JPH04222789A - Light screening device - Google Patents

Light screening device

Info

Publication number
JPH04222789A
JPH04222789A JP41371090A JP41371090A JPH04222789A JP H04222789 A JPH04222789 A JP H04222789A JP 41371090 A JP41371090 A JP 41371090A JP 41371090 A JP41371090 A JP 41371090A JP H04222789 A JPH04222789 A JP H04222789A
Authority
JP
Japan
Prior art keywords
light
illumination
specific wavelength
wavelength
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41371090A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsuno
好洋 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP41371090A priority Critical patent/JPH04222789A/en
Publication of JPH04222789A publication Critical patent/JPH04222789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)

Abstract

PURPOSE:To obtain a light screening device incapable of seeing the inside of a room of a building having an opening such as a window glass from the outside in the daytime and night-time. CONSTITUTION:A light screening device is constituted of an illumination 6 of which luminous intensity is higher in a region of specific wavelength than in a region of other wavelength and light transmissible members 2 arranged so as to receive light emitted from the illumination 6. As the light transmissible members 2, a glass plate coated with a wavelength selective multilayer film having lower light transmittance in a region of another wavelength than in the region of the specific wavelength is used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、透光部材と照明とから
なる光遮蔽装置に関し、照明が配置されている側から透
光部材を通して外部を見ることができるが、外部からは
透光部材を通して照明が配置されている側を見ることが
できない装置に関する。
[Industrial Field of Application] The present invention relates to a light shielding device consisting of a light-transmitting member and a light, in which the outside can be seen through the light-transmitting member from the side where the light is arranged, but the light-transmitting member is visible from the outside. Relating to devices through which it is not possible to see the side through which the illumination is arranged.

【0002】0002

【従来の技術】オフィスビルの部屋、家庭のリビングル
ーム等内部に照明を持ち、かつ窓ガラス等の透光部材を
設置した開口部をもつ空間に関して、外部からのプライ
バシー保護に対する要求は大きい。これに関して従来、
透光部材表面に金属酸化物、金属窒化物等の薄膜を設け
、該透光部材の反射率を増大させ、同時に透過率を低下
させることにより、外部からの内部空間に対する視認性
を低下させたものが知られている。またガラスのエッジ
面に付加的に照明を施すことによりガラス全体を明るく
し、これにより外部からの内部空間に対する視認性を低
下させたものが知られている。
2. Description of the Related Art There is a strong demand for privacy protection from the outside in spaces such as rooms in office buildings and living rooms in homes that have internal lighting and openings equipped with transparent materials such as window glass. In this regard, conventionally
A thin film of metal oxide, metal nitride, etc. is provided on the surface of the light-transmitting member to increase the reflectance of the light-transmitting member and reduce the transmittance at the same time, thereby reducing the visibility of the internal space from the outside. something is known. Furthermore, it is known that the glass as a whole is illuminated by additionally illuminating the edge surface of the glass, thereby reducing the visibility of the internal space from the outside.

【0003】0003

【発明が解決しようとする課題】ところが前者の方法に
よれば、外部から内部空間を見たとき、図10に示すよ
うに昼間等の外部空間の方が内部空間よりも明るい場合
には透光部材表面からの反射光量が大きいのに対し内部
からの透過光量は小さく、良好なプライバシー保護性能
が得られる(図10(a))ものの、夜間等の外部空間
の明るさが内部空間の明るさに比較して非常に小さい場
合には透光材表面からの反射光がほとんど無くなるため
内部からの透過光のみが視認されることになり、プライ
バシー保護性能は非常に悪くなってしまう(図10(b
))という問題点があった。一方後者の方法によれば、
外部空間の明るさに関わりなくプライバシー保護性能が
得られるものの、付加的な照明が必要になり、余分なラ
ンニングコスト、余分なスペースが必要になってしまう
という問題点があった。
However, according to the former method, when the interior space is viewed from the outside and the exterior space is brighter than the interior space, such as during the daytime, as shown in FIG. Although the amount of reflected light from the surface of the member is large, the amount of transmitted light from the inside is small, and good privacy protection performance is obtained (Figure 10 (a)). However, the brightness of the external space at night is the same as that of the internal space If it is very small compared to , almost no light is reflected from the surface of the light-transmitting material, so only the light transmitted from inside is visible, and the privacy protection performance becomes very poor (Figure 10 ( b
)) There was a problem. On the other hand, according to the latter method,
Although privacy protection performance can be obtained regardless of the brightness of the outside space, there are problems in that additional lighting is required, resulting in extra running costs and extra space.

