to a flat metal plate 11 made of brass, stainless steel, etc. The above-mentioned bimorph disk was used as a direct sounding body, or Nakajima, Sato, and the former site were published in the Proceedings of the Acoustical Society of Japan (Showa
As described in "Piezoelectric Speakers" on pages 289-290 (October 1958), there are devices that use the bimorph disk as a driving element, and they are generally used for relatively high audible frequencies of 1 KHz or higher, such as high-pitched speakers and buzzers. used in the area.
また、これとは別に第8図に示すように圧電セ
ラミツクスのみからなる円板を振動体21として
用い、円板21をわずかに湾曲させて円板21の
周辺部を剛壁22に接着させ、円板21の径伸縮
モードを用いたスピーカが提案されている。 Separately, as shown in FIG. 8, a disk made only of piezoelectric ceramics is used as the vibrating body 21, the disk 21 is slightly curved, and the peripheral part of the disk 21 is bonded to the rigid wall 22. A speaker using a diameter expansion/contraction mode of the disk 21 has been proposed.
発明が解決すべき課題
近年、スピーカの高性能化とともに、圧電形ス
ピーカに対しても人間の音声帯域300Hz〜3500Hz
をカバーしうる広帯域再生とくに低域再生が強く
要求されている。Problems to be solved by the invention In recent years, with the improvement of speaker performance, piezoelectric speakers have also improved in the human voice range of 300Hz to 3500Hz.
There is a strong demand for wideband reproduction, especially low-frequency reproduction, that can cover the following.
従来の第7図に示す圧電バイモルフ円板を用い
た圧電スピーカをで音声帯域を十分カバーするた
めには、バイモルフ振動子の共振周波数rを低く
することが重要である。バイモルフ振動子の共振
周波数rを低くするためには円板の直径を大きく
するかバイモルフ振動子の厚さを小さくすれば良
い。しかし円板の直径を大きくして広帯域化を図
ろうとする場合は、スピーカの小型化を達成する
ことができなくなる。とりわけ電話器の受話器に
用いることは不可能となる。バイモルフ振動子の
小型化をはかる場合には、振動子の板厚を小さく
することが極めて重要となる。第7図の圧電セラ
ミツク円板11はラツピングによる薄板加工によ
り製造されており、研磨上りで板厚0.1mmが限界
である。そして第1図のバイモルフ構造では十分
振動板11,12を撓ませて効率良く音響放射を
行うことが必要不可欠であるため、圧電セラミツ
ク円板11に接着される金属板12の板厚も0.1
mm程度となる。即ちどんなに薄い圧電バイモルフ
振動板であつても、現在の加工技術からして製造
の歩留まりを考えると板厚は合計0.2mm以上とな
り、このため音声周波数を十分カバーしうる広帯
域再生に必要な円板の直径は少なくとも5cmは必
要となる。また性能面に関して、第7図に示すよ
うなバイモルフ円形平板振動子を用いて圧電スピ
ーカを構成した場合、振動板の基本共振周波数に
近い2次、3次の高次共振が音声周波数内におい
て顕著なピークを発生せしめ通話品質の低下を招
くといつた欠点がある。 In order to sufficiently cover the audio band with a conventional piezoelectric speaker using a piezoelectric bimorph disk shown in FIG. 7, it is important to lower the resonant frequency r of the bimorph vibrator. In order to lower the resonant frequency r of the bimorph oscillator, it is sufficient to increase the diameter of the disc or reduce the thickness of the bimorph oscillator. However, if an attempt is made to widen the band by increasing the diameter of the disc, it becomes impossible to downsize the speaker. In particular, it becomes impossible to use it as a telephone handset. When downsizing a bimorph resonator, it is extremely important to reduce the thickness of the resonator. The piezoelectric ceramic disk 11 shown in FIG. 7 is manufactured by processing a thin plate by wrapping, and the maximum plate thickness after polishing is 0.1 mm. In the bimorph structure shown in FIG. 1, it is essential to flex the diaphragms 11 and 12 sufficiently to radiate sound efficiently, so the thickness of the metal plate 12 bonded to the piezoelectric ceramic disk 11 is also 0.1.
