JPH04220133A - Desmoked mold material - Google Patents

Desmoked mold material

Info

Publication number
JPH04220133A
JPH04220133A JP33879490A JP33879490A JPH04220133A JP H04220133 A JPH04220133 A JP H04220133A JP 33879490 A JP33879490 A JP 33879490A JP 33879490 A JP33879490 A JP 33879490A JP H04220133 A JPH04220133 A JP H04220133A
Authority
JP
Japan
Prior art keywords
mold
water
inorganic water
inorganic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33879490A
Other languages
Japanese (ja)
Other versions
JP2902478B2 (en
Inventor
Yoshihiro Oishi
大石 芳宏
Yasuo Takada
保夫 高田
Atsushi Yamamoto
淳 山本
Haruyoshi Hirano
春好 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Toyoda Automatic Loom Works Ltd filed Critical Toyota Central R&D Labs Inc
Priority to JP2338794A priority Critical patent/JP2902478B2/en
Publication of JPH04220133A publication Critical patent/JPH04220133A/en
Application granted granted Critical
Publication of JP2902478B2 publication Critical patent/JP2902478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To reduce the generating quantity of smoke and stimulative gas and to obtain the required mold strength by mixing an inorganic water holding material including a special water glass in the composing material to be normally used as the mold material in the shell mold method. CONSTITUTION:The mold material which is coated with the thermal setting resin 1, etc., as the base material 2 is mixed with an inorganic water holding material 3 which has the fine holes structure, whose water content capacity is more than 30% by weight, and which has the water absorbing or desorbing capability if the temperature is 100-250 deg.C, and also includes water glass. The mixing volume of the inorganic water holding material 3 is made to 1.5-4.5 volumetric % of the base material 2 of the mold material. As a result, the volume of the resin 1 absorbed in the fine holes of the inorganic water holding material 3 is properly controlled in the calcining process of the mold, the generating quantity of smoke or stimulative gas in reduced and the reduction of the mold strength can be decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳鋼、鋳鉄、アルミニウム等の金属の鋳造に
用いられる鋳造用鋳型の主型および中子を製造する際に
用いるシェル鋳型材料に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a shell mold material used in manufacturing the main mold and core of a casting mold used for casting metals such as cast steel, cast iron, and aluminum. .

さらに詳しくは、鋳型の製造時の加熱により発生する煙
、および刺激臭、異臭、有毒性のガス(以下、刺激性ガ
スという)の発生量が少なく、しかも該鋳型の強度の低
下が少ない脱煙鋳型材に関するものである。
More specifically, the smoke removal method generates less smoke, irritating odor, off-odor, and toxic gas (hereinafter referred to as irritating gas) due to heating during mold manufacturing, and reduces the decrease in the strength of the mold. This relates to mold materials.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

従来より、鋳造用鋳型の主型および中子(以下、単に鋳
型とする)の製造方法として、フェノール樹脂等の合成
樹脂が熱によって硬化する性質を鋳型の硬化に利用した
シェルモールド法が多く採用されている。この方法によ
り製造された鋳型を用いて鋳造することにより、極めて
寸法精度の高い美麗な鋳肌を持った鋳物が製造できる。
Traditionally, the shell molding method, which utilizes the property of synthetic resins such as phenolic resins to harden with heat, has been widely adopted as a manufacturing method for the main mold and core (hereinafter simply referred to as molds) of casting molds. has been done. By casting using a mold manufactured by this method, a casting having extremely high dimensional accuracy and a beautiful casting surface can be manufactured.

このシェルモールド法に用いられる鋳型材としては、珪
砂等の鋳型材基材にフェノール樹脂等の熱硬化性樹脂、
硬化剤、潤滑剤を順に被覆した樹脂被覆鋳物砂(レジン
コーテッドサンド:RCS)が一般的に使用に供され、
さらに、必要に応じて硬化促進剤やその他の添加剤を前
記樹脂被覆鋳物砂に添加・混合して使用されている。
The mold material used in this shell molding method is a mold material base material such as silica sand, thermosetting resin such as phenolic resin, etc.
Resin-coated foundry sand (RCS), which is coated with a curing agent and a lubricant in that order, is commonly used.
Furthermore, a curing accelerator and other additives are added and mixed with the resin-coated foundry sand as needed.

しかし、この樹脂被覆鋳物砂を原料として鋳型を製造す
る場合、加熱金型内にこの鋳型材料を封入し焼成・固結
するため、成形工程等の加熱の際、加熱金型を開放した
ときや鋳型を取り出し、搬出する際に、煙やホルムアル
デヒド、フェノール、アンモニア等の強い刺激性ガスが
発生し、作業環境を著しく悪化させている。また、最近
、鋳型の製造において大量生産をする場合、空気圧を利
用して樹脂被覆鋳物砂を成形金型へ吹き込むブロー法が
用いられている。この方法では、成形金型への充填性を
上げるため潤滑剤として主にステアリン酸カルシウムが
用いられ、鋳型を作製するときに該ステアリン酸カルシ
ウムが分解し、煙を多量に発生するという問題があった
However, when manufacturing molds using this resin-coated molding sand as raw material, the mold material is enclosed in the heating mold and fired and solidified, so when the heating mold is opened during the heating process, etc. When removing and transporting molds, strong irritating gases such as smoke and formaldehyde, phenol, and ammonia are generated, significantly deteriorating the working environment. Recently, when manufacturing molds in large quantities, a blowing method has been used in which resin-coated molding sand is blown into a mold using air pressure. In this method, calcium stearate is mainly used as a lubricant to improve the filling properties into the mold, and there is a problem in that the calcium stearate decomposes when the mold is made, generating a large amount of smoke.

このように、従来の鋳型材は、鋳型製造用機械の周囲に
発煙用ダクトを取付けにくいため、鋳型の製造工程にお
いて発生する煙および刺激性ガスが鋳物工場内の作業環
境を悪化させる原因になっており、これらの低減のため
には莫大な設備費用を必要とし、しかも必ずしも十分な
対策とはいえず、根本的な対策が強く切望されていた。
In this way, with conventional mold materials, it is difficult to install smoke ducts around the mold manufacturing machinery, so the smoke and irritating gases generated during the mold manufacturing process can cause a deterioration of the working environment in the foundry. Reducing these problems requires enormous equipment costs and is not necessarily sufficient, so there is a strong need for fundamental countermeasures.

これらの不具合を解決する方法として、樹脂被覆鋳物砂
に、含水珪酸マグネシウム質粘土鉱物、活性炭、活性ア
ルミナ等の細孔を多数有しかつ比表面積が50m2/g
以上の多孔性物質を混合した鋳型材(特開昭63−60
042号公報)が提案されている。
As a method to solve these problems, resin-coated foundry sand is made of hydrous magnesium silicate clay mineral, activated carbon, activated alumina, etc., which has many pores and has a specific surface area of 50 m2/g.
Mold material mixed with the above porous substances (Japanese Patent Application Laid-Open No. 63-60
No. 042) has been proposed.

これより、該鋳型材を用いて鋳造用鋳型を成形する場合
や、該鋳型を用いて鋳造を行った場合の加熱の際に発生
する刺激性ガスの発生量を吸着および触媒作用により低
減することができたとされている。
From this, the amount of irritating gases generated during heating when molding a casting mold using the mold material or performing casting using the mold can be reduced by adsorption and catalytic action. It is said that it was created.

しかしながら、この鋳型材では、煙および刺激性ガスを
完全に除去するためには前記多孔性物質の混合量を多く
する必要があり、それに伴って鋳型の強度が大きく低下
し、鋳造工程において鋳型割れが発生するという問題点
を有している。さらに、前記の多孔性物質を多く混合し
た鋳型材を再生し、利用した場合、再生処理工程を経た
後でも珪砂等の鋳型材基材(再生砂)の中に活性炭等炭
化物を除く前記多孔性物質が形をとどめて細孔を有した
まま残り、該多孔性物質を含有した再生砂を用いて鋳型
を作製すると、型として使用できない程に鋳型強度を大
きく低下させるという問題を有していた。
However, with this mold material, in order to completely remove smoke and irritating gases, it is necessary to mix a large amount of the porous material, which greatly reduces the strength of the mold and causes mold cracking during the casting process. This has the problem that this occurs. Furthermore, when a mold material mixed with a large amount of the porous substance described above is recycled and used, even after the regeneration treatment process, the porous material excluding carbides such as activated carbon is contained in the mold material base material (recycled sand) such as silica sand. The substance retains its shape and remains with pores, and when a mold is made using recycled sand containing the porous substance, there is a problem in that the strength of the mold decreases so much that it cannot be used as a mold. .

そこで、本発明者等は、これら従来の問題点を解決すべ
く鋭意研究し、各種の系統的実験を行った結果、本発明
を成すに至ったものである。
Therefore, the present inventors conducted intensive research to solve these conventional problems and conducted various systematic experiments, and as a result, they came up with the present invention.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、鋳造用鋳型の製造を行うときに煙およ
び刺激性ガスの発生量が少なく、かつ必要な型強度が得
られる脱煙鋳型材を提供するにある。
An object of the present invention is to provide a smoke-free molding material that generates less smoke and irritating gases when manufacturing casting molds, and provides the necessary mold strength.

