JPH04219623A - Initialization method for information recording medium - Google Patents

Initialization method for information recording medium

Info

Publication number
JPH04219623A
JPH04219623A JP3069484A JP6948491A JPH04219623A JP H04219623 A JPH04219623 A JP H04219623A JP 3069484 A JP3069484 A JP 3069484A JP 6948491 A JP6948491 A JP 6948491A JP H04219623 A JPH04219623 A JP H04219623A
Authority
JP
Japan
Prior art keywords
recording medium
information recording
initialization
recording
initialization method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3069484A
Other languages
Japanese (ja)
Inventor
Hiroko Iwasaki
岩崎 博子
Yukio Ide
由紀雄 井手
Masato Harigai
真人 針谷
Yoshiyuki Kageyama
喜之 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3069484A priority Critical patent/JPH04219623A/en
Publication of JPH04219623A publication Critical patent/JPH04219623A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To offer initialization method of information recording medium by increasing the sensibility, increasing performance after repeated cylcle and prolonging life in the case of recording and erasing and beeing similiary applicable within low cost. CONSTITUTION:In the initialization method of information recording medium recording information by means of transition between two state of recording materials applying energy of electromagnetic wave, using electromagnetic wave as a energy source of initialization against optical information recording medium and also having a relation of the wave length lambdae and -0.1<=(lambda/lambdae)-1<=0.1 is claimed as a new initialization method of information recording medium.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は情報記録媒体、特に相変
化型情報記録媒体の初期化方法であって、光ビームを照
射することにより記録層材料に相変化を生じさせ、情報
の記録、再生を行い、かつ書換えが可能である情報記録
媒体の初期化方法に関するものであり、光メモリー関連
機器に応用される。
[Industrial Application Field] The present invention relates to a method for initializing an information recording medium, particularly a phase change type information recording medium, in which a phase change is caused in a recording layer material by irradiating a light beam, and information recording, The present invention relates to a method for initializing a readable and rewritable information recording medium, and is applied to optical memory-related equipment.

【0002】0002

【従来の技術】電磁波、特にレーザービームの照射によ
る情報の記録、再生及び消去可能な光メモリー媒体の一
つとして、結晶−非晶質相間あるいは結晶−結晶相間の
転移を利用する、いわゆる相変化型記録媒体がよく知ら
れている。特に光磁気メモリーでは困難な単一ビームに
よるオーバーライトが可能であり、ドライブ側の光学系
もより単純であることなどから最近その研究開発が活発
になっている。その代表的な材料例として、USP 3
,530,441 に開示されているようにGe−Te
、Ge−Te−S、Ge−Se−S、Ge−Se−Sb
、Ge−As−Se、In−Te、Se−Te、Se−
Asなどのいわゆるカルコゲン系合金材料があげられる
。 又、安定性、高速結晶化などの向上を目的にGe−Te
系にAu(特開昭61−219692)、Sn及びAu
(特開昭61−270190)、Pd(特開昭62−1
9490)等を添加した材料の提案や、記録/消去の繰
返し性能向上を目的にGe−Te−Se−Sbの組成比
を特定した材料(特開昭62−73438)の提案など
もなされている。しかしながら、そのいずれもが相変化
型書換え可能光メモリー媒体として要求される諸特性の
すべてを満足しうるものとはいえない。特に記録感度、
消去感度の向上、オーバーライト時の消しのこりによる
消去比低下の防止、並びに記録部、未記録部の長寿命化
が解決すべき最重要課題となっている。
[Prior Art] An optical memory medium capable of recording, reproducing, and erasing information by irradiation with electromagnetic waves, especially laser beams, uses so-called phase change that utilizes transition between crystal and amorphous phases or between crystal and crystal phases. type recording media are well known. In particular, it is possible to overwrite with a single beam, which is difficult to do with magneto-optical memory, and the optical system on the drive side is also simpler, so research and development on this topic has been active recently. As a typical material example, USP 3
, 530, 441.
, Ge-Te-S, Ge-Se-S, Ge-Se-Sb
, Ge-As-Se, In-Te, Se-Te, Se-
Examples include so-called chalcogen alloy materials such as As. In addition, Ge-Te is used for the purpose of improving stability and high-speed crystallization.
The system contains Au (Japanese Unexamined Patent Publication No. 61-219692), Sn and Au.
(JP 61-270190), Pd (JP 62-1
9490), and a material with a specified composition ratio of Ge-Te-Se-Sb (Japanese Patent Application Laid-open No. 73438/1983), with the aim of improving repeat recording/erasing performance. . However, none of them can satisfy all of the characteristics required of a phase change type rewritable optical memory medium. Especially recording sensitivity,
The most important issues to be solved are improving erasing sensitivity, preventing a reduction in erasing ratio due to eraser residue during overwriting, and extending the lifespan of recorded and unrecorded areas.