It will be about mm. In other words, no matter how thin the piezoelectric bimorph diaphragm is, considering the production yield based on current processing technology, the total thickness of the plate will be 0.2 mm or more, which means that the disk thickness required for wideband reproduction that can sufficiently cover the audio frequency is required. The diameter must be at least 5 cm. Regarding performance, when a piezoelectric speaker is constructed using a bimorph circular plate vibrator as shown in Figure 7, high-order resonance of the second and third orders near the fundamental resonance frequency of the diaphragm is noticeable within the audio frequency. The drawback is that it can cause large peaks and degrade call quality.
一方、第8図に示したような構造の圧電スピー
カでは振動板が圧電セラミツク自身から成りたつ
ており、機械的な脆さによる信頼性の欠如及び成
形の困難さといつた欠点がある。 On the other hand, in the piezoelectric speaker having the structure shown in FIG. 8, the diaphragm is made of the piezoelectric ceramic itself, which has drawbacks such as lack of reliability due to mechanical brittleness and difficulty in molding.
本発明の目的は圧電スピーカの小型化とともに
広帯域で出力音圧特性の平坦な圧電スピーカを実
現することにある。 An object of the present invention is to reduce the size of a piezoelectric speaker and to realize a piezoelectric speaker with a wide band and flat output sound pressure characteristics.
課題を解決するための手段
本発明は平面形状が円又は楕円であるようなド
ーム状湾曲部を有する板を作製する工程と、該板
の少なくとも一方の面に電極を介して又は直接に
酸化鉛とジルコニウムアセチルアセテートとテト
ラブトキシチタンを所定の重量比で混合し、反応
させて調整したジルコンチタン酸鉛形成前駆体有
機金属溶液を塗布する工程と、該塗布膜を熱処理
する工程とを備えたことを特徴とする圧電スピー
カの製造方法である。Means for Solving the Problems The present invention includes a step of producing a plate having a dome-shaped curved portion whose planar shape is circular or elliptical, and a step of manufacturing a plate having a dome-shaped curved portion having a circular or elliptical planar shape, and a step of manufacturing a plate having a dome-shaped curved portion having a planar shape of a circle or an ellipse. a step of applying an organometallic solution of a lead zirconate titanate forming precursor prepared by mixing and reacting zirconium acetyl acetate and tetrabutoxytitanium at a predetermined weight ratio; and a step of heat-treating the coated film. This is a method of manufacturing a piezoelectric speaker characterized by the following.
作 用
本発明は有機金属化合物から生成した圧電磁器
を用いて上記のような構成をとることにより従来
技術の問題点を改善している。まず本発明の圧電
スピーカの製造方法を以下に示す。Function The present invention improves the problems of the prior art by employing the above-described configuration using piezoelectric ceramics produced from organometallic compounds. First, a method for manufacturing a piezoelectric speaker according to the present invention will be described below.
ドーム状に成形したNiなどの金属板もしくは
アルミナなどの絶縁板を熱分解することによつて
ジルコン・チタン酸鉛となる有機金属化合物溶液
の中に浸漬し、ゆつくりと引き上げた後乾燥す
る。 A dome-shaped metal plate such as Ni or an insulating plate such as alumina is immersed in an organic metal compound solution that becomes zircon/lead titanate through thermal decomposition, then slowly pulled up and dried.
有機金属化合物溶液を調整することにより種々
の組成比のジルコン・チタン酸鉛を作ることがで
きる。 Zircon-lead titanate with various composition ratios can be produced by adjusting the organometallic compound solution.
有機金属化合物溶液の塗布方法としてはデイツ
ピング法、スプレー法、スピンナー法、スクリー
ン印刷法などの通常塗装、印刷などで用いられて
いる方法によつて塗布することができる。 The organic metal compound solution can be applied by methods commonly used in painting, printing, etc., such as dipping, spraying, spinner, and screen printing.
さらに一部を塗布しない場合には通常行なわれ
ているマスキング法によつて、部分的に圧電層を
形成することが可能である。 Furthermore, if a portion is not coated, it is possible to partially form a piezoelectric layer by a commonly used masking method.
