JPH0422013A - Manufacture of complex material - Google Patents

Manufacture of complex material

Info

Publication number
JPH0422013A
JPH0422013A JP2124259A JP12425990A JPH0422013A JP H0422013 A JPH0422013 A JP H0422013A JP 2124259 A JP2124259 A JP 2124259A JP 12425990 A JP12425990 A JP 12425990A JP H0422013 A JPH0422013 A JP H0422013A
Authority
JP
Japan
Prior art keywords
composite
conductive
sheet
polymer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2124259A
Other languages
Japanese (ja)
Inventor
Okitoshi Kimura
興利 木村
Toshiyuki Osawa
利幸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2124259A priority Critical patent/JPH0422013A/en
Publication of JPH0422013A publication Critical patent/JPH0422013A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To obtain a complex material that has no peeling off or falling off at the end by preliminarily molding a flexible conductive sheet material into the shape that can be built in an apparatus, by coating the surface and end part of a functional face to be coated with a conductive polymer of molding conductive sheet, with the conductive high polymer in a continuous mode. CONSTITUTION:A flexible conductive sheet material is preliminarily molded into the shape that can be built in an apparatus, and the surface as well as the end of a functional face to be coated with a conductive high polymer of a molding conductive sheet, is coated with the conductive high polymer in a continuous mode. The conductive sheet to be coated with the conductive high polymer must be preliminarily molded through the process of cutting and so on into the shape utilized for an apparatus to which it is to be used. A complex material can be obtained in such a form that is virtually ready for final use, and the process such as cutting, etc., for final shape which can cause damage such as the peeling off or falling off of the coating is omitted. The peeling off or falling off of the coating in use can thus be prevented, and a complex material of high reliability can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、予め機器に組み込まれる利用し状に成型され
た導電性シートに導電性高分子を被覆する複合体、特に
電池用電極、電磁シールド材、コンデンサー用電極とし
て有用な複合体の製造方法に関する。
Detailed Description of the Invention [Industrial Fields of Application] The present invention relates to composites in which a conductive sheet formed into a shape for use in equipment is coated with a conductive polymer, particularly for battery electrodes, electromagnetic The present invention relates to a method for producing a composite useful as a shielding material and a capacitor electrode.

[従来の技術] 導電性シート材料及び導電性高分子からなる複合体、こ
の複合体を用いる機器、例えば電池の電極として使用す
る場合、その電極の製造は、まず大判の導電性シート材
料に対し、例えば電解重合等の方法で導電性高分子を被
覆し、次いで該複合体を電池電極用の形状に切断、成型
することにより行われ、その後電池に組み込まれる。し
かし、この大判シートから多数の複合体を切り出す際に
被覆された導電性高分子が損傷を受けて製品負留りを低
下させるという問題かあった。又、この際、加工によっ
て複合体端部は導電性高分子が存在しない状態となり(
第8図参照)、ベーパー状電池の如き可撓性のある電池
においては、使用中曲げ等の変形を受けることかあり、
その状況によっては前記複合体(電極)の端部において
導電性高分子が剥離もしくは欠落することとなり、長期
にわたり安定した電池特性を発揮することができなくな
る。
[Prior Art] When a composite consisting of a conductive sheet material and a conductive polymer is used as an electrode for a device such as a battery, the electrode is manufactured by first processing a large conductive sheet material. For example, the composite is coated with a conductive polymer by a method such as electrolytic polymerization, and then the composite is cut and molded into a shape for a battery electrode, and then incorporated into a battery. However, when cutting out a large number of composites from this large sheet, there was a problem in that the coated conductive polymer was damaged and the product yield was reduced. Also, at this time, due to processing, the ends of the composite are in a state where no conductive polymer exists (
(See Figure 8), flexible batteries such as vapor batteries may be subject to deformation such as bending during use.
Depending on the situation, the conductive polymer may peel off or be missing at the ends of the composite (electrode), making it impossible to exhibit stable battery characteristics over a long period of time.

[発明が解決しようとする課題] 本発明は、こうした状況に鑑み、導電性高分子材料で被
覆された導電性シートからなる複合体であって、曲げ、
変形を受けてもその端部において剥離したり、脱落する
ことのない、信頼性の高い複合体の製造方法を提供する
ことを目的とするものである。
[Problems to be Solved by the Invention] In view of these circumstances, the present invention provides a composite consisting of a conductive sheet coated with a conductive polymer material, which
It is an object of the present invention to provide a highly reliable method for manufacturing a composite that does not peel or fall off at its ends even when subjected to deformation.

[課題を解決するための手段] 本発明者らは、前記した課題を解決するため鋭意検討し
てきた結果、複合体が機器に組み込まれたときの利用形
状において、該複合体の機能面のみならず、その端部に
おいても導電性高分子材料で被覆されていることが重要
であることを知見し、本発明に至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have determined that the shape of the composite body when it is incorporated into a device is not limited to only the functional aspects of the composite body. First, it was discovered that it is important that the ends are also coated with a conductive polymer material, leading to the present invention.

すなわち、本発明は可撓性導電性シート材料に導電性高
分子を被覆する複合体の製造方法において、可撓性導電
性シート材料が予め機器に組み込まれる形状に成型され
、該成型導電性シートの導電性高分子を被覆する機能面
の面及び端部を連続して導電性高分子で被覆する複合体
の製造方法である。
That is, the present invention provides a method for producing a composite in which a flexible conductive sheet material is coated with a conductive polymer, in which the flexible conductive sheet material is previously molded into a shape to be incorporated into a device, and the molded conductive sheet is This is a method for manufacturing a composite, in which the functional surface and the end portions of the functional surface coated with the conductive polymer are continuously coated with the conductive polymer.

本発明の複合体の製造方法においても最も重要なことは
、導電性高分子によって被覆される導電性シートが、意
図された使用機器への利用形状に切断等の加工によりあ
らかじめ成型されていることである。すなわち、本発明
によって被覆された後、その複合体は従来のように大判
サイズの複合体からそれぞれの利用形態に適した小さな
多数の複合体へと切断などの加工を施されることなく、
そのままの形状で、あるいは部分的な形状調整されるの
みで機器へ組込まれ、利用される。
The most important thing in the method for manufacturing the composite of the present invention is that the conductive sheet covered with the conductive polymer is pre-shaped by processing such as cutting into a shape for use in the intended device. It is. That is, after being coated according to the present invention, the composite is not subjected to processing such as cutting from a large-sized composite to a large number of small composites suitable for each usage type as in the past.
They can be incorporated into equipment and used in their original shape or with only partial shape adjustment.