【0003】又、特開昭63−251290では結晶状
態が実質的に三元以上の多元化合物単相からなる記録層
を具備した光記録媒体が提案されている。ここで実質的
に三元以上の多元化合物単相とは三元以上の化学量論組
成をもった化合物(例えばIn3SbTe2)を記録層
中に90原子%以上含むものとされている。このような
記録層を用いることにより高速記録、高速消去が可能に
なるとしている。しかしながら記録、消去に要するレー
ザーパワーはいまだ十分に低減されてはいない。又、消
去比が低い、繰返し特性、長期の信頼性が十分ではない
等の欠点を有している。
[0003] Furthermore, JP-A No. 63-251290 proposes an optical recording medium having a recording layer made of a single phase of a multicomponent compound whose crystalline state is substantially ternary or higher. Here, the term "substantially ternary or higher multicomponent single phase" is defined as a recording layer containing 90 atomic % or more of a compound having a ternary or higher stoichiometric composition (for example, In3SbTe2). The use of such a recording layer enables high-speed recording and high-speed erasing. However, the laser power required for recording and erasing has not yet been sufficiently reduced. Furthermore, it has drawbacks such as a low erasure ratio, insufficient repeatability, and insufficient long-term reliability.

【0004】これらの特性にはその記録材料自身のもつ
特性が大きく影響するのはいうまでもないが、初期化状
態の善し悪しにも大きく左右される。作製直後の記録膜
は比較的不安定な非晶質になっており、外部からエネル
ギーを投入し記録膜温度を結晶化転移点、あるいは融点
付近まで上昇させ安定状態へ転移させる。初期化状態が
記録材料の記録部と非記録部との間の転移を行った際の
非記録部の状態に近いほど消去比は向上し、寿命も長く
なる。この際、記録膜全体を均一にまた十分に初期化を
行わなければならない。もしも初期化の程度に不均一性
があると、その不均一部分の記録、消去特性がまわりと
異なり、再生、記録、消去不良の原因となる。この問題
を解決するためには熱エネルギーを用いるのが最も効果
的であると思われる。熱処理を行うと記録媒体全体の温
度を均一に上昇させ、徐冷させることができるため、非
常に均一で十分な結晶化を行うことができる。しかし、
記録媒体を構成する基板には一般にはガラス基板でなく
安価で操作性の良いポリカーボネートなどの耐熱性の低
い樹脂基板が用いられているため、記録媒体に熱を加え
る初期化方法は適当ではない。また、仮にガラス基板を
用いても初期化に時間がかかり量産には適さない、等の
問題点がある。また、電磁波のエネルギーを記録材内部
で熱エネルギーに変換して初期化を行う場合には、結晶
化のためのエネルギーを十分供給できるか否かというこ
とが問題となる。現在の安価でコンパクトな半導体レー
ザーは発振出力が弱く、結晶化に必要なエネルギーを十
分に供給できない。このため、波長が短く発振出力の大
きいレーザー光を媒体面で焦点をずらして用いている場
合もある。しかし、この場合も初期化のための特別な装
置が必要となり、コスト高につながる。
It goes without saying that these characteristics are greatly influenced by the characteristics of the recording material itself, but they are also greatly influenced by the quality of the initialization state. Immediately after fabrication, the recording film is relatively unstable and amorphous, and energy is applied from the outside to raise the temperature of the recording film to the crystallization transition point or near the melting point to transition to a stable state. The closer the initialization state is to the state of the non-recorded area when the transition between the recorded area and the non-recorded area of the recording material is performed, the higher the erasure ratio and the longer the life span. At this time, the entire recording film must be uniformly and sufficiently initialized. If there is non-uniformity in the degree of initialization, the recording and erasing characteristics of the non-uniform portion will be different from those around it, causing reproduction, recording and erasing failures. The use of thermal energy seems to be the most effective way to solve this problem. When heat treatment is performed, the temperature of the entire recording medium can be raised uniformly and slowly cooled, so that very uniform and sufficient crystallization can be performed. but,
Since the substrate constituting the recording medium is generally a resin substrate with low heat resistance such as polycarbonate, which is inexpensive and easy to operate, rather than a glass substrate, an initialization method that involves applying heat to the recording medium is not appropriate. Further, even if a glass substrate is used, initialization takes a long time and is not suitable for mass production. Furthermore, when initializing the recording material by converting electromagnetic wave energy into thermal energy within the recording material, a problem arises as to whether sufficient energy for crystallization can be supplied. Current cheap and compact semiconductor lasers have weak oscillation output and cannot provide enough energy for crystallization. For this reason, laser light with a short wavelength and high oscillation output is sometimes used with its focus shifted on the medium surface. However, in this case as well, a special device for initialization is required, leading to increased costs.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術に比較して下記の点を改良した情報記録媒体の初期化
方法を提供するものである。 (1) 記録、消去感度の向上 (2) 記録−消去の繰返し性能の向上(3) 長寿命
化 (4) 低コスト 本発明の目的は、以上のような事情に対するもので、良
好な記録、消去特性を示す情報記録媒体の初期化方法を
提供しようとするものである。
SUMMARY OF THE INVENTION The present invention provides a method for initializing an information recording medium that is improved in the following points compared to the above-mentioned prior art. (1) Improving recording and erasing sensitivity (2) Improving recording and erasing repeatability (3) Longer life (4) Low cost The purpose of the present invention is to solve the above-mentioned circumstances, and to improve recording and erasing performance. The present invention attempts to provide a method for initializing an information recording medium exhibiting erasing characteristics.