圧電層は周知の如く直流高電界で分極すること
により圧電性を付与することができる。第1図イ
〜ニはドーム形に成形された金属板31の表裏面
に圧電層32,33を設け、さらに電極34,3
5を設けたものであるが矢印で示した分極方向及
び電気端子のとり方により径伸び振動あるいは撓
み振動を強勢に励振することができる。第1図に
おいてイ,ロは径伸び振動、ハ,ニは撓み振動を
強勢に励振することができる。径伸び振動を利用
する振動子イ,ロの場合はスピーカとして動作さ
せる場合は周辺を固定する必要があるが、ハ,ニ
のように撓み振動を利用する振動子の場合は周辺
固定あるいは振動節点を支持する方法いずれも可
能である。また、第2図に示すように圧電層32
をドーム状成形金属板31の片面にのみ設け、さ
らに電極34を設けた場合には、径伸び振動及び
撓み振動いずれも励振可能であるが、電気機械変
換効率は第1図に示した成形板31の両面に圧電
層32,33を設けた振動子に比べやや劣る。し
かし低周波化には全体として薄く加工しやすいた
め、やや有利となる。 As is well known, piezoelectricity can be imparted to the piezoelectric layer by polarizing it with a high DC electric field. In FIGS. 1A to 1D, piezoelectric layers 32 and 33 are provided on the front and back surfaces of a metal plate 31 formed into a dome shape, and electrodes 34 and 3 are further provided.
5, it is possible to strongly excite radial elongation vibration or bending vibration depending on the polarization direction shown by the arrow and the way the electric terminals are arranged. In Fig. 1, radial extensional vibrations can be excited in A and B, and bending vibrations can be excited in C and D. In the case of vibrators A and B that utilize radial extension vibration, the periphery must be fixed if they are to operate as a speaker, but in the case of vibrators C and D that utilize flexural vibration, the periphery must be fixed or the vibration node must be fixed. Any method of supporting this is possible. Moreover, as shown in FIG. 2, the piezoelectric layer 32
is provided only on one side of the dome-shaped molded metal plate 31 and an electrode 34 is also provided, both radial elongation vibration and bending vibration can be excited, but the electromechanical conversion efficiency is lower than that of the molded plate shown in FIG. This is slightly inferior to a vibrator in which piezoelectric layers 32 and 33 are provided on both sides of a vibrator. However, it is somewhat advantageous for lowering frequencies because it is easier to process thinner overall.
また、第3図に示すように成形振動板51を絶
縁体としたときには、第3図イ〜ホに示すように
電極52,53をメツキまたは蒸着などの方法に
より設け、必要に応じて電極52,53を短絡
し、圧電層32,33と電極34,35を形成す
れば、第1図及び第2図に示した振動子と全く同
じ動作をすることは明白である。 Further, when the molded diaphragm 51 is made of an insulator as shown in FIG. 3, electrodes 52 and 53 are provided by plating or vapor deposition as shown in FIG. , 53 are short-circuited and the piezoelectric layers 32, 33 and electrodes 34, 35 are formed, it is clear that the vibrator operates exactly the same as the vibrator shown in FIGS. 1 and 2.
本発明に従つた圧電スピーカは以下に示すよう
な優れた特徴を有するものである。まず成形され
た金属板31、絶縁板51はプレスあるいはプラ
ズマ溶射などの方法で容易に薄肉ドームに成形が
可能であり、成形板31あるいは51の片面ある
いは両面に形成される圧電層34,35も数μm
〜数十μmの極めて薄い膜が実現可能であること
から、振動板の厚さを従来のものに比べて容易に
薄くすることができ小型で低周波化が可能であ
る。これは、従来の圧電磁器板を平面金属板に貼
り合わせてバイモルフ振動子を製造する方法で
は、ドーム状成形板の表面に圧電層を形成するこ
とは不可能であり、本発明ではじめて達成しうる
ものである。 The piezoelectric speaker according to the present invention has the following excellent features. First, the formed metal plate 31 and insulating plate 51 can be easily formed into a thin dome by pressing or plasma spraying, and the piezoelectric layers 34 and 35 formed on one or both sides of the formed plate 31 or 51 can also be formed into a thin dome. A few μm
Since it is possible to realize an extremely thin film of ~ several tens of micrometers, the thickness of the diaphragm can be easily made thinner than that of conventional ones, making it possible to reduce the size and frequency. With the conventional method of manufacturing bimorph resonators by bonding piezoelectric ceramic plates to flat metal plates, it is impossible to form a piezoelectric layer on the surface of a dome-shaped molded plate, and this has been achieved for the first time with the present invention. It is something that can be used.