したがって、本発明により作成された複合体は、被覆面
に損傷をきたすような複合体全周面の切断等の加工か不
必要である。
Therefore, the composite made according to the present invention does not require processing such as cutting of the entire circumferential surface of the composite that would damage the coated surface.

本発明でいうシート状導電体の端部においても導電性高
分子で被覆されているされている複合体とは第1図の平
面図、第2図の断面て示されるものて、シート状導電体
端部において、シートの表面と裏面に被覆により複合化
しである導電性高分子がつながっていることを現わして
いる。本構成によれば第8図の構成に比べると、端部に
おいて導電性高分子とシート状導電体の複合部(密着部
)が全面的に露出していないため、前述したような複合
部の欠陥(微少なはかれ等)に曲げに対する応力が集中
することがない。更に端部の複合部か導電性高分子でお
おわれているため、曲げによって端部に生じた応力を第
8図の構成に比べると、導電性高分子内部である程度緩
和することか可能となる。このようなことからシート状
導電体の端部を導電性高分子により全面をおおうことに
より、導電性高分子のシート状導電体からの剥離、脱落
を防ぐことができ、複合体のフレキシビリティ−を向上
させることが可能となる。シート状導電体端部が導電性
高分子でおおわれている割合は最も好ましくは100%
である。しかしながら、複合体使用時の曲げ状況や端部
の被覆法により、その下限はより小さくすることは可能
であるが、被覆率を一律に決定することはできない。す
なわち何%以上の被覆率であれば本目的を達成できるか
は複合する材料の材質、複合方法、使用時に複合体にか
かっている曲率や被覆位置などにより決定されるもので
ある。
In the present invention, the composite in which the ends of the sheet-like conductor are also coated with a conductive polymer is the one shown in the plan view of FIG. 1 and the cross section of FIG. At the end of the sheet, it appears that the conductive polymer, which is a composite material, is connected to the front and back surfaces of the sheet by coating. According to this configuration, compared to the configuration shown in FIG. 8, the composite part (adhesive part) of the conductive polymer and sheet-like conductor is not fully exposed at the end, so the composite part as described above is not exposed. Bending stress will not be concentrated on defects (such as minute cracks). Furthermore, since the composite portion at the end is covered with a conductive polymer, the stress generated at the end due to bending can be alleviated to some extent within the conductive polymer compared to the structure shown in FIG. For this reason, by covering the entire end of the sheet-like conductor with a conductive polymer, it is possible to prevent the conductive polymer from peeling off or falling off from the sheet-like conductor, thereby increasing the flexibility of the composite. It becomes possible to improve the The ratio of the end portion of the sheet-like conductor covered with the conductive polymer is most preferably 100%.
It is. However, although the lower limit can be made smaller depending on the bending conditions during use of the composite and the method of covering the edges, the coverage rate cannot be uniformly determined. That is, what percentage of coverage is required to achieve the objective is determined by the quality of the composite material, the method of composite, the curvature of the composite during use, the position of the coating, etc.

例えば同し50%の被覆率でも第3図、第4図のような
被覆方法が可能であり、複合体全体に同一の曲率かかか
るような使用法の場合、第3図の方法の方かより剥離、
脱落をおこしにくい。
For example, even with the same coverage rate of 50%, the coating methods shown in Figures 3 and 4 are possible, and in the case of usage where the same curvature is applied to the entire composite, the method shown in Figure 3 is better. More peeling,
Less likely to fall off.

第4図のような被覆法でも複合体の部分により異なる曲
率か生ずる場合は使用可能である場合もある。すなわち
、第9図のようにスパイラル状に巻いて複合体を使用す
る場合なとはより曲率の高い中心部に第4図のAの被覆
されている部分を用い曲率に低くなった外周部にBの被
覆されていない部分を配置することか考えられる。
Even the coating method shown in FIG. 4 may be usable if different curvatures occur depending on the part of the composite. In other words, when using a spirally wound composite as shown in Fig. 9, the covered part A in Fig. 4 is used for the center part, which has a higher curvature, and the outer periphery part, which has a lower curvature, is used. One possibility is to place the uncovered portion of B.

更に複合される材料の材質、厚み、柔軟性や複合する方
法などによっても被覆率の下限は変化することとなる。
Furthermore, the lower limit of the coverage will vary depending on the material, thickness, flexibility, and method of combining the materials to be composited.

本発明に用いられる導電性シート材料としては、例えば
Ni、Pt、Au、A1等の金属シート、ステンレス等
の合金シート、又はポリピロール等の高導電性で機械的
強度の大きい導電性高分子フィルム、又は炭素繊維、炭
素粉末を樹脂と均一に混合しシート状に成形した導電性
シート等、あるいはプラスチックフィルム等の上にAu
、Pt、Ni5A1等の金属、SnO2、In2O:+
等の金属酸化物、ITO1炭素体等を蒸着、塗布して導
電化したフィルムあるいはポリエステルフィルム等のプ
ラスチ・ツクフィルム上に酸化重合によりポリピロール
を被覆したちの等か用いられる。
Examples of the conductive sheet material used in the present invention include metal sheets such as Ni, Pt, Au, and A1, alloy sheets such as stainless steel, and conductive polymer films with high conductivity and mechanical strength such as polypyrrole. Or conductive sheets made by uniformly mixing carbon fibers or carbon powder with resin, or forming Au onto plastic films, etc.
, Pt, metals such as Ni5A1, SnO2, In2O: +
A film made by vapor-depositing or coating a metal oxide such as ITO1 carbon material, etc. to make it conductive, or a plastic film such as a polyester film coated with polypyrrole by oxidative polymerization is used.

しかしながら、通常電気伝導度が10’ S cm−’
以上のものであれば特に制限か加わるものではないが、
複合体をどのような素子へ応用するかにより適宜選択さ
れるものである。例えば、複合体を電池の正極として応
用することを考えた場合、導電性シート材料は金属が好
ましく、更に導電性シート材料の酸化還元電位よりも活
物質となる高分子材料の酸化還元電位の方が責な電位で
あるような材料の組合せを選ぶことか好ましい。コンデ
ンサーに導電性高分子の応用を考えた場合、Alを使用
するのか一般的である。
However, the electrical conductivity is usually 10' S cm-'
If it is above, there are no particular restrictions or additions,
It is selected as appropriate depending on what kind of device the composite is to be applied to. For example, when considering the application of the composite as a battery positive electrode, the conductive sheet material is preferably metal, and the redox potential of the polymeric material serving as the active material is higher than the redox potential of the conductive sheet material. It is preferable to select a material combination that has a negative potential. When considering the application of conductive polymers to capacitors, it is common to use Al.