【0004】0004

【課題を解決するための手段】本発明は、特定波長の領
域の発光強度が前記特定波長の領域以外の発光強度より
も大きい照明と、前記照明から放射された光を受けるよ
うに配置され、前記特定波長の領域の光に対する透過率
が前記特定波長の領域以外の光に対する透過率よりも低
い透光部材とからなる光遮蔽装置である。
[Means for Solving the Problems] The present invention provides an illumination device in which the emission intensity in a specific wavelength region is higher than the emission intensity in other than the specific wavelength region, and an illumination device arranged to receive the light emitted from the illumination device, The light shielding device includes a light-transmitting member whose transmittance for light in the specific wavelength range is lower than transmittance for light outside the specific wavelength range.

【0005】本発明における透光部材としては、透光部
材自体の吸収により、透過率制御を行うものであっても
良いが、機械的強度を維持するための基体とその基体の
上に波長選択性を有する光学多層膜が設けられたものが
、透過率制御のしやすさから好ましい。透光部材の基体
材料としては、機械的強度、光学的性質以外に用途によ
って耐候性、耐熱性等が要求され、ガラス板、プラスチ
ック板が好まれて使用される。また、波長選択性を有す
る多層膜は、ガラス板やプラスチック板に直接被覆して
もよく、多層膜を被覆したフィルムをガラス板や、プラ
スチック板表面に貼りつけて設けてもよい。
The light-transmitting member in the present invention may be one that controls transmittance by absorption of the light-transmitting member itself, but a substrate for maintaining mechanical strength and a wavelength selection layer on the substrate may be used. It is preferable to use an optical multilayer film provided with an optical multilayer film having a characteristic property from the viewpoint of ease of transmittance control. In addition to mechanical strength and optical properties, the base material of the light-transmitting member is required to have weather resistance, heat resistance, etc. depending on the intended use, and glass plates and plastic plates are preferably used. Further, the multilayer film having wavelength selectivity may be directly coated on a glass plate or a plastic plate, or a film coated with the multilayer film may be attached to the surface of the glass plate or plastic plate.

【0006】前記透過率を制御するための多層膜として
は、公知の金属膜、半導体膜、誘電体膜が使用可能であ
るが、とくに透過光量を大きくしたい場合には可視域で
透明な誘電体膜、半導体膜が使用される。この場合には
透過率の制御は、光の干渉効果を利用したものとなる。 透過光量を少なくしたい場合には、可視域で吸収を持つ
金属膜、半導体膜が好まれて使用される。この場合には
透過率の制御は、干渉効果及び吸収効果を利用したもの
となる。
As the multilayer film for controlling the transmittance, known metal films, semiconductor films, and dielectric films can be used. However, when it is particularly desired to increase the amount of transmitted light, dielectric films that are transparent in the visible range can be used. membranes, semiconductor membranes are used. In this case, the transmittance is controlled using the interference effect of light. When it is desired to reduce the amount of transmitted light, metal films and semiconductor films that absorb in the visible region are preferably used. In this case, the transmittance is controlled using interference effects and absorption effects.