【0006】[0006]

【課題を解決するための手段】そこで本発明者等は前記
問題点の改善に鋭意研究を重ねた結果、目的に合致する
初期化方法を見出だした。すなわち本発明は電磁波のエ
ネルギーを利用して記録材料の2状態間を転移させるこ
とにより情報を記録する情報記録媒体の初期化方法にお
いて、光情報記録媒体に対する初期化のエネルギー源と
して電磁波を用い、且つその波長λが情報の消去を行う
波長λeと −0.1≦(λ/λe)−1≦0.1 の関係があることを特徴とするものである。また、2回
以上結晶化を行う場合にX回目(2≦X≦n)の初期化
の電磁波のパワーPeXとX−1回目のパワーPeX−
1とがPeX≧PeX−1 の関係にあることを特徴とするものである。これにより
初期化状態が記録材料の記録部と非記録部との間の転移
を行った際の非記録部の状態に近くなり、記録、消去感
度、繰返し特性が向上する。また、初期化の為の特別な
装置が不要のため、低コストが実現できる。
[Means for Solving the Problems] The inventors of the present invention have conducted intensive research to improve the above-mentioned problems, and as a result, have discovered an initialization method that meets the purpose. That is, the present invention provides a method for initializing an information recording medium in which information is recorded by transitioning between two states of a recording material using the energy of electromagnetic waves, using electromagnetic waves as an energy source for initializing an optical information recording medium, Moreover, the wavelength λ is characterized by a relationship of −0.1≦(λ/λe)−1≦0.1 with the wavelength λe at which information is erased. In addition, when performing crystallization two or more times, the power PeX of the electromagnetic wave for the X-th initialization (2≦X≦n) and the power PeX for the X-th initialization and the power PeX- for the first initialization
1 is in the relationship of PeX≧PeX−1. As a result, the initialized state becomes close to the state of the non-recorded area when the transition between the recorded area and the non-recorded area of the recording material is performed, and recording and erasing sensitivity and repeatability are improved. Furthermore, since no special equipment is required for initialization, costs can be reduced.