本発明で用いられる導電性シート材料には貫通孔を形成
することもできる。導電性複合シートに貫通孔を設ける
ことにより、シート導電体に複合した高分子材料が貫通
孔を通して結合し、導電性シート材料と導電性高分子と
の密着性が向上、曲げに対する高分子の剥がれ、脱落を
防ぐことができる。更に密着性の向上(界面インピーダ
ンスの減少)から電気的に良好な接続が取れるため、高
分子材料への電荷の注入、引き出しを効率良く進めるこ
とが可能となる。導電性シート材料に設ける貫通孔の大
きさは複合体に用いられている各々の材質、使用方法に
より変化するもので一概には決定できないが、例えば電
池用正極として考えた場合、100−1500μm、更
に好ましくは500〜1200μmであることが望まし
い。100μm以下であると導電性高分子間の密着度が
低く、充分な強度が得られず、1500μ閣を越えると
以下にのべる貫通孔同士のピッチの割合(複合体の総面
積に対する孔の面積の割合)からシート状導電体の強度
そのものが低くなってしまう。貫通孔の割合とし−Cは
やはり複合体に使用されている各々の材質、使用方法に
より変化されることができ、−律に決まるものではない
か、前述の正極の例をとるならシート状導電体の総面積
に対し孔の総面積か5〜50%更に好ましく10〜30
%であることが望ましい。5%未満であると導電性高分
子間の密着度が低く、曲げに対する耐剥れ、耐脱落の効
果が小さい。50%以上であると、シート状導電体その
ものの機械的強度が低下する傾向にある。
Through holes can also be formed in the conductive sheet material used in the present invention. By providing through-holes in the conductive composite sheet, the polymer material composited with the sheet conductor is bonded through the through-holes, improving the adhesion between the conductive sheet material and the conductive polymer, and preventing the polymer from peeling off when bent. , can prevent falling off. Furthermore, since a good electrical connection can be achieved due to improved adhesion (reduced interfacial impedance), it becomes possible to efficiently inject and extract charges from the polymer material. The size of the through hole provided in the conductive sheet material varies depending on the material used in the composite and the method of use, and cannot be determined unconditionally. More preferably, it is 500 to 1200 μm. If it is less than 100 μm, the degree of adhesion between the conductive polymers will be low and sufficient strength will not be obtained. ratio), the strength of the sheet-like conductor itself becomes low. As for the percentage of through-holes, C can be changed depending on the materials used in the composite and how they are used, and is not determined by law. Taking the example of the positive electrode mentioned above, it is a sheet-like conductive material. The total area of the pores is 5 to 50% of the total area of the body, more preferably 10 to 30%.
% is desirable. If it is less than 5%, the degree of adhesion between the conductive polymers is low, and the effect of peeling resistance against bending and falling off is small. If it is 50% or more, the mechanical strength of the sheet-like conductor itself tends to decrease.

貫通孔の形状としては、特に制限はないが、複合体を電
気素子として利用する場合、電界の集中をさける形状で
あることが好ましい。すなわち、角のない丸みをおびた
形状である。貫通孔の配置としては格子状、千鳥状等規
則正しく配置したものでもランダムに配置したものでも
よいが通常規則正しく配置したものか好ましい。
The shape of the through hole is not particularly limited, but when the composite is used as an electric element, it is preferably a shape that avoids concentration of electric field. That is, it has a rounded shape with no corners. The through-holes may be arranged in a regular pattern such as a lattice pattern or a staggered pattern, or randomly arranged, but it is usually preferable to arrange them regularly.

又、シート状導電体は貫通孔を有するのみならず、その
表面が粗面化していることが更に好ましい。粗面は貫通
しないミクロな凹凸を有するものであり、又、その凹凸
は電界の集中をさける面から鋭利でない形状かよい。こ
の粗面化はエメリー紙、研摩材、研摩機による機械研摩
、イオンスパッタ、電界エツチング等電気化学的方法に
より加工することができる。
Further, it is more preferable that the sheet-like conductor not only have through holes but also have a roughened surface. The rough surface has microscopic irregularities that do not penetrate through the surface, and the irregularities may have a non-sharp shape to avoid concentration of the electric field. This surface roughening can be carried out using emery paper, an abrasive, mechanical polishing using a polishing machine, ion sputtering, electrochemical methods such as electric field etching, etc.

中でもブラスト法、電界エツチングによる方法が容易か
つ確実であり、好ましいと考えられる。シート状導電体
の表面を粗面化することにより、高分子材料は表面の凹
凸を被覆することになるのでよりシート状導電体と導電
性高分子の密着性か向上し、剥かれ、脱落に対して強い
ものとなる。又、接触面積か大きくなることから、電気
的接続が良好となり、高分子材料への電荷の注入、引き
出しを効率よく進めることが可能となる。
Among these, the blasting method and the electric field etching method are easy and reliable and are considered preferable. By roughening the surface of the sheet-like conductor, the polymer material covers the unevenness of the surface, which improves the adhesion between the sheet-like conductor and the conductive polymer, preventing it from peeling off or falling off. It will be strong against. Furthermore, since the contact area becomes larger, electrical connection becomes better, and it becomes possible to efficiently inject and extract charges from the polymer material.

貫通孔と粗面の加工は、どちらを先に行ってもよい。シ
ート状導電体に基材と導電材料の複合体あるいは金属に
導電性高分子材料を被覆したものを用いる場合は、あら
かじめ基材に貫通孔、粗面をほどこし、そこに導電材料
を蒸着、塗布あるいは電解あるいは化学重合等により複
合させることができる。
Either the through hole or the rough surface may be processed first. When using a composite of a base material and a conductive material, or a metal coated with a conductive polymer material, as a sheet-like conductor, a through hole and a rough surface are formed in the base material in advance, and the conductive material is vapor-deposited and coated there. Alternatively, they can be combined by electrolysis, chemical polymerization, or the like.

本発明の複合体に使用する高分子材料は、例えばビロー
ル、チオフェン等を単量体とする複素五員環系化合物重
合体、ベンゼン、アズレン等を単量体とする芳香族炭化
水素系化合物重合体、アニリン、ジフェニルベンジジン
等を単量体とするアミン系化合物重合体を使用すること
ができる。該単量体の重合方法としては酸化剤を使用す
る化学重合法、電気エネルギーを利用する電解重合法を
用いることかできる。
Examples of the polymer materials used in the composite of the present invention include polymers of five-membered heterocyclic compounds containing monomers such as virol and thiophene, and polymers of aromatic hydrocarbon compounds containing monomers such as benzene and azulene. An amine compound polymer containing monomers such as aniline, diphenylbenzidine, etc. can be used. As a method for polymerizing the monomer, a chemical polymerization method using an oxidizing agent or an electrolytic polymerization method using electrical energy can be used.