すなわち、従来技術のシェルモールド法に用いられる鋳
型材は、珪砂等の鋳型材基材に熱硬化性樹脂等を被覆し
た樹脂被覆鋳物砂と、さらに必要に応じて、該樹脂被覆
鋳物砂に添加・混合された硬化促進剤やその他の添加剤
とからなる。また、この樹脂被覆鋳物砂に多孔性物質を
混合した鋳型材は、刺激性ガスの低減効果はあるものの
、該効果を高めるために多孔性物質の混合量を増加させ
ると、該鋳型材により作製される型の強度が低下してし
まい、鋳造中に型が崩壊してしまうという問題があった
In other words, the molding material used in the conventional shell molding method is resin-coated molding sand, which is made by coating a molding material base material such as silica sand with a thermosetting resin, and if necessary, resin-coated molding sand that is added to the resin-coated molding sand. - Consists of a mixed curing accelerator and other additives. Although this molding material made by mixing a porous substance with resin-coated foundry sand has the effect of reducing irritating gases, if the amount of porous substance mixed is increased to enhance this effect, There was a problem in that the strength of the mold was reduced and the mold collapsed during casting.

本発明者らは、鋳型製造時における煙や他の刺激性ガス
の発生メカニズムを解明すべく各種の系統的実験や研究
を行った。その結果、鋳型製造時に発生する煙には、熱
硬化性樹脂の硬化反応によって発生する煙と潤滑剤とし
て使用しているステアリン酸カルシウムの分解により発
生する煙の二つがあり、両者が同時に発生すると煙の発
生量が極めて増大していることが分かった。
The present inventors conducted various systematic experiments and studies in order to elucidate the mechanism of generation of smoke and other irritating gases during mold manufacturing. As a result, there are two types of smoke generated during mold manufacturing: smoke generated by the curing reaction of thermosetting resin and smoke generated by the decomposition of calcium stearate used as a lubricant. It was found that the amount of generation was significantly increasing.

そこで、熱硬化性樹脂の硬化反応によって発生する煙は
、該反応の際に樹脂成分量の一部が多孔性物質の細孔中
へ吸収され、硬化剤に対する樹脂の割合の減少による硬
化反応の促進により、未反応ガスの発生が低減すること
、およびステアリン酸カルシウム等の潤滑剤に起因する
煙は水あるいは水蒸気によりより小さな分子量のガスに
分解されることに着眼した。
Therefore, the smoke generated by the curing reaction of thermosetting resin is caused by a portion of the resin component being absorbed into the pores of the porous material during the reaction, and the curing reaction is caused by a decrease in the ratio of resin to curing agent. We focused on the fact that acceleration reduces the generation of unreacted gases and that smoke caused by lubricants such as calcium stearate is decomposed into gases with smaller molecular weights by water or steam.

そして、多孔性物質中の細孔中に水ガラスを吸収させ、
必要な大きさの細孔にすることにより鋳型製造の加熱時
に適量の保有水を放出して未反応ガス等の分解を促進す
るとともに、流動状態の樹脂成分を適量に吸収可能な細
孔にした無機保水材を、樹脂被覆鋳物砂に適量混合して
鋳型材料とすることにより、前記問題点を解決するに至
った。
Then, water glass is absorbed into the pores of the porous material,
By creating pores of the necessary size, we released an appropriate amount of retained water during heating during mold production to promote decomposition of unreacted gases, etc., and also created pores that can absorb an appropriate amount of resin components in a fluid state. The above-mentioned problems have been solved by mixing an appropriate amount of an inorganic water retaining material with resin-coated foundry sand to prepare a mold material.

〔第1発明の説明〕 発明の構成 本発明の脱煙鋳型材は、熱硬化性樹脂等を鋳型材基材に
被覆した鋳型材と、細孔構造を有し含水能力が30重量
%以上でかつ100〜250℃においても水分の吸脱着
能力を有するとともに水ガラスを含有した無機保水材と
からなり、該無機保水材の混合量が前記鋳物砂基材の1
.5〜4.5体積%であることを特徴とする。
[Description of the first invention] Structure of the invention The smoke-free molding material of the present invention comprises a molding material in which a thermosetting resin or the like is coated on a molding material base material, and a molding material having a pore structure and a water absorption capacity of 30% by weight or more. and an inorganic water-retaining material that has the ability to adsorb and desorb moisture even at 100 to 250°C and contains water glass, and the amount of the inorganic water-retaining material is 1% of the foundry sand base material.
.. It is characterized by a content of 5 to 4.5% by volume.

発明の作用および効果 本発明の脱煙鋳型材は、鋳造用鋳型を製造するときに煙
、および刺激臭、異臭、有毒性ガス等の刺激性ガスの発
生量が少なく、かつ必要な型強度を得ることができる。
Functions and Effects of the Invention The smoke-free molding material of the present invention generates less smoke and irritating gases such as irritating odors, off-odor odors, and toxic gases when manufacturing casting molds, and can maintain the necessary mold strength. Obtainable.

本発明の脱煙鋳型材が、上述のごとき優れた効果を発揮
するメカニズムについては、未だ必ずしも十分に明らか
ではないが、以下のように考えられる。
The mechanism by which the smoke-free molding material of the present invention exhibits the above-mentioned excellent effects is not yet fully clear, but it is thought to be as follows.

すなわち、本発明では、シェルモールド法に用いる鋳型
材として、一般的に使用に供されている構成材料に、さ
らに水ガラス含有無機保水材を混合してなる。この無機
保水材は、細孔構造を有し100〜250℃においても
水分の吸脱着能力を有するとともに含水能力が30重量
%以上の無機保水材である。これより、鋳型の製造時等
の加熱時に、ステアリン酸カルシウム等の潤滑剤に起因
する煙は、該無機保水材から放出される保有水によって
より小さな分子量のガスに分解され、煙やその他の刺激
性ガスの発生が低減するものと思われる。また、フェノ
ール樹脂等の樹脂の硬化反応により発生する煙は、水ま
たは水蒸気によりヘキサメチレンテトラミン等の硬化剤
の分解が促進されるとともに、水が排出した無機保水材
の細孔の中に樹脂の主成分であるフェノールレジン等が
吸収され、樹脂中成分量の変化および樹脂と硬化剤の割
合の変化により硬化反応が促進され、未反応ガスの発生
が低減するものと考えられる。さらに、鋳型の強度低下
は無機保水材の細孔の中にフェノールレジン等の樹脂が
吸収されることによるため、該無機保水材に適量の水ガ
ラスを含有させることにより鋳型の焼成工程において無
機該保水材の細孔に吸収される樹脂の量を適度に抑制し
、煙や刺激性ガスの発生量を低下させ、かつ鋳型強度の
低下をより小さくすることができるものと考えられる。
That is, in the present invention, the molding material used in the shell molding method is made by further mixing a water glass-containing inorganic water retaining material with a commonly used constituent material. This inorganic water retaining material has a pore structure, has the ability to adsorb and desorb moisture even at 100 to 250°C, and has a water holding capacity of 30% by weight or more. From this, smoke caused by lubricants such as calcium stearate during heating during mold manufacturing is decomposed into smaller molecular weight gases by the retained water released from the inorganic water retaining material, resulting in smoke and other irritating substances. It is thought that gas generation will be reduced. In addition, the smoke generated by the curing reaction of resins such as phenolic resins promotes the decomposition of curing agents such as hexamethylenetetramine by water or steam, and the formation of resins in the pores of the inorganic water-retaining material from which water is discharged. It is thought that the main component, such as phenol resin, is absorbed, and the curing reaction is accelerated due to changes in the amount of components in the resin and changes in the ratio of resin and curing agent, and the generation of unreacted gas is reduced. Furthermore, since the strength of the mold decreases due to the absorption of resin such as phenol resin into the pores of the inorganic water-retaining material, by incorporating an appropriate amount of water glass into the inorganic water-retaining material, the inorganic water-retaining material is added during the mold firing process. It is believed that the amount of resin absorbed into the pores of the water retaining material can be appropriately suppressed, the amount of smoke and irritating gases generated can be reduced, and the decline in mold strength can be further minimized.

また、再生処理における750〜800℃の焼成工程に
より、水ガラス含有の無機保水材は水ガラスのガラス化
により体積収縮を起こし、細孔形状も小さくなる。この
ため、篩工程において再生砂中に残存する量も少なくな
り、かつ樹脂吸収能力が小さくなり、鋳型強度低下が大
幅に小さくなるものと考えられる。
Further, due to the firing step at 750 to 800° C. in the regeneration treatment, the inorganic water-retaining material containing water glass undergoes volumetric shrinkage due to vitrification of water glass, and the shape of the pores also becomes smaller. Therefore, it is thought that the amount remaining in the recycled sand during the sieving process is reduced, the resin absorption capacity is reduced, and the mold strength decrease is significantly reduced.

〔第2発明の説明〕 以下に、前記第1発明をさらに具体的にした第2発明を
説明する。
[Description of the second invention] Below, a second invention that is a more specific version of the first invention will be described.