【0007】上記照明の光強度の強い特定波長領域とし
ては、可視光線の波長範囲の任意の1つあるいは複数の
波長領域を用いることができる。この場合、2つ以下の
波長領域を用いる場合には照明光が着色する。一方、3
つの波長領域を用い、かつ、その領域が光の三原色[赤
(波長700〜610nm),緑(波長570〜500
nm),青紫(波長480〜400nm)]である場合
には照明光は白色となるので好ましい。また前記特定波
長領域の領域の幅は任意に設定可能であるが、幅が広す
ぎると透光部材の透過率が低い波長領域の幅が広くなる
ため、外部空間からの透過光量が減少する。この透過光
量の減少は前記特定波長領域が複数の場合にはより大き
くなる。前記特定波長領域が1つの場合、波長領域の幅
は200nm以下、2つの場合100nm以下、3つの
場合80nm以下であることが好ましい。
[0007] As the specific wavelength range in which the light intensity of the illumination is high, any one or a plurality of wavelength ranges in the visible light wavelength range can be used. In this case, if two or fewer wavelength regions are used, the illumination light is colored. On the other hand, 3
The three primary colors of light [red (wavelength 700-610 nm), green (wavelength 570-500 nm)
nm), bluish-violet (wavelength: 480 to 400 nm)], the illumination light becomes white, which is preferable. Further, the width of the specific wavelength region can be set arbitrarily, but if the width is too wide, the width of the wavelength region in which the transmittance of the light-transmitting member is low becomes wide, and the amount of transmitted light from the external space decreases. This reduction in the amount of transmitted light becomes greater when there are a plurality of specific wavelength regions. When there is one specific wavelength region, the width of the wavelength region is preferably 200 nm or less, when there are two, it is preferably 100 nm or less, and when there are three, the width of the wavelength region is 80 nm or less.

【0008】前記照明は、光源自体が望ましい光強度の
波長依存性を持っているものを用いても良いが、光源と
、波長に対する光強度制御のための波長選択性を有する
光学フィルター部材を用いることが、光の波長制御及び
強度制御の自由度が大きくなるので好ましい。また光源
自体は連続スペクトルをもつものであっても、輝線スペ
クトルをもつものであってもよく蛍光灯や白熱電球を用
いることができる。
[0008] The above-mentioned illumination may be one in which the light source itself has a desired wavelength dependence of light intensity, but it is also possible to use a light source and an optical filter member having wavelength selectivity for controlling light intensity with respect to wavelength. This is preferable because it increases the degree of freedom in controlling the wavelength and intensity of light. Further, the light source itself may have a continuous spectrum or a bright line spectrum, and a fluorescent lamp or an incandescent lamp can be used.

【0009】前記光学フィルター部材は光学フィルター
部材自体の吸収により光強度の制御を行うものであって
も良いが、機械的強度を維持するための基体に波長選択
性を有する多層膜が表面に設けられた部材であることが
、光の波長選択性及び強度の制御性から好ましい。
[0009] The optical filter member may control the light intensity by absorption of the optical filter member itself, but a multilayer film having wavelength selectivity may be provided on the surface of the base to maintain mechanical strength. It is preferable that the light be a member that is made of aluminum from the viewpoint of wavelength selectivity of light and controllability of intensity.

【0010】前記特定波長領域とそれ以外の波長領域に
ついて照明の光強度の比が大きく、かつ前記特定波長領
域の透光部材の透過率が低いほど、透明部材を通して透
明部材側から照明がある側へ見るときの視認性が低下し
、したがってプライバシー保護性能は向上する。照明の
前記特定波長領域とそれ以外の波長領域の光強度比が1
0以上であり、かつ前記特定波長領域の透光部材の透過
率が5%以下であることがプライバシー保護性能の面か
ら好ましい。さらに照明の前記特定波長領域とそれ以外
の波長領域の光強度比が10以上であり、かつ前記特定
波長領域の透光部材の透過率が1%以下であることが夜
間のプライバシー保護性能を確保する上から最も好まし
い。
[0010] The larger the ratio of the light intensity of the illumination is between the specific wavelength range and the other wavelength ranges, and the lower the transmittance of the light-transmitting member in the specific wavelength range, the more the illumination is transmitted from the transparent member side through the transparent member to the illumination side. The visibility when viewing the screen is reduced, and the privacy protection performance is therefore improved. The light intensity ratio of the specific wavelength range of illumination and other wavelength ranges is 1
0 or more, and the transmittance of the light-transmitting member in the specific wavelength region is preferably 5% or less from the viewpoint of privacy protection performance. Furthermore, privacy protection performance at night is ensured by ensuring that the light intensity ratio between the specific wavelength range of the lighting and other wavelength ranges is 10 or more, and the transmittance of the light-transmitting member in the specific wavelength range is 1% or less. Most preferred.