化学重合法としては単量体を含む溶液中に酸化剤を加え
、単量体を酸化することにより実施する。酸化剤として
は、ヨウ素、しゆう素、ヨウ化しゅう素などのハロゲン
;五フッ化ヒ素、五フッ化アンチモン、フッ化ケイ素、
五塩化リンなどの金属ハロゲン化物;硫酸、フルオロ硫
酸、クロロ硫酸などのプロトン酸;三酸化イオウ、二酸
化窒素、過マンガン酸カリウム、重クロム酸カリウムな
どの含酸素素化合物−過硫酸ナトリウム、過硫酸カリウ
ム、過硫酸アンモニウムなどの過硫酸塩;過酸化水素、
過酢酸、ジフルオロスルホニルパーオキサイドなどの過
酸化物等の酸化剤か用いられる。化学重合法においては
高重合度の高分子か合成される場合、重合体は不溶性で
あり粉末状に合成される。このため本発明の複合体を実
施するためにはシート状導電体と高分子を機械的に密着
させることか必要だが、この方法はシート状導電体と高
分子材料との密着が悪く界面インピーダンスは高くなる
欠点を有している。これに対して電気化学反応を利用す
る電解重合法においてはシート状導電体を反応電極とす
ることにより、実質上−段階でシート状導電体−高分子
材料複合体を製造できるとともに、本発明でいうシート
状導電体の端面でも重合が進行し、自然と端面が導電性
高分子で被覆されるという利点を有する。更に重合しシ
ート状導電体への高分子の複合が同時と進行するため、
高分子とシート状導電体の密着性が向上し、曲げに対す
る剥れ、脱落をおさえることができる。更に密着性の向
上より、界面インピーダンスも低くてき、複合体を電気
素子として利用する場合導電性高分子への電荷注入、引
き出しがより容易となる。したがって本発明複合体の製
造には化学重合、電解重合の両方が用いることができる
場合は、化学重合より電解重合を行うことが好ましいと
考えられる。
The chemical polymerization method is carried out by adding an oxidizing agent to a solution containing monomers to oxidize the monomers. Examples of oxidizing agents include halogens such as iodine, sulfuric acid, and fluorine iodide; arsenic pentafluoride, antimony pentafluoride, silicon fluoride,
Metal halides such as phosphorous pentachloride; protic acids such as sulfuric acid, fluorosulfuric acid, and chlorosulfuric acid; oxygenated compounds such as sulfur trioxide, nitrogen dioxide, potassium permanganate, and potassium dichromate - sodium persulfate, persulfate Persulfates such as potassium and ammonium persulfate; hydrogen peroxide,
Oxidizing agents such as peroxides such as peracetic acid and difluorosulfonyl peroxide may be used. In the chemical polymerization method, when a polymer with a high degree of polymerization is synthesized, the polymer is insoluble and synthesized in the form of a powder. Therefore, in order to implement the composite of the present invention, it is necessary to mechanically bring the sheet-like conductor and the polymer into close contact, but this method has poor adhesion between the sheet-like conductor and the polymer material, resulting in a low interfacial impedance. It has the disadvantage of being expensive. On the other hand, in the electrolytic polymerization method that utilizes electrochemical reactions, by using a sheet-like conductor as a reaction electrode, a sheet-like conductor-polymer material composite can be produced in virtually one step. Polymerization also progresses on the end surfaces of the sheet-like conductor, which has the advantage that the end surfaces are naturally coated with a conductive polymer. Furthermore, polymerization and compounding of the polymer to the sheet-like conductor progresses at the same time.
The adhesion between the polymer and the sheet-like conductor is improved, and peeling and falling off due to bending can be suppressed. Furthermore, the improved adhesion also lowers the interfacial impedance, making it easier to inject and extract charges from the conductive polymer when the composite is used as an electric element. Therefore, when both chemical polymerization and electrolytic polymerization can be used to produce the composite of the present invention, it is considered that electrolytic polymerization is preferable to chemical polymerization.

電解重合方法は、一般には例えば、J。Electropolymerization methods are generally described, for example, in J.

Electrochea+、Soc、、 Vol、13
0.No、7,1506〜1509(1983)、El
ectochem、 Acta、、Vol、27.No
、1.[il 〜65(1982)、J、Chem、 
Soc、、Chem、Conunun、、11.99〜
(1984)などに示されているか、単量体と電解質と
を溶媒に溶解した液を所定の電解槽に入れ、電極を浸漬
し、陽極酸化あるいは陰極還元による電解重合反応を起
こさせることによって行うことができる。
Electrochea+, Soc,, Vol, 13
0. No. 7, 1506-1509 (1983), El
ectochem, Acta, Vol. 27. No
, 1. [il~65 (1982), J. Chem.
Soc, Chem, Conunun, 11.99~
(1984), etc., a monomer and an electrolyte dissolved in a solvent are placed in a designated electrolytic bath, electrodes are immersed, and an electrolytic polymerization reaction is caused by anodic oxidation or cathodic reduction. be able to.

電解質としては、例えばアニオンとして、BF4−  
ASF6−  SbF6″″ PF&ClO4−H3O
4−5O42″″及び芳香族スルホン酸アニオンが、又
、カチオンとじてH”  4級アンモニウムカチオン、
リチウム、ナトリウム又はカリウムなどを例示すること
かできるか、特にこれらに限定されるものではない。
As the electrolyte, for example, as an anion, BF4-
ASF6- SbF6″″ PF&ClO4-H3O
4-5O42″″ and aromatic sulfonic acid anion are also cations H″ quaternary ammonium cation,
Examples include, but are not limited to, lithium, sodium, and potassium.

又、溶媒としては、例えば、水、アセトニトリル、ベン
ゾニトリル、プロピレンカーボネート、γ−ブチロラク
トン、ジクロルメタン、ジオキサン、ジメチルホルムア
ミド、あるいはニトロメタン、ニトロエタン、ニトロプ
ロパン、ニトロベンゼンなどのニトロ系溶媒などを挙げ
ることかできるか、特にこれらに限定されるものではな
い。電解重合は、定電圧電解、定電流電解、定電位電解
のいずれもか可能である。
Examples of the solvent include water, acetonitrile, benzonitrile, propylene carbonate, γ-butyrolactone, dichloromethane, dioxane, dimethylformamide, and nitro solvents such as nitromethane, nitroethane, nitropropane, and nitrobenzene. , but is not particularly limited to these. Electrolytic polymerization can be carried out by constant voltage electrolysis, constant current electrolysis, or constant potential electrolysis.