本発明において用いられる熱硬化性樹脂等を鋳型材基材
に被覆した鋳型材、すなわち樹脂被覆鋳物砂は、該材料
の鋳型材基材(鋳物砂)の表面に、粘結材としての熱硬
化性樹脂を被覆してなるもので、さらに必要に応じて樹
脂の硬化促進を目的としてヘキサメチレンテトラミン等
の硬化材や鋳型材料作製工程における鋳物砂の粒同士の
固結防止や流動性を良くして充填密度を大きくすること
を目的としてステアリン酸カルシウム等の潤滑剤等の添
加剤を添加してなる。
The molding material used in the present invention, in which the molding material base material is coated with a thermosetting resin or the like, that is, the resin-coated foundry sand, has a thermosetting resin as a caking agent on the surface of the molding material base material (foundry sand) of the material. It is coated with a hardening resin, and if necessary, it can be used with a hardening material such as hexamethylenetetramine to accelerate the hardening of the resin, or to prevent the particles of foundry sand from caking together in the mold material manufacturing process and to improve fluidity. In order to increase the packing density, additives such as lubricants such as calcium stearate are added.

ここで、鋳型材基材は、シェル鋳型の基材をなす耐火性
の砂状物質であり、具体的には珪砂、ジルコン砂、クロ
マイト砂、オリビン砂、海砂、川砂、岩石を破砕して作
った砂等があり、それら一種類または二種類以上の混合
物を用いる。この鋳物砂は、流動性、充填性、じん性、
熱膨張性、凝固速度等を考慮して適宜な形状、大きさ、
種類のものを選択する。この鋳物砂の粒形は、丸形また
は多角形等の球形様のものであることが好ましい。
Here, the mold material base material is a refractory sand-like material that forms the base material of the shell mold, and specifically, it is made by crushing silica sand, zircon sand, chromite sand, olivine sand, sea sand, river sand, and rock. There are prepared sands, etc., and one or a mixture of two or more of them is used. This foundry sand has fluidity, filling properties, toughness,
Appropriate shape, size, etc. considering thermal expansion property, solidification rate, etc.
Choose a type. The particle shape of this foundry sand is preferably spherical, such as round or polygonal.

それは、この場合には、砂の流動性がよく、比較的少量
の樹脂で高い型強度が得られ易く、また、鋳型の通気性
を良好ならしめるからである。
This is because, in this case, the sand has good fluidity, it is easy to obtain high mold strength with a relatively small amount of resin, and the mold has good air permeability.

また、熱硬化性樹脂は、シェル鋳型材料の基材としての
鋳物砂及び無機保水材を相互に結合し、所定の鋳型形状
に造形する機能を有する粘結材であり、具体的には、フ
ェノール・フォルムアルデヒド樹脂、フェノール・フル
フラール樹脂等のノボラック系フェノール樹脂等を用い
る。
In addition, thermosetting resin is a caking material that has the function of mutually bonding the foundry sand and inorganic water retaining material that serve as the base material of the shell mold material and forming it into a predetermined mold shape.・Use novolac-based phenolic resins such as formaldehyde resins and phenol/furfural resins.

鋳物砂への樹脂の被覆は、ホットコート法、トライホッ
トコート法、セミホットコート法、コールドコート法、
粉末溶剤法等の常法により、必要に応じて適宜添加剤を
加え行う。
Coating molding sand with resin can be done using the hot coat method, try-hot coat method, semi-hot coat method, cold coat method,
This is carried out by a conventional method such as a powder solvent method, adding appropriate additives as necessary.

ここで、樹脂の配合量は、鋳型材基材に対し1〜10w
t%であることが好ましい。この配合量は、その目的、
無機保水材および他の添加剤の添加量、製造条件により
異なるが、大略、鋳型材基材が珪砂である場合には1〜
6wt%、ジルコン砂を用いた場合には1〜4wt%が
よい。また、該鋳型材基材の粒径は、50μm〜1mm
であることが好ましい。
Here, the blending amount of the resin is 1 to 10 w with respect to the mold material base material.
Preferably, it is t%. This amount is determined based on its purpose,
It varies depending on the amount of inorganic water-retaining material and other additives added and manufacturing conditions, but in general, when the mold material base material is silica sand, the amount of
6 wt%, and 1 to 4 wt% when zircon sand is used. In addition, the particle size of the mold material base material is 50 μm to 1 mm.
It is preferable that

次に、無機保水材は、鋳型製造時等の加熱時に適量の保
有水を放出して硬化剤や潤滑剤等の分解を促進するとと
もに流動状態の樹脂成分を吸収可能な細孔を有する無機
保水材であって、100〜250℃においても水分の吸
脱着能力を有するとともに含水能力が30重量%以上の
無機質の保水材である。このような無機保水材を用いる
ことにより、鋳型製作時における煙や刺激性ガスの発生
を低減し、かつ鋳型の強度低下率を20%以下とするこ
とができる。具体的には、含水珪酸マグネシウム質粘土
鉱物、ヤシガラ炭が挙げられ、これらの一種または二種
以上である。また、これ以外でも、上記吸脱着能力及び
含水能力を有する物質、すなわち天然の多孔性無機物質
や、無機物質または繊維を多く含む有機物質を熱処理し
た無機多孔質物質、さらには、これらの微粉末を単独ま
たは粘土等の無機質系粘結材との混合物を固結して用い
てもよい。また、これらのものを仮焼したものを用いて
もよい。
Next, inorganic water-retaining materials release an appropriate amount of retained water during heating during mold manufacturing, etc., to promote the decomposition of hardeners, lubricants, etc., and have pores that can absorb resin components in a fluid state. It is an inorganic water retaining material that has the ability to adsorb and desorb moisture even at 100 to 250°C and has a water holding capacity of 30% by weight or more. By using such an inorganic water-retaining material, it is possible to reduce the generation of smoke and irritating gases during mold production, and to reduce the strength reduction rate of the mold to 20% or less. Specifically, hydrated magnesium silicate clay minerals and coconut husk charcoal may be mentioned, and one or more of these may be used. In addition, in addition to these, materials having the above-mentioned adsorption/desorption ability and water-containing ability, that is, natural porous inorganic materials, inorganic porous materials obtained by heat-treating inorganic materials or organic materials containing a large amount of fiber, and fine powders thereof. It may be used alone or in a mixture with an inorganic caking agent such as clay. Further, a calcined product of these materials may also be used.

ここで、含水珪酸マグネシウム質粘土鉱物は、含水珪酸
マグネシウム質を主成分とし、直径が0.005〜0.
6μm程度の繊維からなり、該繊維に平行に約10〜6
Å程度の長方形の断面を持つ細孔(チャンネル)が存在
し、表面に反応性に富む水酸基を有する。なお、マグネ
シウム或いは珪素の一部がアルミニウム、鉄、ニッケル
、ナトリウム等に置換されているものでもよい。また、
これらのものを、400〜800℃の温度範囲内で仮焼
したものを用いてもよい。
Here, the hydrated magnesium silicate clay mineral has hydrated magnesium silicate as its main component, and has a diameter of 0.005 to 0.05 mm.
It consists of fibers of about 6 μm, and about 10 to 6
It has pores (channels) with a rectangular cross section of approximately Å, and has highly reactive hydroxyl groups on its surface. Note that a part of magnesium or silicon may be replaced with aluminum, iron, nickel, sodium, or the like. Also,
These materials may be calcined within a temperature range of 400 to 800°C.

また、該無機保水材は、細孔が残留する程度に粉砕した
ものであれば何れの形で用いてもよいが、その大きさが
鋳型材基材と同程度の50μm〜1mmの範囲であるこ
とが好ましい。その中でも、鋳型材基材の粒度分布のう
ち最大量を示す粒度以上の大きさが好ましく、特に14
9〜500μmであることがより好ましい。これは、無
機保水材の温度上昇が樹脂被覆鋳物砂の温度上昇と同じ
にする必要があるからである。また、粒度が小さいと得
られる鋳型の強度が低下し、また煙低減効果が小さくな
る。なお、該無機保水材は、熱硬化性樹脂を被覆する前
の鋳物砂の粒度分布のうち、最大量を示す粒度より小さ
い粒度を持つもの、特に149μm未満の大きさのもの
を10重量%以下にした粒度分布を持つ顆粒状物質であ
ることが好ましい。すなわち、硬化反応において煙を無
くするためには無機保水材が該樹脂を吸収することが必
要であるが、この樹脂吸収のために鋳型強度が低下する
。従って、小さい粒度のものが多いと樹脂が吸収される
部位が多く、かつ吸収される量が増加することとなり、
鋳型の強度低下が大きくなる。
Further, the inorganic water-retaining material may be used in any form as long as it has been pulverized to the extent that pores remain, but the size is in the range of 50 μm to 1 mm, which is about the same as the mold material base material. It is preferable. Among them, a particle size larger than or equal to the maximum particle size in the particle size distribution of the mold material base material is preferable, especially 14
It is more preferable that it is 9-500 micrometers. This is because the temperature rise of the inorganic water retaining material needs to be the same as the temperature rise of the resin-coated foundry sand. Furthermore, if the particle size is small, the strength of the mold obtained will be reduced and the smoke reduction effect will be reduced. In addition, the inorganic water retaining material contains not more than 10% by weight of particles having a particle size smaller than the maximum particle size in the particle size distribution of the foundry sand before being coated with the thermosetting resin, especially particles having a size of less than 149 μm. Preferably, the material is a granular material with a particle size distribution of . That is, in order to eliminate smoke in the curing reaction, it is necessary for the inorganic water retaining material to absorb the resin, but this resin absorption reduces the mold strength. Therefore, if there are many small particles, there will be many sites where the resin will be absorbed, and the amount absorbed will increase.
The strength of the mold decreases significantly.