さらに、ドーム状に成形された振動板となつて
いるため、基本共振周波数r1と第2次、第3次
の高次モード共振周波数r2、r3が相当離れて存
在するため、音声帯域が平坦で通話品質の良好な
圧電スピーカが実現できる。またドーム状湾曲部
の平面形状は円形が望ましいが楕円であつても発
明の効果は失なわれない。 Furthermore, since the diaphragm is shaped like a dome, the fundamental resonance frequency r1 and the second and third higher mode resonance frequencies r2 and r3 are quite far apart, so the audio band is flat. A piezoelectric speaker with good call quality can be realized. Further, although it is desirable that the planar shape of the dome-shaped curved portion be circular, the effect of the invention will not be lost even if it is elliptical.
実施例
以下、本発明の実施例について図面を参照して
詳細に説明する。本発明の一実施例として第4図
に示すように外径40mm、厚さ40μmでドーム状湾
曲部の縁辺が平面であり、該ドーム状湾曲部の平
面形状は円である金属板(Ni板)の表裏面に有
機金属化合物から生成した15μm厚のジルコン・
チタン酸鉛圧電層32,33を形成した。Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As an embodiment of the present invention, as shown in FIG. 4, a metal plate (Ni plate) having an outer diameter of 40 mm and a thickness of 40 μm, the edge of the dome-shaped curved part is flat, and the planar shape of the dome-shaped curved part is a circle. ) with 15 μm thick zircon made from organometallic compounds on the front and back surfaces of the
Lead titanate piezoelectric layers 32 and 33 were formed.
有機金属化合物溶液はPbTZr0.52Ti0.48O3の圧
電膜を形成する溶液を用いた。この有機金属化合
物溶液は次のようなプロセスで合成する。 As the organometallic compound solution, a solution for forming a piezoelectric film of PbTZr 0.52 Ti 0.48 O 3 was used. This organometallic compound solution is synthesized by the following process.
酸化鉛、ジルコニウムアセチルアセテートおよ
びテトラブトキシチタンをPbTiO3/PbZrO3のモ
ル比が48/52になるように秤量し、アセチルアセ
トン中で100〜110℃の温度で加熱し、反応させ複
合金属酸化物換算濃度として12.5重量%のジルコ
ンチタン酸鉛前駆体溶液を調整した。これをデイ
ツピング法により塗布し、乾燥後空気中で400℃
の温度で有機物を分解し、その後600℃−10分の
温度で熱処理し、金属板上にPbZr0.52Ti0.48O3の
薄膜を形成した。この膜上にAu/Crからなる電
極34,35を蒸着し、周辺部を固定して圧電ス
ピーカを試作した。ジルコン・チタン酸鉛圧電層
32,33はこの場合矢印の方向に分極され径伸
び振動を積極的に利用するようにした。基本共振
周波数は約1.3KHzである。この圧電スピーカは
金属板31が径方向に伸びたとき、周辺が固定さ
れているため面に垂直な方向にピストン状に振動
する。また、ドーム状成形体の縁辺部分が平面と
なつているのは、支持の安定化及び低周波化に極
めて有効である。 Lead oxide, zirconium acetylacetate, and tetrabutoxytitanium were weighed so that the molar ratio of PbTiO 3 /PbZrO 3 was 48/52, heated in acetylacetone at a temperature of 100 to 110°C, and reacted in terms of composite metal oxide. A lead zirconate titanate precursor solution having a concentration of 12.5% by weight was prepared. This was applied using the dipping method, and after drying it was heated to 400°C in the air.
The organic matter was decomposed at a temperature of 100°C, followed by heat treatment at a temperature of 600°C for 10 minutes to form a thin film of PbZr 0.52 Ti 0.48 O 3 on the metal plate. Electrodes 34 and 35 made of Au/Cr were deposited on this film, and the peripheral portions were fixed to fabricate a piezoelectric speaker. In this case, the zircon-lead titanate piezoelectric layers 32 and 33 are polarized in the direction of the arrow to actively utilize the radial elongation vibration. The fundamental resonant frequency is approximately 1.3KHz. When the metal plate 31 extends in the radial direction, this piezoelectric speaker vibrates like a piston in a direction perpendicular to the surface because the periphery is fixed. Further, the fact that the edge portion of the dome-shaped molded body is flat is extremely effective for stabilizing the support and lowering the frequency.