【0007】記録材料を構成する格子、分子、あるいは
それらのまわりを取り巻く電子は様々なエネルギーレベ
ルを形成しているが、入射電磁波はそれらのエネルギー
レベル間の遷移のいずれかに吸収される。したがって初
期化に用いる波長λが情報の消去を行う波長λeと大き
く異なると、初期化を行う際に励起される状態と消去の
際に励起される状態とが異なるため、非可逆の部分が記
録マーク内に残ってしまう。また、初期化のパワーを徐
々に上昇させることにより、比較的エネルギーレベル間
の遷移の起こりやすい部分から転移を促し、徐々に記録
膜中に安定相を形成することができる。その後、比較的
エネルギーレベル間の遷移の起こりにくい部分の転移を
行う際、まわりの安定相は記録膜の化学的、物理的変化
を防止する役割をする為、均一で十分な結晶化を行うこ
とができる。以下本発明を添付図面に基づき説明する。 図1は、本発明に用いる記録媒体の構成例を示すもので
ある。基板(1)上に耐熱性保護層(2)、記録層(3
)、耐熱性保護層(4)、反射層(5)が設けられてい
る。耐熱性保護層は必ずしも記録層の両側に設ける必要
はなく、耐熱性保護層(2)のみ、あるいは耐熱性保護
層(4)のみの構造でもよい。基板がポリカーボネート
樹脂のように耐熱性が低い材料の場合には耐熱性保護層
(2)を設けることが望ましい。
The lattices, molecules, or electrons surrounding them forming the recording material form various energy levels, and incident electromagnetic waves are absorbed at one of the transitions between these energy levels. Therefore, if the wavelength λ used for initialization is significantly different from the wavelength λe used for erasing information, the state excited during initialization and the state excited during erasure will be different, and the irreversible portion will be recorded. It remains within the mark. Further, by gradually increasing the initialization power, transition can be promoted from a portion where a transition between energy levels is relatively likely to occur, and a stable phase can be gradually formed in the recording film. After that, when performing transitions in areas where transitions between energy levels are relatively difficult to occur, the surrounding stable phase serves to prevent chemical and physical changes in the recording film, so uniform and sufficient crystallization must be performed. I can do it. The present invention will be explained below based on the accompanying drawings. FIG. 1 shows an example of the configuration of a recording medium used in the present invention. A heat-resistant protective layer (2) and a recording layer (3) are provided on the substrate (1).
), a heat-resistant protective layer (4), and a reflective layer (5). The heat-resistant protective layer does not necessarily need to be provided on both sides of the recording layer, and a structure including only the heat-resistant protective layer (2) or only the heat-resistant protective layer (4) may be used. When the substrate is made of a material with low heat resistance, such as polycarbonate resin, it is desirable to provide a heat-resistant protective layer (2).

【0008】本発明で用いられる記録媒体の基板は通常
ガラス、セラミックス、あるいは樹脂であり、樹脂基板
が成形性、コスト等の点で好適である。樹脂の代表例と
してはポリカーボネート樹脂、アクリル樹脂、エポキシ
樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン
共重合体樹脂、ポリエチレン樹脂、ポリプロピレン樹脂
、シリコン系樹脂、フッ素系樹脂、ABS樹脂、ウレタ
ン樹脂等があげられるが、加工性、光学特性等の点でポ
リカーボネート樹脂、アクリル系樹脂が好ましい。 又、基板の形状としてはディスク状、カード状あるいは
シート状であってもよい。
The substrate of the recording medium used in the present invention is usually made of glass, ceramics, or resin, and resin substrates are preferred in terms of moldability, cost, etc. Typical examples of resins include polycarbonate resin, acrylic resin, epoxy resin, polystyrene resin, acrylonitrile-styrene copolymer resin, polyethylene resin, polypropylene resin, silicone resin, fluorine resin, ABS resin, urethane resin, etc. Polycarbonate resins and acrylic resins are preferred in terms of processability, optical properties, and the like. Further, the shape of the substrate may be a disk, a card, or a sheet.

【0009】耐熱性保護層の材料としては、SiO、S
iO2、ZnO、SnO2、Al2O3、TiO2、I
n2O3、MgO、ZrO2等の金属酸化物、Si3N
4、AlN、TiN、BN、ZrNなどの窒化物、Zn
S、In2S3、TaS4等の硫化物、SiC、TaC
、B4C、WC、TiC、ZrCなどの炭化物やダイヤ
モンド状カーボンあるいはそれらの混合物があげられる
。これらの材料は単体で保護層とすることもできるが、
お互いの混合物としてもよい。又、必要に応じて不純物
を含んでいてもよい。但し耐熱保護層の融点は記録層の
融点よりも高いことが必要である。このような耐熱性保
護層は各種気相成長法、例えば真空蒸着法、スパッタリ
ング法、プラズマCVD法、光CVD法、イオンプレー
ティング法、電子ビーム蒸着法等によって形成できる。 耐熱性保護層の膜厚としては200〜5000Å、好適
には500〜3000Åとするのがよい。200Åより
薄くなると耐熱性保護層としての機能を果たさなくなり
、逆に5000Åよりも厚くなると、感度の低下をきた
したり、界面剥離を生じやすくなる。又、必要に応じて
保護層を多層化することもできる。
[0009] Materials for the heat-resistant protective layer include SiO, S
iO2, ZnO, SnO2, Al2O3, TiO2, I
Metal oxides such as n2O3, MgO, ZrO2, Si3N
4. Nitride such as AlN, TiN, BN, ZrN, Zn
S, In2S3, sulfides such as TaS4, SiC, TaC
, B4C, WC, TiC, ZrC, diamond-like carbon, or a mixture thereof. These materials can be used alone as a protective layer, but
They may also be a mixture of each other. Further, it may contain impurities as necessary. However, the melting point of the heat-resistant protective layer must be higher than that of the recording layer. Such a heat-resistant protective layer can be formed by various vapor phase growth methods, such as vacuum evaporation, sputtering, plasma CVD, photoCVD, ion plating, and electron beam evaporation. The thickness of the heat-resistant protective layer is preferably 200 to 5000 Å, preferably 500 to 3000 Å. If it becomes thinner than 200 Å, it will not function as a heat-resistant protective layer, and if it becomes thicker than 5000 Å, sensitivity will decrease or interfacial peeling will easily occur. Moreover, the protective layer can be multi-layered if necessary.