これより、小さい粒度のものを少なくすることが好まし
い。これらの粉砕は、ジョークラッシャー、ハンマーミ
ル、ローラーミル、破砕造粒機、振動ミル、ピンミル、
叩解機等を用い、湿式粉砕または乾式粉砕により行う。
It is preferable to reduce the number of particles with a smaller particle size. These crushers are jaw crushers, hammer mills, roller mills, crushing granulators, vibrating mills, pin mills,
This is done by wet or dry grinding using a crusher or the like.

含水珪酸マグネシウム質粘土鉱物は、これを無機保水材
として鋳型材に用いた場合、鋳型強度低下率が約20%
と大きく、さらに再生処理をした鋳型材基材中に残存し
、この再生砂を利用して樹脂被覆鋳物砂を製作する際に
樹脂をよく吸収し、鋳型強度を大きく低下させる。また
、ヤシガラ活性炭は、煙や刺激性ガスの低減硬化を発揮
させる添加量の範囲では、鋳型強度低下率が許容範囲の
20%以内にすることができない。
When hydrated magnesium silicate clay mineral is used as an inorganic water-retaining material in a mold material, the mold strength decreases by approximately 20%.
It is large and remains in the recycled mold material base material, and when this recycled sand is used to produce resin-coated molding sand, it absorbs resin well and greatly reduces mold strength. In addition, when coconut shell activated carbon is added in an amount that achieves hardening with reduced smoke and irritating gases, the mold strength reduction rate cannot be kept within the allowable range of 20%.

このため、本発明の無機保水材、特に含水珪酸マグネシ
ウム質粘土鉱物およびヤシガラ活性炭は、水ガラスを含
有してなる。この含有された水ガラスにより、鋳型作製
のための焼成時に、樹脂が無機保水材の細孔中に必要以
上に吸収されるのを防ぎ、これより鋳型の強度低下を小
さくし、さらに再生処理の際に無機保水材が収縮して残
留量が減少し、また残留したものは樹脂の吸収が減少す
る。
Therefore, the inorganic water retaining material of the present invention, particularly the hydrated magnesium silicate clay mineral and coconut shell activated carbon, contain water glass. This contained water glass prevents the resin from being absorbed into the pores of the inorganic water-retaining material more than necessary during firing for mold production, thereby minimizing the decrease in strength of the mold, and further improving the recycling process. At this time, the inorganic water-retaining material shrinks and the amount remaining decreases, and the remaining material reduces absorption of the resin.

なお、該水ガラスは、水ガラス固形分で20〜35重量
%、より好ましくは25〜30重量%の水ガラス水溶液
を含水能力未満、即ち無機保水材の表面が水に濡れた状
態にならない量を、該無機保水材に含有させることが好
ましい。この場合、水ガラス含有前後の乾燥無機保水材
の重量変化により、水ガラスの固形分が無機保水材中に
20〜35重量%残ることが分かった。これは、該固形
分含有量が20重量%未満の水ガラス水溶液の場合は、
無機保水材の中に適量の固形分を含有させるために多く
の水ガラス水溶液が必要となり、無機保水材表面に水溶
液が残存するので好ましくない。
In addition, the water glass contains a water glass aqueous solution of 20 to 35% by weight, more preferably 25 to 30% by weight in terms of water glass solid content, which is less than the water holding capacity, that is, an amount that does not cause the surface of the inorganic water retaining material to become wet with water. It is preferable that the inorganic water retaining material contains the following. In this case, it was found that the solid content of water glass remained in the inorganic water retaining material in an amount of 20 to 35% by weight, depending on the weight change of the dry inorganic water retaining material before and after containing water glass. This means that in the case of a water glass aqueous solution with a solid content of less than 20% by weight,
In order to contain an appropriate amount of solid content in the inorganic water-retaining material, a large amount of water glass aqueous solution is required, which is not preferable because the aqueous solution remains on the surface of the inorganic water-retaining material.

また、該固形分含有量が35重量%を超える水ガラス水
溶液の場合は、水溶液の粘度が高く、無機保水材の細孔
に入りにくく、無機保水材表面に水ガラス溶液が残存す
るので好ましくない。すなわち、このように無機保水材
の表面に水ガラス水溶液が残存した場合、水ガラスを含
有した無機保水材を約100℃で乾燥しても、水ガラス
固形分が無機保水材表面に多く残る。これら無機保水材
表面の水ガラス固形分は、水分を多く含有しており、無
機保水材表面に水分が吸着した場合と同様の状態となる
。このため、該無機保水材と樹脂被覆鋳物砂とを混合し
た鋳型材は、混合の際に固結したり、鋳型強度低下が大
きいという問題が発生する。
In addition, in the case of a water glass aqueous solution having a solid content of more than 35% by weight, the viscosity of the aqueous solution is high and it is difficult to enter the pores of the inorganic water retaining material, and the water glass solution remains on the surface of the inorganic water retaining material, which is not preferable. . That is, when the water glass aqueous solution remains on the surface of the inorganic water retaining material in this way, even if the inorganic water retaining material containing water glass is dried at about 100° C., a large amount of solid water glass remains on the surface of the inorganic water retaining material. The water glass solid content on the surface of these inorganic water-retaining materials contains a large amount of water, and the same state occurs when water is adsorbed on the surface of the inorganic water-retaining material. For this reason, a mold material obtained by mixing the inorganic water retaining material and resin-coated molding sand has problems such as caking during mixing and a large decrease in mold strength.

なお、保水材の前記水ガラス含有量は、水ガラス固形分
で25〜30重量%である場合、特に好ましい。
In addition, it is particularly preferable that the water glass content of the water retaining material is 25 to 30% by weight in terms of water glass solid content.

この水ガラス含有無機保水材の作製方法としては、前記
所定の固形分含有の水ガラス溶液を無機保水材中に完全
に吸収するようにすればよく、特に限定されるものでは
ない。なお、水ガラス含有無機保水材の具体的作製方法
の一例を説明すると以下のようである。すなわち、保水
材10g当り固形分20〜35%の水ガラス水溶液7〜
10ccを、室温〜50℃で前記無機保水材に吸収させ
、該保水材中の水含有量が所定量、好ましくは5〜20
重量%となるまで乾燥することにより得られる。これは
、焼成時の煙の発生を低減するために、無機保水材が焼
成前に所定の水を保有していることが必要だからである
。すなわち、水または水蒸気がステアリン酸カルシウム
の分解やヘキサメチレンテトラミンの分解促進に必要な
ためである。
The method for producing this water glass-containing inorganic water retaining material is not particularly limited, as long as the water glass solution containing the predetermined solid content is completely absorbed into the inorganic water retaining material. An example of a specific method for producing an inorganic water retaining material containing water glass is as follows. That is, a water glass aqueous solution with a solid content of 20 to 35% per 10 g of water retaining material
10 cc is absorbed into the inorganic water retaining material at room temperature to 50°C, and the water content in the water retaining material is a predetermined amount, preferably 5 to 20 cc.
% by weight. This is because the inorganic water retaining material needs to retain a certain amount of water before firing in order to reduce the generation of smoke during firing. That is, this is because water or steam is necessary to decompose calcium stearate and promote decomposition of hexamethylenetetramine.

該保有量が5重量%未満の場合はステアリン酸カルシウ
ムやヘキサメチレンテトラミンの混合量に対して水分量
が不足し、煙や刺激性ガスの低減効果が十分みられず、
水ガラス含有無機保水材表面に水が出ると鋳型材料の混
合時に樹脂被覆鋳物砂を固結させ鋳型の強度低下の原因
となるので好ましくない。なお、水ガラス含有無機保水
材は、再生処理のために750〜800℃程度に焼成し
たとき、水ガラスのガラス化および水ガラスとの反応で
無機保水材が収縮し細孔がつぶれ、また顆粒形状も小さ
くなる。このため、該再生処理物後の再生砂中への残存
が減り、かつ細孔が小さくなることにより、樹脂被覆鋳
物砂の製作時に樹脂吸収量が減り、鋳型強度の低下が抑
制される。
If the amount retained is less than 5% by weight, the amount of water is insufficient relative to the amount of calcium stearate and hexamethylenetetramine mixed, and the effect of reducing smoke and irritating gases will not be sufficient.
If water comes out on the surface of the water glass-containing inorganic water retaining material, it is undesirable because it causes the resin-coated molding sand to solidify during mixing of the mold materials and causes a decrease in the strength of the mold. In addition, when an inorganic water-retaining material containing water glass is fired at a temperature of about 750 to 800°C for recycling treatment, the inorganic water-retaining material shrinks due to the vitrification and reaction with the water glass, causing the pores to collapse and forming granules. The shape also becomes smaller. Therefore, the amount remaining in the recycled sand after the recycled product is reduced, and the pores are made smaller, so that the amount of resin absorbed during the production of resin-coated molding sand is reduced, and a decrease in mold strength is suppressed.