【0011】前記透光部材の前記特定波長領域の光透過
率に対してそれ以外の波長領域の光透過率が大きいほど
、照明が配置された側から透光部材を透過した外部空間
に対する視認性が向上する。透光部材の前記特定波長領
域の光透過率に対するそれ以外の波長領域の光透過率の
比が1/5以下であることが外部空間への視認性を向上
させる上から好ましい。
[0011] The larger the light transmittance of the light transmitting member in other wavelength ranges than the light transmittance of the specific wavelength range, the higher the visibility of the light transmitting member into the external space from the side where the illumination is arranged. will improve. It is preferable that the ratio of the light transmittance of the light transmitting member to the light transmittance of the specific wavelength range to the light transmittance of other wavelength ranges is 1/5 or less from the viewpoint of improving visibility into the external space.

【0012】0012

【作用】本発明の装置においては、照明から放射される
光は、特定波長領域で強度が大きく、前記特定波長領域
以外では強度が小さい。さらに、透明部材の光透過率は
照明から放射される光の波長特性と関連づけられ、前記
特定波長領域で光の透過率が小さく、かつ、前記特定波
長領域以外の波長で光の透過率が大きい。したがって照
明光の透明部材を透過する量は減少する。
[Operation] In the apparatus of the present invention, the light emitted from the illumination has a high intensity in a specific wavelength range, and has a low intensity outside the specific wavelength range. Furthermore, the light transmittance of the transparent member is related to the wavelength characteristics of the light emitted from the illumination, and the light transmittance is small in the specific wavelength range, and the light transmittance is large in wavelengths other than the specific wavelength range. . Therefore, the amount of illumination light transmitted through the transparent member is reduced.

【0013】[0013]

【実施例】以下に実施例に基づいて詳しく説明する。 実施例1 図1のように、3方が白色の壁1からなり、残り1面が
透光部材2を通して外部空間に接している幅4m,奥行
き4m,高さ2.5mの部屋3の中央部に光学フィルタ
ー4に囲まれた白熱電球5よりなる照明6を設置した。 ここで透光部材2は、ガラス基板2A上に誘電体多層膜
2Bを形成した構造になっており、図2に示すような分
光透過率特性を有している。白熱電球5の周りの光学フ
ィルター4は、ガラス基板上に誘電体多層膜を形成した
構造になっている。照明光はこの光学フィルター4によ
り、図3に示すような分光放射束分布を有するようにな
っている。このため照明光は黄緑色に着色することにな
る。
[Example] A detailed explanation will be given below based on an example. Example 1 As shown in Fig. 1, the center of a room 3 with a width of 4 m, a depth of 4 m, and a height of 2.5 m, consisting of white walls 1 on three sides and the remaining one in contact with the external space through a transparent member 2. A lighting device 6 consisting of an incandescent light bulb 5 surrounded by an optical filter 4 was installed in the area. Here, the light-transmitting member 2 has a structure in which a dielectric multilayer film 2B is formed on a glass substrate 2A, and has spectral transmittance characteristics as shown in FIG. The optical filter 4 around the incandescent light bulb 5 has a structure in which a dielectric multilayer film is formed on a glass substrate. This optical filter 4 causes the illumination light to have a spectral radiant flux distribution as shown in FIG. Therefore, the illumination light is colored yellow-green.