【0010】記録媒体に用いられる記録材料としては三
元以上の化合物とIn、Sn、Sb、Bi、S、Se、
Teから選ばれる1種以上の元素との混相系等があげら
れる。三元以上の化合物としてAgInTe2、AgI
nS2、AgInSe2、AgGaSe2、CuInT
e2、CuInSe2あるいはZnSnSb2、ZnS
nAs2、ZnSnP2、ZnGeAs2、CdSnP
2、CdSnAs2等周期表のIb−IIIb−VIb
2あるいはIIb−IVb−Vb2で表わされるカルコ
パイライト型化合物、及び/又はIb−Vb−VIb2
(wolfsbergite型)で表されるAgSbT
e2などの立方晶を有する化合物が適当である。このよ
うな記録層は各種気相成長法、例えば真空蒸着法、スパ
ッタリング法、プラズマCVD法、光CVD法、イオン
プレーティング法、電子ビーム蒸着法等によって形成で
きる。 気相成長法以外にゾルゲル法のような湿式プロセスも適
用可能である。記録層の膜厚としては200〜1000
0Å、好適には500〜3000Åとするのがよい。反
射層としてはAl、Auなどの金属材料を用いることが
できるが、必ずしも必要ではない。このような反射層は
各種気相成長法、例えば真空蒸着法、スパッタリング法
、プラズマCVD法、光CVD法、イオンプレーティン
グ法、電子ビーム蒸着法等によって形成できる。
The recording materials used in the recording medium include ternary or higher compounds and In, Sn, Sb, Bi, S, Se,
Examples include a mixed phase system with one or more elements selected from Te. AgInTe2, AgI as ternary or higher compounds
nS2, AgInSe2, AgGaSe2, CuInT
e2, CuInSe2 or ZnSnSb2, ZnS
nAs2, ZnSnP2, ZnGeAs2, CdSnP
2. Ib-IIIb-VIb of the periodic table of CdSnAs2
2 or IIb-IVb-Vb2, and/or Ib-Vb-VIb2
AgSbT represented by (wolfsbergite type)
Compounds with cubic crystals such as e2 are suitable. Such a recording layer can be formed by various vapor phase growth methods, such as vacuum evaporation, sputtering, plasma CVD, photoCVD, ion plating, and electron beam evaporation. In addition to the vapor phase growth method, wet processes such as the sol-gel method can also be applied. The thickness of the recording layer is 200 to 1000
The thickness is preferably 0 Å, preferably 500 to 3000 Å. Although a metal material such as Al or Au can be used as the reflective layer, it is not necessary. Such a reflective layer can be formed by various vapor phase growth methods, such as vacuum evaporation, sputtering, plasma CVD, photoCVD, ion plating, and electron beam evaporation.

【0011】[0011]