本発明の脱煙鋳型材は、前記樹脂被覆鋳物砂と前記水ガ
ラス含有無機保水材とからなる。
The smoke-free molding material of the present invention comprises the resin-coated foundry sand and the water glass-containing inorganic water retaining material.

ここで、鋳型材基材に熱硬化性樹脂等を被覆した鋳型材
(樹脂被覆鋳物砂)と水ガラス含有無機保水材との混合
割合は、鋳型基材(鋳物砂)に対して該無機保水材が1
.5〜4.5体積%である。これは、該混合量が1.5
体積%未満の場合には、脱煙鋳型の製造を行う場合や鋳
造時に発生する煙および刺激性ガスの発生量を十分に低
減せしめることが難しいからである。また、無機保水材
の混合量が4.5体積%を越える場合には、該材料を用
いて製造された鋳型の強度低下をより小さくすることが
できない。但し、型強度低下率が20%で良い場合には
、該混合量は7.5体積%以下でもよい。
Here, the mixing ratio of the mold material (resin-coated molding sand), which is a mold material base material coated with a thermosetting resin, etc., and the water glass-containing inorganic water retaining material is determined based on the mold base material (foundry sand). 1 material
.. It is 5 to 4.5% by volume. This means that the mixing amount is 1.5
This is because if the amount is less than % by volume, it is difficult to sufficiently reduce the amount of smoke and irritating gas generated when manufacturing a smoke-free mold or during casting. Furthermore, if the amount of the inorganic water retaining material mixed exceeds 4.5% by volume, it is impossible to reduce the decrease in strength of a mold manufactured using the material. However, if the mold strength reduction rate is only 20%, the mixing amount may be 7.5% by volume or less.

なお、この混合量が、4.0〜4.2体積%である場合
には、本発明の効果をより一層奏し得るのでより好まし
い。
In addition, when this mixing amount is 4.0-4.2 volume%, since the effect of this invention can be exhibited even more, it is more preferable.

また、本発明の脱煙鋳型材は、該材料の優れた性能を損
なわない程度に他の添加剤を適宜添加・混合することが
できる。具体的には、鋳型製造工程における樹脂の硬化
促進または鋳込工程における樹脂の熱分解の促進を目的
として酸化亜鉛、酸化鉄、酸化マンガン、酸化チタン等
の金属酸化物等が、鋳造後の型の崩壊性を改良するもの
として樹脂中にハロゲン系物質等が、鋳込時の型張りを
防ぐものとして鋼球、バラス、珪砂等の充填剤が、製品
鋳肌の確保のために石炭粉、ピッチ粉、コークス粉、黒
鉛粉末、ギルソナイト等の可燃性揮発物質が、珪砂等鋳
物砂の表面に均一に樹脂を被覆するためにケロシン等の
湿潤剤がある。これらの添加剤は、その目的に応じ、樹
脂中に含ませてもよいし、または鋳物砂に樹脂を被覆す
る際に、更には脱煙鋳型材を混合調整する際等、適宜の
時期に混合する。
Further, other additives may be appropriately added and mixed to the smoke-free molding material of the present invention to the extent that the excellent performance of the material is not impaired. Specifically, metal oxides such as zinc oxide, iron oxide, manganese oxide, titanium oxide, etc. are added to the mold after casting for the purpose of promoting hardening of the resin in the mold manufacturing process or thermal decomposition of the resin in the casting process. Halogen-based substances are added to the resin to improve the disintegration properties of the product, fillers such as steel balls, ballast, and silica sand are used to prevent the mold from forming during casting. Wetting agents such as kerosene are used to uniformly coat resin on the surface of foundry sand such as silica sand with flammable volatile substances such as pitch powder, coke powder, graphite powder, and gilsonite. Depending on the purpose, these additives may be included in the resin, or they may be mixed at an appropriate time, such as when coating molding sand with resin, or when mixing and adjusting smoke-free molding material. do.

本発明の脱煙鋳型材の代表的な調整方法を簡単に示すと
以下の様である。
A typical method for adjusting the smoke-free mold material of the present invention is briefly shown below.

先ず、常法に従い鋳型材基材にフェノール・ホルムアル
デヒド樹脂等の樹脂、ヘキサメチレンテトラミン等の硬
化剤、ステアリン酸カルシウム等の潤滑剤を順に被覆し
て得られた樹脂被覆鋳物砂を用意する。
First, resin-coated molding sand is prepared by sequentially coating a mold material base material with a resin such as phenol-formaldehyde resin, a hardening agent such as hexamethylenetetramine, and a lubricant such as calcium stearate in accordance with a conventional method.

次に、細孔構造を有し100〜250℃においても水分
の吸脱着能力を有するとともに含水能力が30重量%以
上の無機保水材を用意し、水ガラスを含浸させた後所定
の水分量となるように調整する。なお、該無機保水材の
形状や大きさは、適宜の形状・大きさのものとし、また
、この粉砕工程の前または後で400〜800℃に仮焼
したものを用いてもよい。
Next, prepare an inorganic water retaining material that has a pore structure, has the ability to adsorb and desorb moisture even at 100 to 250°C, and has a water holding capacity of 30% by weight or more. Adjust accordingly. The shape and size of the inorganic water-retaining material may be appropriate, and the inorganic water-retaining material may be calcined at 400 to 800° C. before or after the pulverization step.

次に、所定の水分を保有する無機保水材を、混合量が前
記鋳型材基材の1.5〜4.5体積%の所定量となるよ
うに添加し均一に分散する様に混合し、さらに該混合物
に必要に応じて適宜添加剤を加え、モルタルミキサー、
スピードマラー、スピードミキサー等の混練機を用いて
均一に分散するように混練し、本発明にかかる脱煙鋳型
材を得る。なお、添加剤の添加時期は、水ガラス含有無
機保水材の添加前であってもよい。また、必要な添加剤
を、樹脂被覆鋳物砂を作製する際に、該樹脂に添加して
被覆してもよい。
Next, an inorganic water retaining material having a predetermined moisture content is added in a predetermined amount of 1.5 to 4.5% by volume of the mold material base material, and mixed so as to be uniformly dispersed. Furthermore, appropriate additives are added to the mixture as necessary, and a mortar mixer is used.
The mixture is kneaded using a kneader such as a speed muller or a speed mixer so as to be uniformly dispersed, thereby obtaining a smoke-free molding material according to the present invention. Note that the additive may be added before the addition of the water glass-containing inorganic water retaining material. Further, necessary additives may be added to the resin for coating when producing the resin-coated foundry sand.

この様にして得た本発明にかかる脱煙鋳型材は、概念的
に図1に示す如く、樹脂1を被覆した鋳物砂2と、水ガ
ラス含有無機保水材3とからなる。
The thus obtained smoke-free molding material according to the present invention, as conceptually shown in FIG. 1, consists of foundry sand 2 coated with resin 1 and inorganic water retaining material 3 containing water glass.

〔実施例〕〔Example〕

以下に、本発明の実施例を説明する。 Examples of the present invention will be described below.

第1実施例 無機保水材として含水珪酸マグネシウム質粘土鉱物およ
びヤシガラ活性炭を用い、種々の固形分量の水ガラスを
含有させて水ガラス含有無機保水材を作製し、次いで鋳
物砂とノボラック系フェノール樹脂と水ガラス含有無機
保水材とを用いて鋳型材料を製造した後、該材料を用い
て鋳型を成形し、性能評価を行った。
First Example A water glass-containing inorganic water retaining material was prepared by using hydrated magnesium silicate clay mineral and coconut husk activated carbon as an inorganic water retaining material, and adding various solid contents of water glass. After manufacturing a mold material using the water glass-containing inorganic water retaining material, a mold was formed using the material, and performance evaluation was performed.

先ず、無機保水材として含水能力が46.7重量%で粒
径149〜297μmの含水珪酸マグネシウム質粘土鉱
物(試料番号1〜10)および含水能力が39.7重量
%で粒径149〜297μmのヤシガラ活性炭(試料番
号11)を用意した。次いで、第1表に示す固形分の水
ガラス水溶液と該無機保水材とを40℃の炉中に入れ、
該炉中で無機保水材10g当り第1表に示す添加量で添
加し、混合した。この後、100℃の炉中で約40分間
乾燥して、第1表に示す水ガラス固形分量、含水能力の
水ガラス含有無機保水材を作製した(試料番号1〜11
)。なお、含水量は、100℃で乾燥した無機保水材に
約40mgずつの水を加え、無機保水材の表面が水に濡
れた状態になったときの水の量で示した。
First, as inorganic water retaining materials, hydrated magnesium silicate clay minerals (sample numbers 1 to 10) with a water holding capacity of 46.7% by weight and a particle size of 149 to 297 μm and a water containing capacity of 39.7% by weight and a particle size of 149 to 297 μm were used. Coconut shell activated carbon (sample number 11) was prepared. Next, the water glass aqueous solution with the solid content shown in Table 1 and the inorganic water retaining material were placed in a furnace at 40°C,
In the furnace, the amounts shown in Table 1 per 10 g of the inorganic water retaining material were added and mixed. Thereafter, it was dried in an oven at 100°C for about 40 minutes to produce water glass-containing inorganic water retaining materials having the water glass solid content and water holding capacity shown in Table 1 (sample numbers 1 to 11).
). The water content was expressed as the amount of water when approximately 40 mg of water was added to the inorganic water-retaining material dried at 100° C. and the surface of the inorganic water-retaining material became wet.