次にシート状導電体と導電性高分子材料との複合体を電
極として用いた電池について説明する。本発明の電池は
基本的には正極負極及び電解液より構成され、電極間に
セパレータを設けることもてきる。電解液は溶媒及び電
解質より構成されるが固体電解質を用いることも可能で
ある。本発明の複合体を電池として使用した場合の利点
は前述したごとく、電極(複合体)の曲げに対して高分
子が脱落、剥離を生じにくいため、容量低下、界面イン
ピーダンスの上昇を防ぐことができ、電極の信頼性か向
上すること、又、端面にシート状導電体か露出している
部分が少なくなるため、充電時のモレ電流(エネルギー
蓄積関与しない電流)を小さくでき、更に自己放電も小
さくすることが可能となる。結果としてエネルギー効率
の向上、エネルギー容量の向上を計ることができる。更
に導電性高分子はドープ、脱ドープ過程において膨潤、
収縮を繰返す特性を有するため、この点からもシート状
導電体端部がむき出しになっていると端部に膨潤収縮に
対する応力が発生し、高分子か剥れやすくなる。本発明
のごとく導電性高分子て端部を被覆することにより、こ
の欠点を回避することは容易である。又、シート状導電
体(集電体)に粗面化、及び/あるいは貫通孔を設ける
ことにより、表裏の高分子間の結合、シート状導電体と
高分子の接触面積の増加かおこり、結果として複合体の
曲げに対する高分子の剥離、脱落を防ぐことができ、界
面インピーダンスも低くおさえることが可能となる。又
、複合体の製造法として電解重合法を用いれば、更に特
性の向上が期待できる。本発明の複合体はシート状電極
として考えられ、電池用電極としての使用形態に制限が
加わるものではないが、本発明の目的からNi−Cd電
池の実装に用いられているような、電極のスパイラル実
装(電極をうす巻き状にまるめて使用する)、あるいは
フレキシブルシート型電池用の電極として効果をあられ
すものと期待される。
Next, a battery using a composite of a sheet-like conductor and a conductive polymer material as an electrode will be described. The battery of the present invention basically consists of a positive electrode, a negative electrode, and an electrolyte, and a separator may be provided between the electrodes. The electrolytic solution is composed of a solvent and an electrolyte, but it is also possible to use a solid electrolyte. As mentioned above, the advantage of using the composite of the present invention as a battery is that the polymer is less likely to fall off or peel off when the electrode (composite) is bent, which prevents a decrease in capacity and an increase in interfacial impedance. This improves the reliability of the electrode, and since the exposed portion of the sheet conductor on the end face is reduced, leakage current (current that does not involve energy storage) during charging can be reduced, and self-discharge is also reduced. It is possible to make it smaller. As a result, it is possible to improve energy efficiency and energy capacity. Furthermore, the conductive polymer swells during the doping and dedoping process.
Since it has the characteristic of repeatedly shrinking, if the end of the sheet-like conductor is exposed, stress due to swelling and shrinkage will be generated at the end, and the polymer will easily peel off. This drawback can be easily avoided by coating the ends with a conductive polymer as in the present invention. In addition, by roughening the surface of the sheet-like conductor (current collector) and/or providing through holes, bonding between the front and back polymers and an increase in the contact area between the sheet-like conductor and the polymer occur. As a result, it is possible to prevent the polymer from peeling off or falling off when the composite is bent, and it is also possible to keep the interfacial impedance low. Furthermore, if an electrolytic polymerization method is used as a method for producing the composite, further improvement in properties can be expected. The composite of the present invention can be considered as a sheet-like electrode, and there are no restrictions on how it can be used as a battery electrode. It is expected that it will be effective as an electrode for spiral mounting (the electrode is rolled into a thin spiral) or for flexible sheet batteries.

本発明の電池は、アニオン又はカチオンによってドープ
されてエネルギーを貯え、脱ドープによって外部回路を
通してエネルギーを放出するものである。又、本発明の
電池においては、このドープ−脱ドープが可逆的に行わ
れるので、二次電池として使用することができる。
The battery of the present invention is doped with anions or cations to store energy and dedoped to release energy through an external circuit. Furthermore, in the battery of the present invention, this doping-dedoping is performed reversibly, so it can be used as a secondary battery.

本発明では少くとも正極に本発明におけるシート状導電
体と導電性高分子材料の複合体を用いるものである。
In the present invention, the composite of the sheet-like conductor and conductive polymer material of the present invention is used at least for the positive electrode.

高分子電極のドーパントとしては、例えば以下の陰イオ
ン又は陽イオンを例示することかでき陽イオンをドープ
した導電性高分子錯体はn型の材料を、陰イオンをドー
プした導電性高分子錯体はp型の材料を与える。p型材
料は正極に、n型材料は負極に用いることかできるか、
ポリアニリンもまたアニオンのドーピングで安定なp型
の材料となるため正極に適している。
Examples of dopants for polymer electrodes include the following anions and cations.A conductive polymer complex doped with a cation is an n-type material, and a conductive polymer complex doped with an anion is an n-type material. Provides p-type material. Can p-type material be used for the positive electrode and n-type material for the negative electrode?
Polyaniline is also suitable for the positive electrode because it becomes a stable p-type material when doped with anions.

(1)陰イオン:PF6″″ 5bF6AsF6  5
bC16−のよう なVa族の元素のハロゲン化物ア ニオン;BF4−″のようなI[Ia族の元素のハロゲ
ン化物アニオン ClO4のような過塩素酸アニオ ン、あるいはCFzSO3−のよ うなスルホン酸イオンなど。
(1) Anion: PF6″″ 5bF6AsF6 5
halide anions of group Va elements such as bC16-; halide anions of group Ia elements such as BF4-'', perchlorate anions such as ClO4, or sulfonate ions such as CFzSO3-.

(2)陽イオン:Li”  Na”K”のようなアルカ
リ金属イオン、(R4N) [R:炭素数1〜20の炭化水素基] など。
(2) Cation: Alkali metal ion such as Li"Na"K", (R4N) [R: hydrocarbon group having 1 to 20 carbon atoms], etc.