【0014】外部空間の白熱電球の照明を切って、部屋
内部の白熱電球をつけた場合、光源から2mの距離にあ
る部屋内の点Aにおける入射光強度の波長分布を測定し
た結果及び光源からこれと同距離にある外部空間の点B
における入射光強度の波長分布を測定した結果を図4に
示す。これより、光源より同距離にあり、かつ壁面との
関係もほぼ同様であるにもかかわらず、部屋内部におけ
る入射光強度に比較して外部空間におけるそれは非常に
小さくなっていること、即ち部屋内部の照明光がほとん
ど外部へ漏れていないことが判る。実際にこの状態で、
外部空間から部屋内部を肉眼でのぞいたところ、部屋内
部の状態はほとんど識別不能であった。
When the incandescent light bulb in the outside space is turned off and the incandescent light bulb inside the room is turned on, the results of measuring the wavelength distribution of the incident light intensity at a point A in the room at a distance of 2 m from the light source and from the light source. Point B in external space at the same distance as this
FIG. 4 shows the results of measuring the wavelength distribution of the incident light intensity. This shows that even though the light source is at the same distance and the relationship with the wall is almost the same, the intensity of incident light in the outside space is very small compared to the intensity inside the room. It can be seen that almost no illumination light leaks to the outside. Actually in this state,
When I looked inside the room from the outside space with the naked eye, the condition inside the room was almost impossible to discern.

【0015】さらに部屋内部の白熱電球をつけた状態で
外部空間の照明をつけて、部屋内部から外部空間を肉眼
でみたところ、着色が生じているものの外部の状態の識
別は問題なく可能であった。またこの状態で外部空間か
ら部屋内部を肉眼で覗いたところ、外部空間の照明が直
接入射している部分のみ識別が可能であったがその他の
部分はほとんど識別不能であった。
[0015]Furthermore, when the outside space was turned on while the incandescent light bulb inside the room was on, and the outside space was viewed with the naked eye from inside the room, it was possible to identify the outside state without any problem, although some coloring occurred. Ta. In addition, when looking into the interior of the room from the outside space with the naked eye in this state, only the portion directly illuminated by the light from the outside space could be identified, but the other portions were almost impossible to discern.

【0016】実施例2 図1のように、3方が白色の壁からなり、残り1面が透
光部材を通して外部空間に接している幅4m,奥行き4
m,高さ2.5mの部屋の中央部に光学フィルターに囲
まれた白熱電球よりなる照明を設置した。ここで透光部
材は、ガラス基板上に誘電体、半導体及び金属多層膜を
形成した構造になっており、図5に示すような分光透過
率特性を有している。白熱電球の周りの光学フィルター
は、ガラス基板上に誘電体多層膜を形成した構造になっ
ている。照明光はこの光学フィルターにより、図3に示
すような分光放射束分布を有するようになっている。こ
のため照明光は黄緑色に着色することになる。
Embodiment 2 As shown in FIG. 1, a building with a width of 4 m and a depth of 4 m has white walls on three sides and the remaining one is in contact with the external space through a light-transmitting member.
Lighting consisting of an incandescent light bulb surrounded by an optical filter was installed in the center of a room with a height of 2.5 m. Here, the light-transmitting member has a structure in which a dielectric, a semiconductor, and a metal multilayer film are formed on a glass substrate, and has spectral transmittance characteristics as shown in FIG. 5. The optical filter surrounding an incandescent light bulb has a structure in which a dielectric multilayer film is formed on a glass substrate. Due to this optical filter, the illumination light has a spectral radiant flux distribution as shown in FIG. Therefore, the illumination light is colored yellow-green.