次に、本発明による振動板を第5図に示すよう
な音響振動系の自由度が3のキヤビネツトに収納
しスピーカシステムを構成した。第5図におい
て、70は振動板、71はキヤビネツト、72は
前気室、73は後気室、74は吸音材、75は受
話口、76は小穴である。 Next, the diaphragm according to the present invention was housed in a cabinet with an acoustic vibration system having three degrees of freedom as shown in FIG. 5 to construct a speaker system. In FIG. 5, 70 is a diaphragm, 71 is a cabinet, 72 is a front air chamber, 73 is a rear air chamber, 74 is a sound absorbing material, 75 is an earpiece, and 76 is a small hole.
このうち74,75,76は音響抵抗成分を有
し、スピーカシステム全体の共振をダンプさせ、
出力音圧特性の平坦化に有効である。第5図に示
した本発明の圧電スピーカの電圧感度の周波数特
性を第6図に実線で示す。また、直径4cm板厚
0.1mmのNi金属板に0.1mmの板厚を有するジルコ
ン・チタン酸鉛系圧電磁器板を接着した従来の電
圧スピーカを第5図と同様のキヤビネツトに収納
したときの電圧感度周波数特性破線でを示す。 Of these, 74, 75, and 76 have acoustic resistance components and damp the resonance of the entire speaker system.
This is effective in flattening the output sound pressure characteristics. The frequency characteristic of the voltage sensitivity of the piezoelectric speaker of the present invention shown in FIG. 5 is shown by a solid line in FIG. In addition, the plate thickness is 4cm in diameter.
The voltage sensitivity and frequency characteristics of a conventional voltage speaker made by bonding a 0.1 mm thick zircon-lead titanate piezoelectric ceramic plate to a 0.1 mm Ni metal plate are shown in the dashed line in Figure 5. show.
従来の圧電バイモルフスピーカに比べて本発明
に従つたスピーカの方が出力音圧特性が広帯域に
わたつて平坦であり、とりわけ低音域に著るしい
改善が見られることは明白である。 It is clear that, compared to the conventional piezoelectric bimorph speaker, the output sound pressure characteristic of the speaker according to the present invention is flatter over a wide range, and a remarkable improvement is particularly observed in the bass range.
(発明の効果)
以上詳述したように、本発明に従えば小型でか
つ広帯域にわたつて出力音圧特性が平坦な圧電ス
ピーカを実現することができ工業的価置も多大で
ある。(Effects of the Invention) As described in detail above, according to the present invention, it is possible to realize a piezoelectric speaker that is small and has flat output sound pressure characteristics over a wide band, and has great industrial value.
第1図イ〜ニ、第2図、第3図イ〜ホ、第4図
は本発明による振動板の例を示す図、第5図は圧
電スピーカキヤビネツトの概略図、第6図は圧電
スピーカの出力音圧特性図、第7図は従来のバイ
モルフ圧電振動子を示す図、第8図は電圧セラミ
ツクのみからなる円板振動体を示す図。
図において、11は平面金属板、12は圧電磁
器板、21は湾曲した圧電磁器円板、22は剛
壁、31はドーム状に成形された金属板、32,
33は圧電層、34,35,52,53は電極、
51はドーム状に成形された絶縁板、70は振動
板、71はキヤビネツト、72は前気室、73は
後気室、74は吸音材、75は受話口、76は小
穴。
Fig. 1 A to D, Fig. 2, Fig. 3 A to E, and Fig. 4 are diagrams showing an example of a diaphragm according to the present invention, Fig. 5 is a schematic diagram of a piezoelectric speaker cabinet, and Fig. 6 is a schematic diagram of a piezoelectric speaker cabinet. FIG. 7 shows a conventional bimorph piezoelectric vibrator, and FIG. 8 shows a disk vibrating body made only of voltage ceramic. In the figure, 11 is a flat metal plate, 12 is a piezoelectric ceramic plate, 21 is a curved piezoelectric ceramic disc, 22 is a rigid wall, 31 is a dome-shaped metal plate, 32,
33 is a piezoelectric layer, 34, 35, 52, 53 are electrodes,
51 is an insulating plate formed into a dome shape, 70 is a diaphragm, 71 is a cabinet, 72 is a front air chamber, 73 is a rear air chamber, 74 is a sound absorbing material, 75 is an earpiece, and 76 is a small hole.