上記のドーパントを与える化合物の具体例としテハ、L
iPF5、LiSbF6、 LiAsF6、LiC10<、NaClO4、Kl、K
PF6、KSbFb、KAsF6、KClO4、[(n
−Bu)4N] ”ASF6[(n  −Bu)   
<  N  コ     −CI  O4−、LiCP
z  SO3、LiAlC1<、LiBF4なとか例示
され、これらは電池の電解質として用いられる。
Specific examples of compounds providing the above dopant include Teha, L
iPF5, LiSbF6, LiAsF6, LiC10<, NaClO4, Kl, K
PF6, KSbFb, KAsF6, KClO4, [(n
-Bu)4N] "ASF6[(n -Bu)
< N co-CI O4-, LiCP
Examples include zSO3, LiAlC1<, and LiBF4, which are used as electrolytes for batteries.

電池の電解液の溶媒としては、非プロント性溶媒で比誘
電率の大きい極性非プロント性溶媒といわれるものか好
ましい。具体的には、例えばケトン類、ニトリル類、エ
ステル(ラクトン)類、エーテル類、カーボネート類、
ニトロ化合物、スルホラン系化合物等、あるいはこれら
の混合溶媒を用いることができるが、これらのうちでも
ニトリル類、カーボネート類、スルホラン系化合物が好
ましい。この代表例としてはアセトニトリル、プロピオ
ニトリル、ブチロニトリル、バレロニトリル、ベンゾニ
トリル、エチレンカーボネート、プロピレンカーボネー
ト、γ−ブチロラクトン、スルホラン、3−メチルスル
ホラン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン等を挙げることができる。
As the solvent for the battery electrolyte, it is preferable to use a so-called polar apronto solvent, which is an apronto solvent and has a large dielectric constant. Specifically, for example, ketones, nitriles, esters (lactones), ethers, carbonates,
A nitro compound, a sulfolane compound, or a mixed solvent thereof can be used, and among these, nitriles, carbonates, and sulfolane compounds are preferred. Typical examples include acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, ethylene carbonate, propylene carbonate, γ-butyrolactone, sulfolane, 3-methylsulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, and the like.

これら電解液にポリマーを加え、ペースト状にして加工
性を高めることもてきる。
It is also possible to add polymers to these electrolytes to make them into a paste and improve processability.

本発明の電池における負極には、上述した高分子物質の
他に、L iSZ n s Cu SA g、Al5A
l−Li二元合金、Li−Al −Mg。
In addition to the above-mentioned polymeric materials, the negative electrode in the battery of the present invention includes LiSZ n s Cu SA g, Al5A
l-Li binary alloy, Li-Al-Mg.

Li−Al−Mn三元合金、ウッド合金などの金属およ
び合金を用いることもてきる。
Metals and alloys such as Li-Al-Mn ternary alloy, Wood alloy, etc. can also be used.

この場合、メタルそのものが活物質と集電機能を有する
場合、集電材料であるl’J l−、A 1などを密着
して用いる場合、あるいは集電体を用いて活物質は電解
液中のカチオンの析出により供給する場合などがある。
In this case, when the metal itself has a current collecting function with the active material, when the current collecting material such as l'J l-, A1, etc. is used in close contact with the active material, or when the active material is connected to the electrolyte by using a current collector. In some cases, it is supplied by precipitation of cations.

集電体を用いる場合は集電体端部が活物質でおおわれて
いることが好ましい。
When using a current collector, it is preferable that the ends of the current collector are covered with an active material.

セパレータとしては、電解質溶液のイオン移動に対して
低抵抗であり、かつ、溶液保持性に優れたものか用いら
れる。例えば、ガラス繊維フィルタ;ポリエステル、テ
フロン、ポリフロン1.ポリプロピレン等の高分子ボア
フィルタ、不織布;あるいはガラス繊維とこれらの高分
子からなる不織布等を用いることかできる。
As the separator, one is used that has low resistance to ion movement of the electrolyte solution and has excellent solution retention properties. For example, glass fiber filter; polyester, Teflon, polyflon 1. A polymer bore filter such as polypropylene, a nonwoven fabric; or a nonwoven fabric made of glass fiber and these polymers can be used.

又、これら電解液、セパレータに代わる構成要素として
固体電解質を用いることもてきる。
Further, a solid electrolyte can be used as a component in place of the electrolyte and the separator.

例えば、無機系では、AgC1、AgB r、AgI、
Li1などの金属ハロケン化物、RbAg4I5、Rb
Ag+ I4 CNなとか挙げられる。又、有機系では
、ポリエチレンオキサイド、ポリプロピレンオキサイド
、ポリフッ化ビニリデン、ポリアクリロニトリルなどを
ポリマーマトリクスとして先に述べた電解質塩をポリマ
ーマトリクス中に溶解せしめた複合体、あるいはこれら
の架橋体、低分子量ポリエチレンオキサイド、ポリエチ
レンイミン、クラウンエーテルなどのイオン解離基をポ
リマー主鎖にグラフト化した高分子電解質が挙げられる
For example, in inorganic systems, AgC1, AgBr, AgI,
Metal halides such as Li1, RbAg4I5, Rb
Examples include Ag+ I4 CN. In addition, in organic systems, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylonitrile, etc. are used as a polymer matrix, and composites in which the electrolyte salt mentioned above is dissolved in the polymer matrix, or crosslinked products of these, and low molecular weight polyethylene oxide are used. Examples include polymer electrolytes in which ionic dissociative groups such as , polyethyleneimine, and crown ether are grafted onto the polymer main chain.

[実施例] 以下に実施例を挙げ、本発明を更に詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

実施例1 4X 30cm、 20μm厚のSUSホイルに貫通孔
径0.9n+mφ、ピッチ 1.8)の千鳥状貫通孔を
設け、更にエメリー粒子200番、Ikg/c+n 2
の圧力でブラスト加工した電極を用意した。重合液とし
て0.75Mアニリン、3.0M  HB F−14を
含む水溶液を用意し、対極としてSUS板を使用した。
Example 1 Staggered through holes with a diameter of 0.9n+mφ and a pitch of 1.8) were provided in a 4×30cm, 20μm thick SUS foil, and emery particles No. 200, Ikg/c+n 2
An electrode was prepared that was blasted at a pressure of . An aqueous solution containing 0.75M aniline and 3.0M HB F-14 was prepared as a polymerization solution, and a SUS plate was used as a counter electrode.

重合実効面積が4X25cmになるように前記電極を重
合液に浸漬し、3mA/cm ’の電流密度でSUSホ
イルの両面にポリアニリンを複合した。
The electrode was immersed in the polymerization solution so that the effective polymerization area was 4×25 cm, and polyaniline was composited on both sides of the SUS foil at a current density of 3 mA/cm′.