次に、市販の珪砂(三河珪石(株):粒度6号)と、該
珪砂に対し2重量%のノボラック系フェノール樹脂、前
記水ガラス含有無機保水材を珪砂に対し4体積%添加し
、小型モルタルミキサーで混合し、本実施例の脱煙鋳型
材を得た(試料番号1〜11)次に、この脱煙鋳型材を
用い、10mm×10mm×135mmが3本とれる金
型により、型温250℃、炉温350℃の1分の条件で
鋳型を作製した。
Next, commercially available silica sand (Mikawa Siliceki Co., Ltd.: particle size No. 6), 2% by weight of novolak phenol resin and 4% by volume of the water glass-containing inorganic water retaining material were added to the silica sand, and a small The smoke-free mold materials of this example were obtained by mixing with a mortar mixer (sample numbers 1 to 11).Next, using this smoke-free mold material, the mold temperature was adjusted using a mold capable of forming three pieces of 10 mm x 10 mm x 135 mm. A mold was produced under conditions of 250°C and a furnace temperature of 350°C for 1 minute.

このとき、鋳型の成形性は大変良好であった。また、鋳
型の製造の加熱の際の発煙量の観察および発生臭の官能
試験により行った結果、発煙は認められず、また刺激臭
・異臭の発生も認められなかった。また、型の強度試験
を行った。その結果を、第1表に示す。なお、無機保水
材を添加しない鋳型の強度は、平均52kg/cm2で
あった。また、前記無機保水材を、炉温度800℃で5
時間焼成し、炉冷して、焼成後の無機保水材の含水能力
および48〜100メッシュ(297μm〜149μm
)の焼成前の量に対する割合(残存量)を調べた。
At this time, the moldability of the mold was very good. In addition, as a result of observing the amount of smoke emitted during heating during mold production and conducting a sensory test on the odor generated, no smoke was observed, nor was any irritating odor or unusual odor observed. In addition, a strength test of the mold was conducted. The results are shown in Table 1. The strength of the mold without the addition of an inorganic water retaining material was 52 kg/cm2 on average. In addition, the inorganic water retaining material was added at a furnace temperature of 800°C.
The water holding capacity of the inorganic water-retaining material after firing and the mesh size of 48-100 (297 μm-149 μm
) to the amount before firing (residual amount) was investigated.

その結果を、第1表に示す。なお、この含水能力により
細孔の大きさを、残存量により収縮状態を判断すること
ができる。
The results are shown in Table 1. Note that the size of the pores can be determined based on this water-retaining ability, and the state of contraction can be determined based on the remaining amount.

比較のために、水ガラスを含有しない含水珪酸マグネシ
ウム質粘土鉱物を無機保水材としたもの(試料番号C1
)、水ガラスに代えてCaCl2を含有させた含水珪酸
マグネシウム質粘土鉱物を無機保水材としたもの(試料
番号C2)、水ガラスを含有しないヤシガラ活性炭を無
機保水材としたもの(試料番号C3)、含水能力が30
重量%未満の鹿沼土を無機保水材を用いたもの(試料番
号C4〜C7)、含水能力が30重量%未満の赤玉土を
無機保水材を用いたもの(試料番号C8〜C10)を比
較用無機保水材とし、第2表以外の条件は前記実施例と
同様にして比較用無機保水材および比較用鋳型材を作製
し、同様の性能評価を行った。その結果を、第2表に示
す。また、比較用無機保水材の焼成試験を、前記実施例
と同様に行った。その結果を、第2表に示す。
For comparison, a hydrated magnesium silicate clay mineral containing no water glass was used as an inorganic water retaining material (sample number C1).
), hydrated magnesium silicate clay mineral containing CaCl2 instead of water glass was used as an inorganic water retaining material (sample number C2), coconut shell activated carbon not containing water glass was used as an inorganic water retaining material (sample number C3) , water capacity is 30
For comparison, Kanuma soil with an inorganic water retention material of less than 30% by weight (sample numbers C4 to C7) and Akadama soil with a water content of less than 30% by weight using an inorganic water retention material (sample numbers C8 to C10) A comparative inorganic water retaining material and a comparative mold material were prepared using an inorganic water retaining material and the conditions other than Table 2 were the same as in the above examples, and the same performance evaluations were performed. The results are shown in Table 2. Further, a firing test of the comparative inorganic water retaining material was conducted in the same manner as in the above example. The results are shown in Table 2.

その結果、試料番号3、4、7、8、11に示した水ガ
ラス含有無機保水材を用いた場合は、強度低下率が小さ
く、12%以下になっている。これは、無機保水材を添
加しない鋳型材で強度試験数を増加したときのバラツキ
範囲10kg/cm2に近い値である。これらは、水ガ
ラスを含有しない無機保水材に対して40%以上の強度
低下改善効果が得られた。なお、強度低下率が少ないが
含水能力が大きいのは、水ガラス内に多くの水を含むた
めである。しかし、水ガラス内から水がでた後に小さい
孔は残るが、樹脂の吸収が少ないため、鋳型の強度低下
が小さくなると思われる。また、これら水ガラス含有無
機保水材800℃で焼成すると、48〜100メッシュ
のものが焼成前の84重量%以下となり、体積収縮を起
こしていると考えられる。さらに、この焼成後の含水能
力は、約18重量%以下となり、細孔が少なくなってい
ることが分かる。
As a result, when the water glass-containing inorganic water retaining materials shown in sample numbers 3, 4, 7, 8, and 11 were used, the strength reduction rate was small and was 12% or less. This value is close to the variation range of 10 kg/cm 2 when the number of strength tests is increased with a mold material to which no inorganic water retaining material is added. These improved strength reduction by 40% or more compared to inorganic water retaining materials that do not contain water glass. The reason why the strength reduction rate is small but the water absorption capacity is large is because water glass contains a large amount of water. However, although small pores remain after the water has drained out of the water glass, it is thought that because less resin is absorbed, the strength of the mold is less likely to deteriorate. Furthermore, when these water glass-containing inorganic water retaining materials are fired at 800°C, those with a mesh size of 48 to 100 become less than 84% by weight of the weight before firing, which is thought to be due to volumetric shrinkage. Furthermore, the water holding capacity after firing was approximately 18% by weight or less, indicating that the number of pores was reduced.

次に、試料番号5は、水ガラス水溶液の粘度が高いため
か無機保水材への吸収がやや遅い。また、水ガラス3号
(固形分38.5%)そのままでは、無機保水材が吸収
されず、大きな固まりを形成してしまう。一方、試料番
号6は、水ガラス水溶液量が多く、無機保水材表面に残
存する。これらのものは、無機保水材表面に水分を有す
るので、強度低下を小さくすることが難しいものと思わ
れる。
Next, in sample number 5, absorption into the inorganic water retaining material was rather slow, probably due to the high viscosity of the water glass aqueous solution. Furthermore, if water glass No. 3 (solid content 38.5%) is used as is, the inorganic water retaining material will not be absorbed and will form large lumps. On the other hand, sample number 6 has a large amount of water glass aqueous solution and remains on the surface of the inorganic water retaining material. Since these materials have moisture on the surface of the inorganic water-retaining material, it seems difficult to reduce the decrease in strength.

また、理由は明らかではないが、試料番号1、9、10
のように水ガラス固形分が少ないものは、水ガラスを含
有しない無機保水材(比較例:試料番号C1)よりも、
鋳型強度低下率が大きくなった。
Also, although the reason is not clear, sample numbers 1, 9, and 10
Those with a small water glass solid content, such as
The mold strength reduction rate increased.

一方、比較例の試料番号C2は、水への溶解度が大きく
、無機保水材の細孔中に多くの固形分を残すと考えられ
るCaCl2を含有させたものである。この場合、鋳型
強度低下率は非常に小さいが、本比較例のように試料が
小さいサイズの場合でも塩素系の強い刺激臭が発生した
On the other hand, Sample No. C2 of the comparative example contains CaCl2, which has a high solubility in water and is thought to leave a large amount of solid content in the pores of the inorganic water retaining material. In this case, although the mold strength reduction rate was very small, a strong chlorine-based pungent odor was generated even when the sample was small in size as in this comparative example.

また、含水能力が30重量%未満の鹿沼土および赤玉土
に水ガラスを含有させた比較用無機保水材を用いた場合
は、水ガラス含有量が少ない場合は鋳型強度低下がほぼ
同程度であるが、該水ガラス含有量が増加すると逆に水
ガラスを含有しないものより鋳型強度低下が大きくなっ
てしまう。これは、細孔が少ないので水ガラスの含有能
力が小さいために、水ガラスが無機保水材の表面に残存
するためと思われる。
In addition, when using comparative inorganic water retaining materials containing water glass in Kanuma soil and Akadama soil, which have a water-holding capacity of less than 30% by weight, the decrease in mold strength was approximately the same when the water glass content was low. However, as the water glass content increases, the mold strength decreases to a greater extent than that of a mold that does not contain water glass. This is thought to be because the water glass remains on the surface of the inorganic water retaining material because the water glass content is small due to the small number of pores.