【0017】外部空間の白熱電球の照明を切って、部屋
内部の白熱電球をつけた場合、光源から2mの距離にあ
る部屋内の点Aにおける入射光強度の波長分布を測定し
た結果及び光源からこれと同距離にある外部空間の点B
における入射光強度の波長分布を測定した結果を図6に
示す。これより、光源より同距離にあり、かつ壁面との
関係もほぼ同様であるにもかかわらず、部屋内部におけ
る入射光強度に比較して外部空間におけるそれはきわめ
て小さくなっていること、即ち部屋内部の照明光がほと
んど全く外部へ漏れていないことが判る。実際にこの状
態で、外部空間から部屋内部を肉眼でのぞいたところ、
部屋内部の状態は全く識別不能であった。
When the incandescent light bulb in the outside space is turned off and the incandescent light bulb inside the room is turned on, the results of measuring the wavelength distribution of the incident light intensity at point A in the room at a distance of 2 m from the light source and from the light source. Point B in external space at the same distance as this
FIG. 6 shows the results of measuring the wavelength distribution of the incident light intensity. This shows that even though the light source is at the same distance and the relationship with the wall is almost the same, the intensity of incident light in the outside space is extremely small compared to the intensity of the incident light inside the room. It can be seen that almost no illumination light leaks to the outside. When I actually looked inside the room from the outside space with the naked eye in this state, I found that
Conditions inside the room were completely unrecognizable.

【0018】一方部屋内部の白熱電球をつけた状態で外
部空間の照明をつけて、部屋内部から外部空間を肉眼で
みたところ、着色が生じており、やや暗くなったものの
外部の状態の識別は問題なく可能であった。またこの状
態で外部空間から部屋内部を肉眼で覗いたところ、全く
識別不能であった。
On the other hand, when we turned on the lights in the outside space with the incandescent light bulbs inside the room on and looked at the outside space from inside the room, we found that it was colored and became a little dark, but it was still difficult to discern the state of the outside. It was possible without any problem. Also, when I looked inside the room from the outside space with the naked eye in this state, it was completely unrecognizable.

【0019】実施例3 図1のように、3方が白色の壁からなり、残り1面が透
光部材を通して外部空間に接している幅4m,奥行き4
m,高さ2.5mの部屋の中央部に光学フィルターに囲
まれた白熱電球よりなる照明を設置した。ここで透光部
材は、ガラス基板上に誘電体、半導体及び金属多層膜を
形成した構造になっており、図7に示すような分光透過
率特性を有している。白熱電球の周りの光学フィルター
は、ガラス基板上に誘電体多層膜を形成した構造になっ
ている。照明光はこのフィルターにより、図8に示すよ
うな分光放射束分布を有するようになっている。このた
め、照明光には着色は生じていない。
Embodiment 3 As shown in Fig. 1, a building with a width of 4 m and a depth of 4 m has white walls on three sides and the remaining one is in contact with the external space through a light-transmitting member.
Lighting consisting of an incandescent light bulb surrounded by an optical filter was installed in the center of a room with a height of 2.5 m. Here, the light-transmitting member has a structure in which a dielectric, a semiconductor, and a metal multilayer film are formed on a glass substrate, and has spectral transmittance characteristics as shown in FIG. The optical filter surrounding an incandescent light bulb has a structure in which a dielectric multilayer film is formed on a glass substrate. Due to this filter, the illumination light has a spectral radiant flux distribution as shown in FIG. Therefore, the illumination light is not colored.

【0020】外部空間の白熱電球の照明を切って、部屋
内部の白熱電球をつけた場合、光源から2mの距離にあ
る部屋内の点Aにおける入射光強度の波長分布を測定し
た結果及び光源からこれと同距離にある外部空間の点B
における入射光強度の波長分布を測定した結果を図9に
示す。これより、光源より同距離にあり、かつ壁面との
関係もほぼ同様であるにもかかわらず、部屋内部におけ
る入射光強度に比較して外部空間におけるそれはきわめ
て小さくなっていること、即ち部屋内部の照明光がほと
んど全く外部へ漏れていないことが判る。実際にこの状
態で、外部空間から部屋内部を肉眼で覗いたところ、部
屋内部の状態は全く識別不能であった。
When the incandescent light bulb in the outside space is turned off and the incandescent light bulb inside the room is turned on, the results of measuring the wavelength distribution of the incident light intensity at a point A in the room at a distance of 2 m from the light source and from the light source. Point B in external space at the same distance as this
FIG. 9 shows the results of measuring the wavelength distribution of the incident light intensity. This shows that even though the light source is at the same distance and the relationship with the wall is almost the same, the intensity of incident light in the outside space is extremely small compared to the intensity of the incident light inside the room. It can be seen that almost no illumination light leaks to the outside. When I actually looked inside the room from the outside space with the naked eye in this state, I could not discern the state inside the room at all.