重合後後合体を流水中12h放置したのち、0,3ML
iBF4/γ−ブチルラクトン溶液中で洗浄を繰返した
。これを流水中2h放置したのち、O,1M  HB 
F J中−0,4V vsS CHの電位まで充分脱ド
ープ処理を行い、20vo1%ヒドラジン1永和物−M
 e OH溶液に1晩浸漬したのち、80℃で5h真空
乾燥を行った。作製した複合体の厚みは約1200μm
1ポリアニリンの重量は約2gであった。この複合体を
厚さ 400μ田まで圧縮した。複合体の形は第5図の
よってあり、Bの部分以外ポリアニリンてSUSホイル
かおおわれているものであった。この複合体をAの部分
を巻きの中心部として一回スパイラル状に巻きしめたの
ち、ひらいたところSUSホイルと複合体の剥離してい
る部はなかった。
After polymerization, the post-coalescence was left in running water for 12 hours, and then 0.3ML
Washing was repeated in iBF4/γ-butyllactone solution. After leaving this in running water for 2 hours, O.1M HB
Fully dedoped to a potential of -0.4V vsS CH in FJ, 20vol 1% hydrazine 1-permanent -M
e After being immersed in an OH solution overnight, vacuum drying was performed at 80° C. for 5 hours. The thickness of the prepared composite is approximately 1200 μm
The weight of 1 polyaniline was approximately 2 g. This composite was compressed to a thickness of 400 μm. The shape of the composite was as shown in Figure 5, and all parts except B were covered with polyaniline and SUS foil. This composite was wound once in a spiral with part A as the center of the winding, and when it was opened, there was no part where the SUS foil and the composite had separated.

比較例l 5USホイルとして第6図に示すごとく端部C,Dをふ
っ素樹脂粘着テープでマスキングをほどこし、金属露出
面か幅4cmとなるようにした電極を用いて重合した以
外は実施例1と同様に複合体を作製した(マスク部分は
最後に切りとった)。実施例1と同様への部分より巻き
はしめて、ひらいてみたところC,Dの巻き中心に近い
部分(曲率の高い部分)はどポリアニリンのSUSホイ
ルよりの剥離を生していた。
Comparative Example 1 Same as Example 1 except that the ends C and D of 5US foil were masked with fluororesin adhesive tape as shown in Figure 6, and polymerization was carried out using an electrode with a width of 4 cm from the exposed metal surface. A composite was prepared in the same manner (the mask part was cut out last). The winding was tightened in the same way as in Example 1, and when it was opened, it was found that the polyaniline had peeled off from the SUS foil in the parts C and D near the center of the winding (parts with high curvature).

実施例2 実施例1のSUSホイルを第7図のようにBの部分に四
角の穴を設け、Bの部分ても端面がポリアニリンで80
%以上おおわれるように加工を施した。このSUSホイ
ルを電極として用いた以外は実施例1と同様に複合体を
作製した。
Example 2 The SUS foil of Example 1 was made with a square hole in the B part as shown in Figure 7, and the end face of the B part was made of polyaniline with 80 mm
Processed to cover more than %. A composite was produced in the same manner as in Example 1 except that this SUS foil was used as an electrode.

Bの部分より重合していないSO5部分を切りとったの
ち、Bの部分を中心として巻きしめたのち、ひらいたと
ころ、Bの部分のSUSホイルとポリアニリンは剥離し
ていなかった。
After cutting off the unpolymerized SO5 part from part B, wrapping it around part B and opening it, it was found that the SUS foil and polyaniline in part B had not peeled off.

実施例3 実施例1の複合体をAより20cmの長さのところで切
り取り、SUSホイルの端子を取りつけた。これを正電
極として負極として厚さ80μmのリチウム(幅4cm
)、セパレーターとしてポリプロピレン(ダイセル化学
工業:セルガード#3401)を使用し、Aの部分か巻
き中心になるように巻きはじめたのち(第9図)、内寸
13.6a+mφ、高さ(内寸) 47.2mmの円筒
内に実装した。
Example 3 The composite of Example 1 was cut out at a length of 20 cm from point A, and SUS foil terminals were attached. This was used as a positive electrode and as a negative electrode with a thickness of 80 μm (4 cm width).
), using polypropylene (Daicel Chemical Industries: Celguard #3401) as a separator, start winding so that the center of the winding is at part A (Fig. 9), and the inner size is 13.6a + mφ, height (inner dimension). It was mounted inside a 47.2 mm cylinder.

電解液としてエチレンカーボネート、2−メチルテトラ
ヒドロフラン:ジメトキシエタン−8:8:5(体積比
)に4mo I /溶媒kgのLiAsF6を溶解した
電解液を注入したのち、2.5〜3.7V1±30mA
で充放電を行ったところ、1o回目の容量は1411n
Ahであり、93mAh/g (ポリアニリン)の性能
であった。
After injecting an electrolytic solution in which 4 mo I/kg of solvent LiAsF6 was dissolved in ethylene carbonate, 2-methyltetrahydrofuran:dimethoxyethane-8:8:5 (volume ratio), the voltage was 2.5 to 3.7 V1 ± 30 mA.
When charging and discharging was performed, the 10th capacity was 1411n.
The performance was 93 mAh/g (polyaniline).

実施例4 実施例1の複合体のBの部分よりSUSホイルの部分を
切り取りSUSホイルの端子を取りつけた。これを正電
極として実施例5と同様な材質の負極、セパレターを用
い電解液としてプロピレンカーボネート;ジメトキシエ
タン−7=3(体積比) 、3a+l151のLiBF
+を溶解した電解液を使用して、第10図のようなフレ
キシブルシート型電池を作製した。外装材はアルミニウ
ムを芯材とする熱溶融性のプラスチックフィルムである
。2.5〜3.7V、±30mAの充放電を行ったとこ
ろ、5回目の容量は189IIIAhであった。この後
このシート型電池を直径1c+aの棒になAの部分が中
心にくるように巻いたのち、ひきのばして充放電を行っ
たところ、容量は173mAhとなった。
Example 4 The SUS foil portion was cut out from part B of the composite of Example 1 and a SUS foil terminal was attached. Using this as a positive electrode, a negative electrode made of the same material as in Example 5, a separator, and propylene carbonate as an electrolyte; dimethoxyethane-7=3 (volume ratio), LiBF of 3a+l151
A flexible sheet type battery as shown in FIG. 10 was fabricated using an electrolytic solution in which + was dissolved. The exterior material is a heat-melting plastic film with an aluminum core. When charging and discharging were performed at 2.5 to 3.7 V and ±30 mA, the capacity at the fifth time was 189IIIAh. After that, this sheet-type battery was wound around a rod with a diameter of 1c+a so that the part A was in the center, and then stretched out and charged and discharged, resulting in a capacity of 173mAh.