以上のように、含水能力が30重量%以上の無機保水材
の場合、水ガラスを含有させることにより鋳型の強度低
下を改善することが分かる。また、無機保水材のように
含水能力のみでは特定できないが、無機保水材の細孔中
に残存する固形分が20〜35重量%になるように含有
させることにより、鋳型強度低下の改善効果が大きくな
る。なお、無機保水材の表面には水ガラス水溶液が、さ
らに乾燥後に該表面に水ガラスが残らないようにする必
要がある。
As described above, in the case of an inorganic water-retaining material having a water-retaining capacity of 30% by weight or more, it can be seen that the reduction in mold strength is improved by containing water glass. In addition, unlike inorganic water-retaining materials, it cannot be determined by the water-retaining capacity alone, but by incorporating the inorganic water-retaining material so that the solid content remaining in the pores is 20 to 35% by weight, the reduction in mold strength can be improved. growing. Note that it is necessary to prevent an aqueous solution of water glass from remaining on the surface of the inorganic water retaining material, and no water glass from remaining on the surface after drying.

第2実施例 前記第1実施例の試料番号3で得られた水ガラス含有含
水珪酸マグネシウム質粘土鉱物を用い、該水ガラス含有
無機保水材を800℃×5時間で1回焼成したもの(試
料番号12)、同様に3回焼成したもの(試料番号13
)、水ガラスを含有しない含水珪酸マグネシウム質粘土
鉱物を同様に1回焼成した比較用無機保水材(試料番号
C11)を用意した。
Second Example Using the water glass-containing hydrated magnesium silicate clay mineral obtained in Sample No. 3 of the first example, the water glass-containing inorganic water retaining material was fired once at 800°C for 5 hours (sample Sample No. 12), similarly fired three times (Sample No. 13)
), a comparative inorganic water retaining material (sample number C11) was prepared by firing a hydrated magnesium silicate clay mineral containing no water glass once in the same manner.

次に、市販の珪砂(三河珪石(株):粒度6号)と、該
珪砂に対し4体積%の前記焼成した各水ガラス含有無機
保水材を混合して鋳物砂を作製し、該鋳物砂に対し2.
5重量%のノボラック系フェノール樹脂、該樹脂に対し
て15重量%のヘキサメチレンテトラミン、鋳物砂に対
して0.1重量%のステアリン酸カルシウムをミックス
マーラに入れて順次混合し、鋳型材を得た。
Next, foundry sand was prepared by mixing commercially available silica sand (Mikawa Siliceki Co., Ltd.: grain size 6) and each of the above-mentioned fired water glass-containing inorganic water retaining materials in an amount of 4% by volume based on the silica sand. Against 2.
5% by weight of novolak phenolic resin, 15% by weight of hexamethylenetetramine based on the resin, and 0.1% by weight of calcium stearate based on foundry sand were placed in a mix mara and mixed in order to obtain a mold material. .

次に、この鋳型材を用いて、前記第1実施例と同様にし
て、鋳型を作製した。このとき、鋳型の成形性は大変良
好であった。
Next, a mold was produced using this mold material in the same manner as in the first example. At this time, the moldability of the mold was very good.

次に、型の強度試験を前記第1実施例と同様にして行っ
た。その結果、鋳型の強度低下率は、試料番号12が2
8%、試料番号13が24%、比較例としての試料番号
C11が55%であった。
Next, the strength test of the mold was conducted in the same manner as in the first example. As a result, the strength reduction rate of the mold was 2 for sample number 12.
8%, sample number 13 was 24%, and sample number C11 as a comparative example was 55%.

このように、水ガラス含有のものは、含有しないものに
比べて約半分以下の低下率であった。また、焼成回数が
1回のものより3回のものの方が、僅かではあるが型強
度低下率が小さくなり、繰り返し毎に無機保水材の細孔
が少なくなっていることが分かる。
In this way, the rate of decrease in the sample containing water glass was less than half that of the sample without water glass. Furthermore, it can be seen that the mold strength reduction rate is smaller, albeit slightly, when the mold is fired three times than when it is fired once, and the number of pores in the inorganic water retaining material decreases with each repetition.

また、再生処理した場合、鋳型材基材中にどのくらい無
機保水材が残っているかを分離・測定することは難しい
。従って、第1表のように、使用する大きさの無機保水
材として残存する量を添加量の77重量%、通常用いら
れるように使用する鋳型材基材は新しい基材50体積%
、再生した基材50体積%の割合で用い、水ガラス含有
無機保水材を4体積%添加すると、繰返した後に鋳型材
基材に最終的に残る無機保水材は約1.6体積%に収束
し、新しく加えていく水ガラス含有無機保水材の半分以
下の量であり、さらに残った無機保水材は繰返し毎に強
度低下が小さくなることを考慮すれば、本実施例の水ガ
ラス含有無機保水材は実用上問題なく利用することがで
きる。
Furthermore, when recycled, it is difficult to separate and measure how much inorganic water retaining material remains in the mold material base material. Therefore, as shown in Table 1, the amount remaining as an inorganic water retaining material of the size to be used is 77% by weight of the added amount, and the mold material base material used as usual is 50% by volume of the new base material.
When using recycled base material at a ratio of 50% by volume and adding 4% by volume of inorganic water-retaining material containing water glass, the amount of inorganic water-retaining material that ultimately remains on the mold material base material after repeated use converges to approximately 1.6% by volume. However, considering that the amount is less than half of the newly added water glass-containing inorganic water retaining material and that the strength of the remaining inorganic water retaining material decreases each time it is repeated, the water glass-containing inorganic water retaining material of this example The material can be used practically without any problems.

第3実施例 鋳物砂とノボラック系フェノール樹脂と水ガラス含有無
機保水材とを用いて鋳型材料を製造した後、該材料を用
いて鋳型を成形し、鋳込みを行い、性能評価を行った。
Third Example A mold material was manufactured using foundry sand, a novolak phenolic resin, and an inorganic water-retaining material containing water glass, and then a mold was formed using the material, casting was performed, and performance evaluation was performed.

先ず、無機保水材として、含水能力が46.7重量%、
粒径が149〜297μmの含水珪酸マグネシウム質粘
土鉱物および含水能力が39.2重量%、粒径が149
〜297μmのヤシガラ活性炭からなる無機保水材を用
意した。次いで、24%固形分の水ガラス水溶液と該無
機保水材とを40℃の炉中に入れ、該炉中で無機保水材
10gに対し水ガラス水溶液を9ccの割合で混合した
。この後、100℃の炉中で約40分間乾燥して、第3
表に示す含水能力、含水量、水ガラス固形分含有量の水
ガラス含有無機保水材を作製した(試料番号14〜25
)。
First, as an inorganic water retaining material, the water holding capacity is 46.7% by weight,
Hydrous magnesium silicate clay mineral with a particle size of 149 to 297 μm and a water-containing capacity of 39.2% by weight and a particle size of 149
An inorganic water retaining material made of coconut shell activated carbon with a diameter of ~297 μm was prepared. Next, the water glass aqueous solution having a solid content of 24% and the inorganic water retaining material were placed in a furnace at 40° C., and the water glass aqueous solution was mixed in the furnace at a ratio of 9 cc to 10 g of the inorganic water retaining material. After that, dry in a 100°C oven for about 40 minutes to
Water glass-containing inorganic water retaining materials having the water holding capacity, water content, and water glass solid content shown in the table were prepared (sample numbers 14 to 25).
).

次に、市販の珪砂(三河珪石(株):粒度6号)と、該
珪砂に対し2重量%のノボラック系フェノール樹脂、該
樹脂に対して15重量%のヘキサメチレンテトラミン、
珪砂に対して0.1重量%のステアリン酸カルシウムを
小型スピードミキサーに入れて順次混合し、樹脂被覆鋳
物砂を作製した。さらに、前記水ガラス含有無機保水材
を珪砂に対し第3表に示す量を添加し、小型モルタルミ
キサーで混合し、本実施例の脱煙鋳型材を得た(試料番
号14〜25)。
Next, commercially available silica sand (Mikawa Siliceki Co., Ltd.: particle size No. 6), 2% by weight of novolak phenol resin based on the silica sand, 15% by weight of hexamethylenetetramine based on the resin,
0.1% by weight of calcium stearate was added to the silica sand in a small speed mixer and sequentially mixed to produce resin-coated foundry sand. Furthermore, the above water glass-containing inorganic water retaining material was added to the silica sand in the amount shown in Table 3, and mixed in a small mortar mixer to obtain smoke-free molding materials of this example (sample numbers 14 to 25).