【0021】一方部屋内部の白熱電球をつけた状態で外
部空間の照明をつけて、部屋内部から外部空間を肉眼で
みたところ、やや暗くなったものの外部の状態の識別は
問題なく可能であった。またこの状態で外部空間から部
屋内部を肉眼でのぞいたところ、全く識別不能であった
[0021] On the other hand, when the outside space was turned on while the incandescent light bulb inside the room was on, and the outside space was looked at with the naked eye from inside the room, it was possible to discern the outside state without any problem, although it became somewhat dark. . Also, when I looked inside the room from the outside space with the naked eye, it was completely unrecognizable.

【0022】[0022]

【発明の効果】本発明の装置の照明を建物の部屋の内部
に配置し、かつ透光部材を窓部材として配置すれば、昼
間、夜間共部屋外部から内部を視認することができなく
なるので、プライバシーが保護された部屋とすることが
できる。
Effects of the Invention: If the lighting of the device of the present invention is placed inside a room of a building and the translucent member is placed as a window member, the inside cannot be seen from the outside of the shared room during the day or at night. It can be a room with protected privacy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のプライバシー保護照明システムを説明
するための図
FIG. 1 is a diagram for explaining the privacy protection lighting system of the present invention.

【図2】本発明の実施例1で用いた透明部材の光の透過
率分布を示す図
FIG. 2 is a diagram showing the light transmittance distribution of the transparent member used in Example 1 of the present invention.

【図3】本発明の実施例1および2で用いた光学フィル
ター透過後の照明光の分光放射束分布を示す図
FIG. 3 is a diagram showing the spectral radiant flux distribution of illumination light after passing through the optical filter used in Examples 1 and 2 of the present invention.

【図4】
本発明の実施例1で点A,Bで測定した入射光強度の波
長分布を示す図
[Figure 4]
A diagram showing the wavelength distribution of incident light intensity measured at points A and B in Example 1 of the present invention

【図5】本発明の実施例2で用いた透明部材の光の透過
率分布を示す図
FIG. 5 is a diagram showing the light transmittance distribution of the transparent member used in Example 2 of the present invention.

【図6】本発明の実施例2で点A,Bで測定した入射光
強度の波長分布を示す図
FIG. 6 is a diagram showing the wavelength distribution of incident light intensity measured at points A and B in Example 2 of the present invention.

【図7】本発明の実施例3で用いた透明部材の光の透過
率分布を示す図
FIG. 7 is a diagram showing the light transmittance distribution of the transparent member used in Example 3 of the present invention.

【図8】本発明の実施例3で用いた、光学フィルター透
過後の照明光の分光放射束分布を示す図
FIG. 8 is a diagram showing the spectral radiant flux distribution of illumination light after passing through an optical filter, used in Example 3 of the present invention.

【図9】本発明
の実施例3で点A,Bで測定した入射光強度の波長分布
を示す図
FIG. 9 is a diagram showing the wavelength distribution of incident light intensity measured at points A and B in Example 3 of the present invention.