Claims (1)
湾曲部を有する板を作製する工程と、該板の少な
くとも一方の面に電極を介して又は直接に酸化鉛
とジルコニウムアセチルアセテートとテトラブト
キシチタンを所定の重量比で混合し反応させて調
整したジルコンチタン酸鉛形成前駆体有機金属溶
液を塗布する工程と、該塗布膜を熱処理する工程
とを備えたことを特徴とする圧電スピーカの製造
方法。1. A process of producing a plate having a dome-shaped curved part whose planar shape is circular or elliptical, and applying lead oxide, zirconium acetylacetate, and tetrabutoxytitanium to at least one surface of the plate via an electrode or directly. A method for manufacturing a piezoelectric speaker, comprising the steps of: applying an organometallic solution of a lead zirconate titanate forming precursor prepared by mixing and reacting at a predetermined weight ratio; and heat-treating the applied film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59185922A JPS6165599A (en) | 1984-09-05 | 1984-09-05 | Piezo-electric speaker and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59185922A JPS6165599A (en) | 1984-09-05 | 1984-09-05 | Piezo-electric speaker and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6165599A JPS6165599A (en) | 1986-04-04 |
JPH0422399B2 true JPH0422399B2 (en) | 1992-04-16 |
Family
ID=16179221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59185922A Granted JPS6165599A (en) | 1984-09-05 | 1984-09-05 | Piezo-electric speaker and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6165599A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100795192B1 (en) | 2006-02-15 | 2008-01-17 | 충주대학교 산학협력단 | Film speaker using multi layered O-3 type piezoelectric composite and their joined unit and method of producing the same |
KR100838251B1 (en) | 2006-11-29 | 2008-06-17 | 충주대학교 산학협력단 | Embossed film speaker and method of producing the same |
US9318688B2 (en) * | 2012-02-28 | 2016-04-19 | Kyocera Corporation | Piezoelectric vibration element, piezoelectric vibration device, and portable terminal |
JP5225518B1 (en) * | 2012-02-28 | 2013-07-03 | 京セラ株式会社 | Piezoelectric vibration element, piezoelectric vibration device, and portable terminal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782120A (en) * | 1980-11-07 | 1982-05-22 | Yoshiharu Ozaki | Preparation of lead lanthanum titanate zirconate (plzt) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54149235U (en) * | 1978-04-07 | 1979-10-17 |
-
1984
- 1984-09-05 JP JP59185922A patent/JPS6165599A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782120A (en) * | 1980-11-07 | 1982-05-22 | Yoshiharu Ozaki | Preparation of lead lanthanum titanate zirconate (plzt) |
Also Published As
Publication number | Publication date |
---|---|
JPS6165599A (en) | 1986-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3489509B2 (en) | Electroacoustic transducer | |
US8335329B2 (en) | Piezoelectric speaker and method of manufacturing the same | |
KR101562339B1 (en) | Piezoelectric microspeaker and its fabrication method | |
JP5362049B2 (en) | Sound generator | |
KR100931575B1 (en) | Piezoelectric element micro speaker using MEMS and its manufacturing method | |
JPS6132879B2 (en) | ||
KR20160015348A (en) | Piezoelectric Speaker | |
KR20170140081A (en) | Sound output apparatus | |
WO2013099512A1 (en) | Vibration device, sound generator, speaker system, and electronic device | |
JP3714128B2 (en) | Piezoelectric electroacoustic transducer | |
TW498696B (en) | Piezoelectric sounding body and its production | |
JPS60111600A (en) | Electromechanical transducing element | |
JPS587999A (en) | Piezoelectric speaker | |
JPH0422399B2 (en) | ||
JP3202169B2 (en) | Piezoelectric sounding body | |
JPS6130898A (en) | Piezoelectric speaker | |
JP3635992B2 (en) | Piezoelectric electroacoustic transducer | |
JPH10117397A (en) | Piezoelectric speaker | |
JPS6130899A (en) | Piezoelectric speaker | |
JP2001095091A (en) | Composite earphone | |
JPH0888898A (en) | Composite piezoelectric loudspeaker | |
JPS6114240Y2 (en) | ||
JP2006135924A (en) | Piezoelectric sounding body and sounding apparatus using the same | |
JPS602717Y2 (en) | electroacoustic transducer | |
JP2007329533A (en) | Piezoelectric sounder |