次に、この脱煙鋳型材を、予め250℃に加熱された外
径80mm×内径60mm×高さ135mm×底厚さ1
5mm、抜き勾配が2度のカップ状製品用の鉄製の金型
に入れ、該型をシリコニット炉で400℃に2分間加熱
・保持した後、炉から取り出し金型をはずして鋳型を得
た。
Next, this smoke-free mold material was heated to 250°C in advance and was made into an outer diameter of 80 mm x inner diameter of 60 mm x height of 135 mm x bottom thickness of 1 mm.
It was placed in an iron mold for cup-shaped products with a diameter of 5 mm and a draft angle of 2 degrees, and the mold was heated and held at 400° C. for 2 minutes in a siliconite furnace, and then taken out from the furnace and the mold was removed to obtain a mold.

このとき、鋳型の成形性は大変良好であった。At this time, the moldability of the mold was very good.

また、鋳型の製造の加熱の際の発煙量の観察および発生
臭の官能試験により行った。その結果を、第4表に示す
。尚、表中、発煙状況は「◎」は「発煙は認められない
」、「△」は「発煙微かに認められる」、「×」は「少
量の発煙あり」を示す。また、表中、刺激臭は「◎」は
「刺激臭は認められない」、「△」は、「刺激臭微かに
感じられる」を示す。第4表より明らかの如く、添加量
1.5体積%以上のもの及び含水量5重量%以上のもの
を用いた場合は、発煙は認められず、また刺激臭・異臭
の発生も認められなかった。次に、型の強度試験を行っ
た。その結果を、第4表に示す。
In addition, the amount of smoke emitted during heating during mold production was observed and a sensory test was conducted on the odor emitted. The results are shown in Table 4. In the table, regarding the smoke generation status, "◎" indicates "no smoke is observed", "△" indicates "slight smoke is observed", and "x" indicates "a small amount of smoke is observed". In addition, in the table, regarding the irritating odor, "◎" indicates that "no irritating odor is observed" and "△" indicates that "the irritating odor is slightly felt." As is clear from Table 4, when the additive amount was 1.5% by volume or more and the water content was 5% by weight or more, no smoke was observed, and no irritating odor or abnormal odor was observed. Ta. Next, the strength of the mold was tested. The results are shown in Table 4.

同表より明らかの如く、鋳型の強度低下が約7%と許容
範囲20%を大きく下回った。
As is clear from the table, the strength reduction of the mold was approximately 7%, which was well below the allowable range of 20%.

さらに、鋳造後の型材を回収し、再生砂としての評価を
実施した。すなわち、前記樹脂被覆鋳物砂作製工程にお
いて、珪砂の50%をこの水ガラス含有無機保水材が入
った再生砂に置き換え、それ以外は前記と同様にして脱
煙鋳型材を作製し、同様に評価を行った。その結果、鋳
型の製造時の煙の発生状況、刺激臭の程度は再生砂を用
いないものと全んど変わらず良好で、型強度の低下の程
度も略同じ値を示した。また、該鋳型内に鋳鉄およびア
ルミニウム溶湯を鋳込んだが、型崩れはなかった。
Furthermore, the mold material after casting was collected and evaluated as recycled sand. That is, in the resin-coated molding sand production process, 50% of the silica sand was replaced with the recycled sand containing the water glass-containing inorganic water retention material, and a smoke-free molding material was produced in the same manner as above, and evaluated in the same manner. I did it. As a result, the smoke generation and the level of irritating odor during the manufacturing of the mold were as good as those not using recycled sand, and the degree of decrease in mold strength was also approximately the same. Further, cast iron and molten aluminum were poured into the mold, but the mold did not lose its shape.

比較のために、水ガラスを含有しない前記含水珪酸マグ
ネシウム質粘土鉱物を無機保水材としたもの(試料番号
C12)、無機保水材として規定の量より少ない量の水
ガラス含有含水珪酸マグネシウム質粘土鉱物を添加した
もの(試料番号C13)、無機保水材として規定の量よ
り多い量の水ガラス含有含水珪酸マグネシウム質粘土鉱
物を添加したもの(試料番号C14)、含水能力が30
重量%未満の無機保水材を用いたもの(試料番号C15
〜C22)を比較用無機保水材とし、第5表以外の条件
は前記実施例と同様にして比較用鋳型材を作製し、同様
の性能評価を行った。その結果を、第6表に示す。第6
表より明らかの如く、試料番号C12およびC14の比
較例の場合は、型強度が本実施例よりも大きく低下して
いることが分かる。また、試料番号C13の場合は、型
強度の低下は少ないものの、鋳型製造時、鋳込み後の発
煙量が少量認められ、また、刺激臭も感じられた。また
、試料番号C15〜C22の場合は、型強度が本実施例
よりも大きく低下していることが分かる。
For comparison, the above-mentioned hydrated magnesium silicate clay mineral containing no water glass was used as an inorganic water-retaining material (sample number C12), and a water-glass-containing hydrated magnesium silicate clay mineral was used as an inorganic water-retaining material in an amount smaller than the specified amount. (sample number C13), water glass-containing hydrated magnesium silicate clay mineral in an amount greater than the specified amount as an inorganic water-retaining material (sample number C14), and water retention capacity of 30
Those using less than % by weight of inorganic water retaining material (sample number C15
~C22) were used as comparative inorganic water retaining materials, and the conditions other than those in Table 5 were the same as in the above Examples to produce comparative mold materials, and the same performance evaluations were performed. The results are shown in Table 6. 6th
As is clear from the table, the mold strength of the comparative examples of sample numbers C12 and C14 is significantly lower than that of the present example. In addition, in the case of sample number C13, although there was little decrease in mold strength, a small amount of smoke was observed after casting during mold production, and a pungent odor was also felt. Moreover, in the case of sample numbers C15 to C22, it can be seen that the mold strength is significantly lower than that of this example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱硬化性樹脂等を鋳型材基材に被覆した鋳
型材と、細孔構造を有し含水能力が30重量%以上でか
つ100〜250℃においても水分の吸脱着能力を有す
るとともに水ガラスを含有した無機保水材とからなり、
該無機保水材の混合量が前記鋳型材基材の1.5〜4.
5体積%であることを特徴とする脱煙鋳型材。
Claim 1: A mold material in which a mold material base material is coated with a thermosetting resin, etc., which has a pore structure, has a water-containing capacity of 30% by weight or more, and has the ability to adsorb and desorb water even at 100 to 250°C. It also consists of an inorganic water retaining material containing water glass.
The mixing amount of the inorganic water retaining material is 1.5 to 4.
A smoke-free molding material characterized by having a content of 5% by volume.
JP2338794A 1990-11-30 1990-11-30 Smoke removal mold material Expired - Lifetime JP2902478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2338794A JP2902478B2 (en) 1990-11-30 1990-11-30 Smoke removal mold material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2338794A JP2902478B2 (en) 1990-11-30 1990-11-30 Smoke removal mold material

Publications (2)

Publication Number Publication Date
JPH04220133A true JPH04220133A (en) 1992-08-11
JP2902478B2 JP2902478B2 (en) 1999-06-07

Family

ID=18321534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2338794A Expired - Lifetime JP2902478B2 (en) 1990-11-30 1990-11-30 Smoke removal mold material

Country Status (1)

Country Link
JP (1) JP2902478B2 (en)

Also Published As

Publication number Publication date
JP2902478B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
KR101548219B1 (en) Thermal regeneration of foundry sand
JP4223830B2 (en) Water-soluble casting mold and manufacturing method thereof
CA2105372C (en) Non-porous carbon molding (foundry) sand and method of casting
JP2003251434A (en) Sand for mold and production method thereof
WO2018147419A1 (en) Mold material composition and method for producing mold using same
US2869194A (en) Auto-hardening phenol-formaldehyde composition and method of preparing shell molds therefrom
CN101652204A (en) Composition for making feeders
JP7193067B2 (en) Phosphorus adsorbent and its manufacturing method
BR112018011078B1 (en) METHOD FOR PRODUCING A FEEDING ELEMENT FOR THE FOUNDRY INDUSTRY, FEEDING ELEMENT, USE OF A MATRIX ENCAPSULATION PROCESS, USE OF SEALED COMPOSITE PARTICLES, METHOD FOR PRODUCING REFRACTORY COMPOSITE PARTICLES AND USE OF REFRACTORY COMPOSITE PARTICLES
US4691756A (en) Molding material and mold
JP5600472B2 (en) Foundry sand, foundry sand composition, and casting mold obtained using the same
CN107457345A (en) A kind of clay green-sand without coal dust
JPWO2019070051A1 (en) Mold material and its manufacturing method, mold and its manufacturing method, and casting sand recycling method
JP2902479B2 (en) Smoke removal mold material
JP2902478B2 (en) Smoke removal mold material
JP2881875B2 (en) High strength molded activated carbon
JPH0693260A (en) Soil additive
JP2003147708A (en) Asphalt mixture
JP4160288B2 (en) Multilayer porous inorganic molded cured product
JP2019177402A (en) Aggregate for a mold and method of producing same
JPH0435251B2 (en)
JP2965782B2 (en) Manufacturing method of artificial sand using waste silica sand
WO2020203752A1 (en) Mold material composition and method for manufacturing mold using same
WO2024053501A1 (en) Refractory aggregate for casting sand
JPS62156044A (en) Molding material and casting mold