【実施例】以下、実施例によって本発明を具体的に説明
する。ただし、これらの実施例は本発明をなんら制限す
るものではない。実施例1ピッチ1.6μm、深さ70
0Åの溝付き、厚さ1.2mm、直径86mmφのポリ
カーボネート基板上にrfスパッタリング法により耐熱
保護層、記録層、耐熱保護層、反射層を順次積層し、評
価用光ディスクを作製した。基板上に設ける記録材料と
してAg14In14Te29Sb43を用い、膜厚は
1000Åとした。反射層はAlを用い、膜厚500Å
とした。耐熱保護層はSi3N4を用い膜厚は基板側2
000Å、反射層側1000Åとした。光ディスクの評
価は波長830nmの半導体レーザー光をNA=0.5
のレンズを通して媒体面で1μmφのスポット径にしぼ
り込み基板側から照射することにより行った。ディスク
の線速度は7m/secとした。記録の書き込み条件は
、線速度7m/sec、周波数3.8MHzとし、記録
レーザーパワー(Pw)を4mWから19mWまで変化
させた。消去レーザーパワー(Pe)は9mWとした。 読み取りパワー(Pr)は1mWとした。
[Examples] The present invention will be specifically explained below with reference to Examples. However, these Examples do not limit the present invention in any way. Example 1 pitch 1.6 μm, depth 70
A heat-resistant protective layer, a recording layer, a heat-resistant protective layer, and a reflective layer were sequentially laminated by an RF sputtering method on a polycarbonate substrate having a groove of 0 Å, a thickness of 1.2 mm, and a diameter of 86 mm to prepare an optical disc for evaluation. Ag14In14Te29Sb43 was used as the recording material provided on the substrate, and the film thickness was 1000 Å. The reflective layer is made of Al and has a thickness of 500 Å.
And so. The heat-resistant protective layer is made of Si3N4, and the film thickness is 2 on the substrate side.
000 Å and 1000 Å on the reflective layer side. Optical disc evaluation uses semiconductor laser light with a wavelength of 830 nm and NA=0.5.
This was done by reducing the spot diameter to 1 μmφ on the medium surface through a lens and irradiating it from the substrate side. The linear velocity of the disk was 7 m/sec. The writing conditions for recording were a linear velocity of 7 m/sec and a frequency of 3.8 MHz, and the recording laser power (Pw) was varied from 4 mW to 19 mW. The erasing laser power (Pe) was 9 mW. The reading power (Pr) was 1 mW.

【0012】製膜後の記録膜は非晶質であったが、測定
に際し波長830nmの半導体レーザー光を用い、媒体
面で順に7mW、8mW、9mWのDC光でディスク全
面を十分に結晶化させ、それを初期(未記録)状態とし
た。9mWでの初期化は媒体面からの反射率が飽和する
まで行った。 図2に初期化後のディスクに記録したマークのC/N(
キャリア対ノイズ比)値及びDC光による消去後の消去
比と、記録レーザーパワー(Pw)との関係を示す。図
中、●は記録時のC/N値を示し、矢印の長さはDC光
消去により消去されたC/N値を示す。この図からわか
るように高感度の記録消去が実現されている。記録パワ
ー8〜11mWではC/N値が40dB以上となり、消
去率は100%である。
The recording film after film formation was amorphous, but during measurement, a semiconductor laser beam with a wavelength of 830 nm was used, and the entire surface of the disk was sufficiently crystallized with DC light of 7 mW, 8 mW, and 9 mW on the medium surface. , and set it as an initial (unrecorded) state. Initialization at 9 mW was performed until the reflectance from the medium surface was saturated. Figure 2 shows the C/N (C/N) of marks recorded on the disk after initialization.
The relationship between the carrier-to-noise ratio) value, the erasing ratio after erasing with DC light, and the recording laser power (Pw) is shown. In the figure, ● indicates the C/N value during recording, and the length of the arrow indicates the C/N value erased by DC light erasing. As can be seen from this figure, highly sensitive recording and erasing has been achieved. At a recording power of 8 to 11 mW, the C/N value is 40 dB or more, and the erasure rate is 100%.

【0013】比較例1 実施例と同様の評価用光ディスクを作製し、波長600
nmのArイオンレーザーを用いて実施例と同様に初期
化を行った。記録、消去、再生方法に関しても実施例と
同様である。図3に初期化後ディスクに記録したマーク
のC/N(キャリア対ノイズ比)値及びDC光による消
去後の消去比と、記録レーザーパワー(Pw)との関係
を示す。図中の記号等の意味は図2と同様である。記録
時の最高のC/N値は47dBであるが、そのときの記
録パワーは12mWで実施例より3mWも大きくなって
いる。この時の消去比は16dBに留まっている。
Comparative Example 1 An optical disk for evaluation similar to that of the example was prepared, and a wavelength of 600
Initialization was performed in the same manner as in the example using a nm Ar ion laser. The recording, erasing, and reproducing methods are also the same as in the embodiment. FIG. 3 shows the relationship between the C/N (carrier-to-noise ratio) value of marks recorded on the disk after initialization, the erasure ratio after erasing with DC light, and the recording laser power (Pw). The meanings of symbols etc. in the figure are the same as in FIG. 2. The highest C/N value during recording was 47 dB, but the recording power at that time was 12 mW, which was 3 mW larger than that of the example. The erasure ratio at this time remains at 16 dB.