比較例2 比較例1の電極を実施例4と同様な条件下充放電試験を
行ったところ、5回目173mAh、巻きしめ後は14
6mAhに落ちてしまった。
Comparative Example 2 When the electrode of Comparative Example 1 was subjected to a charge/discharge test under the same conditions as in Example 4, it was 173 mAh on the 5th time and 14 mAh after winding.
It dropped to 6mAh.

[発明の効果コ 以上説明したように、本発明によれば、実質上最終的利
用形状で複合体を得ることかできるので、従来とは異な
り、被覆の剥離、脱落等の損傷きたすような最終形状へ
の切断等の加工か不必要となり、歩留りか向上して生産
性を上げることができる。そして、得られた複合体も曲
げ変形に対する耐久性に優れており、使用中の被覆の剥
離、脱落を防止することができ、これを組込んだ機器の
信頼性を向上することかできる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a composite in substantially the final use shape, and therefore, unlike the conventional method, there is no need to avoid the final use, which may cause damage such as peeling or falling off of the coating. Processing such as cutting into shapes is no longer necessary, which improves yield and productivity. The obtained composite also has excellent durability against bending deformation, and can prevent the coating from peeling off or falling off during use, thereby improving the reliability of equipment incorporating the composite.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で得られた複合体−例を説明する平面図
、第2図は第1図X−X線での断面拡大図、第3図及び
第4図は本発明で得られた複合体の別の例を説明する平
面図、第5図は実施例1で得られた本発明の詳細な説明
する平面図、第6図は比較例1で用いた電極を説明する
平面図、第7図は実施例2て用いた電極を説明する平面
図、第8図は従来の複合体(電極)の構成を説明する図
、第9図は実施例3の電池の構成を説明する図、第10
図は実施例11の電池の構成を説明する図。
FIG. 1 is a plan view illustrating an example of a composite obtained by the present invention, FIG. 2 is an enlarged cross-sectional view taken along line X-X in FIG. 1, and FIGS. 3 and 4 are composites obtained by the present invention. FIG. 5 is a plan view illustrating the details of the present invention obtained in Example 1, and FIG. 6 is a plan view illustrating the electrode used in Comparative Example 1. , FIG. 7 is a plan view illustrating the electrode used in Example 2, FIG. 8 is a diagram illustrating the configuration of a conventional composite (electrode), and FIG. 9 is a diagram illustrating the configuration of the battery in Example 3. Figure, 10th
The figure is a diagram illustrating the configuration of a battery of Example 11.

Claims (1)

【特許請求の範囲】[Claims] 可撓性導電性シート材料に導電性高分子を被覆する複合
体の製造方法において、可撓性導電性シート材料が予め
機器に組み込まれる形状に成型され、該成型導電性シー
トの導電性高分子を被覆する機能面の面及び端部を連続
して導電性高分子で被覆することを特徴とする複合体の
製造方法。
In a method for producing a composite in which a flexible conductive sheet material is coated with a conductive polymer, the flexible conductive sheet material is molded in advance into a shape to be incorporated into a device, and the conductive polymer of the molded conductive sheet is coated with a conductive polymer. 1. A method for producing a composite, comprising continuously coating the functional surface and the end thereof with a conductive polymer.
JP2124259A 1990-05-16 1990-05-16 Manufacture of complex material Pending JPH0422013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2124259A JPH0422013A (en) 1990-05-16 1990-05-16 Manufacture of complex material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2124259A JPH0422013A (en) 1990-05-16 1990-05-16 Manufacture of complex material

Publications (1)

Publication Number Publication Date
JPH0422013A true JPH0422013A (en) 1992-01-27

Family

ID=14880906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2124259A Pending JPH0422013A (en) 1990-05-16 1990-05-16 Manufacture of complex material

Country Status (1)

Country Link
JP (1) JPH0422013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534237A (en) * 1991-07-23 1996-07-09 Kubushiki Kaisha Riken Method of cleaning an exhaust gas and exhaust gas cleaner therefor
WO2010143410A1 (en) * 2009-06-11 2010-12-16 パナソニック株式会社 Capacitor and method for manufacturing capacitor
US8329080B2 (en) 2010-04-13 2012-12-11 Ricoh Company, Ltd. Conductive composition, electrophotographic belt, image forming apparatus, and method of manufacturing conductive composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534237A (en) * 1991-07-23 1996-07-09 Kubushiki Kaisha Riken Method of cleaning an exhaust gas and exhaust gas cleaner therefor
WO2010143410A1 (en) * 2009-06-11 2010-12-16 パナソニック株式会社 Capacitor and method for manufacturing capacitor
US8329080B2 (en) 2010-04-13 2012-12-11 Ricoh Company, Ltd. Conductive composition, electrophotographic belt, image forming apparatus, and method of manufacturing conductive composition

Similar Documents

Publication Publication Date Title
US4999263A (en) Sheet-shaped electrode, method or producing the same, and secondary battery
US4948685A (en) Sheet-shaped electrode, method of producing the same, and secondary battery using the sheet-shaped electrode
US4886572A (en) Composite electrode comprising a bonded body of aluminum and electroconductive polymer and electric cell using such a composite electrode
US5183543A (en) Polyanilines, process for the preparation thereof and cells using them
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JP2725786B2 (en) Sheet-like electrode, method of manufacturing the same, and secondary battery using the same
JPH0422013A (en) Manufacture of complex material
JP2688502B2 (en) Thin battery manufacturing method
JPH0230060A (en) Negative electrode for secondary battery
JP2752377B2 (en) Sheet electrode
JP2826850B2 (en) Method for producing polyaniline
JP3618022B2 (en) Electric double layer capacitor and EL element
JP2542221B2 (en) Battery using polyaniline composite electrode
JP2669672B2 (en) Joint
JP2610026B2 (en) Battery electrode
JPH02172162A (en) Nonaqueous electrolyte secondary battery
JPH0349151A (en) Secondary battery
JP2644765B2 (en) Positive electrode for storage battery
JP2716132B2 (en) Polyaniline battery
JP2826849B2 (en) Method for producing polyaniline
JPH03269018A (en) Production of polyanilines
JPH01258408A (en) Energy storage device using non-aqueous electrolyte
JPH0315157A (en) Sheet-form electrode
JPH05242892A (en) Conductive high polymeric electrode and manufacture thereof
JP3019362B2 (en) Rechargeable battery