【図10】昼間と夜間の透過光と反射光の大小関係を説
明するための図
[Figure 10] Diagram for explaining the magnitude relationship between transmitted light and reflected light during daytime and nighttime

【符号の説明】[Explanation of symbols]

1    壁 2    透光部材 2A    ガラス板 2B    多層膜 3    部屋 4    光学フィルター 5    白熱電球 6    照明 1 Wall 2 Translucent member 2A Glass plate 2B Multilayer film 3 Room 4 Optical filter 5 Incandescent light bulb 6. Lighting

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  特定波長の領域の発光強度が前記特定
波長の領域以外の発光強度よりも大きい照明と、前記照
明から放射された光を受けるように配置され、前記特定
波長の領域の光に対する透過率が前記特定波長の領域以
外の光に対する透過率よりも低い透光部材とからなる光
遮蔽装置。
1. An illumination device whose emission intensity in a specific wavelength region is greater than the emission intensity in areas other than the specific wavelength region; and a light-transmitting member having a transmittance lower than that for light outside the specific wavelength range.
【請求項2】  前記透光部材が、波長選択性の多層膜
が表面に設けられたガラス板であり、前記照明が、光源
と前記光源を取り囲むように設けられた波長選択性の多
層膜が被覆された光学フィルタ部材とからなることを特
徴とする請求項1に記載の光遮蔽装置。
2. The light-transmitting member is a glass plate with a wavelength-selective multilayer film provided on its surface, and the illumination includes a light source and a wavelength-selective multilayer film provided to surround the light source. The light shielding device according to claim 1, comprising a coated optical filter member.
【請求項3】  前記照明の前記特定波長の領域の発光
強度が、前記特定波長以外の発光強度の10倍以上であ
り、かつ、前記透光部材の前記特定波長の領域の光透過
率が5%以下であることを特徴とする請求項1または2
に記載の光遮蔽装置。
3. The light emission intensity of the specific wavelength region of the illumination is 10 times or more of the light emission intensity of wavelengths other than the specific wavelength, and the light transmittance of the light transmitting member in the specific wavelength region is 5. % or less
The light shielding device described in .
JP41371090A 1990-12-25 1990-12-25 Light screening device Pending JPH04222789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41371090A JPH04222789A (en) 1990-12-25 1990-12-25 Light screening device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41371090A JPH04222789A (en) 1990-12-25 1990-12-25 Light screening device

Publications (1)

Publication Number Publication Date
JPH04222789A true JPH04222789A (en) 1992-08-12

Family

ID=18522287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41371090A Pending JPH04222789A (en) 1990-12-25 1990-12-25 Light screening device

Country Status (1)

Country Link
JP (1) JPH04222789A (en)

Similar Documents

Publication Publication Date Title
JP5497757B2 (en) LED lamp, LED lighting device and LED module
JP5399871B2 (en) Light source device and lighting device
KR100367935B1 (en) Indoor lighting equipment
JP3449720B2 (en) Color liquid crystal display backlight system compatible with night light imaging system
JP5507214B2 (en) Light source device and lighting device
RU2624348C2 (en) Light-emitting device
US20080232114A1 (en) Luminaire
US11686444B2 (en) Lighting assembly for electrically configured light distributions
AU2013309988A1 (en) Window structure
US3027668A (en) Panel illuminating system
JP6644233B2 (en) Light emitting device
US20170030553A1 (en) Lighting System that Reduces Environmental Light Pollution
RU2309441C1 (en) Liquid crystal screen
JPH04222789A (en) Light screening device
JP2004518260A (en) Lighting equipment
JPH0794146A (en) Lighting lamp, lighting fixture and lighting device and lighting environment system equipped with the lighting lamp and lighting fixture
JPH06146625A (en) Room for reducing visibility from exterior
JP2686173B2 (en) Variable light color lighting device
JPH05159746A (en) Room of reducing visibility from the outside
JPH0336978Y2 (en)
US20240071266A1 (en) Powered retail signage assembly with consistent visibility in different lighting conditions
JP2009230872A (en) Light filter and luminaire
JPH0586618B2 (en)
GB2229264A (en) Lighting fixture
JPH09147602A (en) Mixed lighting system