【0014】比較例2 実施例と同条件の溝付きガラス基板上に、やはり実施例
と同条件で評価用光ディスクを作製した。大気中で1時
間、230℃で熱処理を行い、十分に結晶化させた状態
を初期化状態とした。記録、消去、再生方法に関しては
実施例と同様の方法で行った。図4に初期化後のディス
クに記録したマークのC/N(キャリア対ノイズ比)値
およびDC光による消去後の消去比と、記録レーザーパ
ワー(Pw)との関係を示す。図中の記号等の意味は図
2と同様である。記録時の最高C/N値は44dBであ
る。C/N値が飽和するのはおよそ10mWであり、や
はり実施例1よりも高パワーを必要とすることがわかる
。又、消去比は9dBであり実施例のような完全消去は
できない。
Comparative Example 2 An optical disk for evaluation was produced on a grooved glass substrate under the same conditions as in the example, also under the same conditions as in the example. Heat treatment was performed at 230° C. for 1 hour in the atmosphere, and the state where the material was sufficiently crystallized was defined as an initialized state. The recording, erasing, and reproducing methods were the same as in the examples. FIG. 4 shows the relationship between the C/N (carrier-to-noise ratio) value of marks recorded on the disk after initialization, the erasure ratio after erasing with DC light, and the recording laser power (Pw). The meanings of symbols etc. in the figure are the same as in FIG. 2. The highest C/N value during recording was 44 dB. It can be seen that the C/N value is saturated at approximately 10 mW, which again requires higher power than in Example 1. Further, the erasure ratio is 9 dB, and complete erasure as in the embodiment cannot be achieved.

【0015】[0015]

【発明の効果】以上説明したように、本発明の記録媒体
初期化方法においては、初期化に用いる波長と消去に用
いる波長とがほぼ同じであるため、繰返し性能の向上、
低パワーでの記録、消去、記録媒体の長寿命化が達成で
きる。また、初期化のための特別な装置が不要のため、
低コストが実現できる。また、初期化に用いるパワーを
徐々に上昇させるため記録膜が均一に、安定に初期化さ
れるため同様の効果が達成できる。
As explained above, in the recording medium initialization method of the present invention, since the wavelength used for initialization and the wavelength used for erasing are almost the same, the repeatability can be improved,
It is possible to record and erase with low power and extend the life of the recording medium. In addition, since no special equipment is required for initialization,
Low cost can be achieved. Further, since the power used for initialization is gradually increased, the recording film is uniformly and stably initialized, so that the same effect can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の初期化方法を行う記録媒体の構成の一
例を示す断面の模式図。
FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a recording medium on which the initialization method of the present invention is performed.

【図2】[Figure 2]

【図3】[Figure 3]

【図4】それぞれ、実施例1、比較例1、比較例2にお
ける初期化後のディスクに記録したマークのC/N(キ
ャリア対ノイズ比)値及びDC光による消去後の消去比
と、記録レーザーパワー(Pw)との関係を示すグラフ
である。
FIG. 4 shows the C/N (carrier-to-noise ratio) value of marks recorded on the disk after initialization and the erasing ratio after erasing with DC light in Example 1, Comparative Example 1, and Comparative Example 2, respectively; It is a graph showing the relationship with laser power (Pw).

【符号の説明】[Explanation of symbols]

1  基板 2および4  耐熱性保護層 3  記録層 5  反射層 1 Board 2 and 4 Heat-resistant protective layer 3 Recording layer 5 Reflective layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  電磁波のエネルギーを利用して記録材
料の二状態間を転移させることにより情報を記録する情
報記録媒体の初期化方法において、光情報記録媒体に対
する初期化のエネルギー源として電磁波を用い、且つそ
の波長λが情報の消去を行う波長λeと −0.1≦(λ/λe)−1≦0.1 の関係があることを特徴とする情報記録媒体初期化方法
Claim 1. A method for initializing an information recording medium in which information is recorded by transitioning between two states of a recording material using the energy of electromagnetic waves, using electromagnetic waves as an energy source for initializing an optical information recording medium. , and the wavelength λ has a relationship of −0.1≦(λ/λe)−1≦0.1 with the wavelength λe at which information is erased.
【請求項2】  初期化を最終的にn回(n≧2)行い
、X回目(2≦X≦n)の初期化の電磁波のパワーPe
XとX−1回目のパワーPeX−1とが PeX≧PeX−1 の関係にあることを特徴とする請求項1記載の情報記録
媒体初期化方法。
[Claim 2] The initialization is finally performed n times (n≧2), and the power Pe of the electromagnetic wave for the X-th initialization (2≦X≦n) is
2. The information recording medium initialization method according to claim 1, wherein X and the X-1th power PeX-1 have a relationship of PeX≧PeX-1.
【請求項3】  初期化後の記録材料中に三元以上の化
合物とIn、Sn、Sb、Bi、S、Se、Teから選
ばれる1種以上の元素、またはこれらの元素からなる合
金との混相を主として有する情報記録媒体を用いること
を特徴とする請求項1または請求項2記載の初期化方法
3. The recording material after initialization contains a ternary or higher compound and one or more elements selected from In, Sn, Sb, Bi, S, Se, and Te, or an alloy consisting of these elements. 3. The initialization method according to claim 1, wherein an information recording medium mainly having a mixed phase is used.
【請求項4】  前記請求項3記載の情報記録媒体にお
いて、三元以上の化合物として周期律表のIb−III
b−VIb2あるいはIIb−IVb−Vb2で表わさ
れるカルコパイライト型化合物、及び/又は立方晶を有
する化合物を有する情報記録媒体を用いることを特徴と
する請求項1記載の初期化方法。
4. The information recording medium according to claim 3, wherein the ternary or higher compound includes Ib-III of the periodic table.
The initialization method according to claim 1, characterized in that an information recording medium containing a chalcopyrite type compound represented by b-VIb2 or IIb-IVb-Vb2 and/or a compound having a cubic crystal is used.
【請求項5】  前記請求項3及び請求項4記載の情報
記録媒体において、主としてAgSbTe2及び/又は
Sbが結晶化することにより初期化状態となる情報記録
媒体を用いることを特徴とする請求項1及び請求項2記
載の初期化方法
5. The information recording medium according to claim 3 and claim 4, wherein an information recording medium is used which is brought into an initialized state mainly by crystallization of AgSbTe2 and/or Sb. and the initialization method according to claim 2.
JP3069484A 1990-07-23 1991-03-11 Initialization method for information recording medium Pending JPH04219623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3069484A JPH04219623A (en) 1990-07-23 1991-03-11 Initialization method for information recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19288890 1990-07-23
JP2-192888 1990-07-23
JP3069484A JPH04219623A (en) 1990-07-23 1991-03-11 Initialization method for information recording medium

Publications (1)

Publication Number Publication Date
JPH04219623A true JPH04219623A (en) 1992-08-10

Family

ID=26410673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3069484A Pending JPH04219623A (en) 1990-07-23 1991-03-11 Initialization method for information recording medium

Country Status (1)

Country Link
JP (1) JPH04219623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334845A (en) * 1994-04-15 1995-12-22 Nec Corp Method for initializing phase change optical disk
US6256286B1 (en) 1997-02-21 2001-07-03 Nec Corporation Method for initiating a phase change recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334845A (en) * 1994-04-15 1995-12-22 Nec Corp Method for initializing phase change optical disk
US6256286B1 (en) 1997-02-21 2001-07-03 Nec Corporation Method for initiating a phase change recording medium

Similar Documents

Publication Publication Date Title
US5736657A (en) Sputtering target
US6652806B2 (en) Method of producing a sputtering target
JP3011200B2 (en) Optical recording medium
US5523140A (en) Optical recording method and medium
EA005347B1 (en) Optical information medium and its use
JP3032585B2 (en) Information recording medium
JP2908826B2 (en) Information recording medium
RU2232436C2 (en) Writable optical data medium
JPH04219623A (en) Initialization method for information recording medium
JPH05151619A (en) Optical information recording medium and recording method
JP3058443B2 (en) Optical information recording medium
JP2005537156A (en) Rewritable optical data storage medium and use of such medium
JP2804313B2 (en) Phase change optical information recording medium
JP2954731B2 (en) Information recording medium and information recording method using the same
JP2986897B2 (en) Information recording medium
JP2963106B2 (en) Information recording medium
JP2003191638A (en) Optical recording medium
JP3729833B2 (en) Information recording medium
JP3176582B2 (en) Recording and erasing information
JPH0471895A (en) Data recording medium
JP2000298874A (en) Phase-change optical disk and its manufacture
JPH06131663A (en) Information recording system
JPH03153389A (en) Optical recording medium
JPH0373384A (en) Optical information recording component
JPH03208688A (en) Optical data recording medium